Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = electrochemical test kit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4842 KiB  
Review
Perspectives on the Application of Biosensors for the Early Detection of Oral Cancer
by Sanket Naresh Nagdeve, Baviththira Suganthan and Ramaraja P. Ramasamy
Sensors 2025, 25(5), 1459; https://doi.org/10.3390/s25051459 - 27 Feb 2025
Cited by 1 | Viewed by 1767
Abstract
Oral cancer continues to cause profound suffering and is associated with high mortality rates. Early detection techniques are crucial in enhancing patient outcomes. This review paper thoroughly evaluates the significance of biomarkers and recent advancements in oral cancer detection, emphasizing cutting-edge electrochemical methods. [...] Read more.
Oral cancer continues to cause profound suffering and is associated with high mortality rates. Early detection techniques are crucial in enhancing patient outcomes. This review paper thoroughly evaluates the significance of biomarkers and recent advancements in oral cancer detection, emphasizing cutting-edge electrochemical methods. The paper provides an epidemiological and etiological overview, outlining its clinical importance and reviewing the current state of the art in detection methods. Despite considerable progress, conventional methods exhibit limitations such as invasiveness, long wait times, and a lack of accuracy, creating a critical need for more robust technologies. This review emphasizes the significance of oral cancer biomarkers, which are considered promising cues for early detection, facilitating the development of innovative biosensing technologies. This review seeks to illuminate the recent advances in early detection and precision diagnostics, along with the usage of artificial intelligence strategies, ultimately contributing to significant progress in the battle against oral cancer. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Graphical abstract

17 pages, 2598 KiB  
Article
Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
by Angela Gabriela Pãun, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu and George-Octavian Buica
Biosensors 2025, 15(1), 42; https://doi.org/10.3390/bios15010042 - 13 Jan 2025
Cited by 2 | Viewed by 1305
Abstract
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein [...] Read more.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode. Initial, quantum dots (QDs) were obtained from Bombyx mori silk fibroin and embedded in polypyrrole film. Using carbodiimide coupling, a polyamidoamine (PAMAM) dendrimer was linked with GQDs-polypyrrole film to improve sensor sensitivity. The tissue transglutaminase (tTG) antigen was cross-linked onto PAMAM using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)-N-hydroxy succinimide (NHS) chemistry to develop a nanoprobe that can detect human serum anti-tTG antibodies. The physicochemical characteristics of the synthesized nanocomposite were examined by FTIR, UV-visible, FE-SEM, EDX, and electrochemical studies. The novel electrode measures anti-tissue antibody levels in real time using human blood serum samples. The modified electrode has great repeatability and an 8.7 U/mL detection limit. Serum samples from healthy people and CD patients were compared to standard ELISA kit assays. SPSS and Excel were used for statistical analysis. The improved electrode and detection system can identify anti-tissue antibodies up to 80 U/mL. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

18 pages, 2493 KiB  
Article
Portulaca oleracea as a Green Dual-Action Biocide and Corrosion Inhibitor Against Thiosulfate-Reducing Bacterial Biofilms on Carbon Steel
by Hadjer Didouh, Fadi A. Al-Badour, Faiza Khoukhi, Omar Bouledroua, Mohammad Mizanur Rahman, Arumugam Madhan Kumar, Rami K. Suleiman and Mohammed Hadj Meliani
Sustainability 2024, 16(24), 10796; https://doi.org/10.3390/su162410796 - 10 Dec 2024
Cited by 1 | Viewed by 1291
Abstract
Microbially influenced corrosion poses a significant threat to the integrity and longevity of carbon steel infrastructure, particularly in environments conducive to biofilm formation by thiosulfate-reducing bacteria (TRB) to carbon steel. This study explores the potential of Portulaca oleracea, an edible plant species, [...] Read more.
Microbially influenced corrosion poses a significant threat to the integrity and longevity of carbon steel infrastructure, particularly in environments conducive to biofilm formation by thiosulfate-reducing bacteria (TRB) to carbon steel. This study explores the potential of Portulaca oleracea, an edible plant species, as a dual-action biocide and green corrosion inhibitor for mitigating MIC adhesion. Through a comprehensive suite of experimental and analytical techniques, including electrochemical analysis, microbial analysis, gravimetric methods, and surface characterization, the efficacy of Portulaca oleracea extract is evaluated for its ability to inhibit TRB growth and biofilm formation while concurrently providing corrosion protection to carbon steel substrates. The electrochemical analyses reveal the extract’s capacity with the anodic reaction inhibition achieving 80%, thereby reducing the overall corrosion rate of carbon steel in the presence of TRB biofilms. Complementary microbial analyses, such as viable cell counting using test kits, elucidate the biocidal action of the extract, effectively suppressing TRB growth and biofilm development, with the presence of 20 ppm of the extract reducing bacterial growth. Surface characterization techniques provide insights into the adsorption behavior of the extract’s constituents on the carbon steel surface, forming a protective film that mitigates corrosion and biofilm adhesion. The adsorption of the extract at the interface between mild steel and the formation water adheres to Langmuir isotherm. Overall, the biocorrosion issue we are addressing in this work is crucial for ensuring the sustainability and efficiency of equipment, pipelines, and other metal-based systems. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

18 pages, 5325 KiB  
Article
A New Convenient Method to Assess Antibiotic Resistance and Antimicrobial Efficacy against Pathogenic Clostridioides difficile Biofilms
by Lingjun Xu, Bijay Gurung, Chris Gu, Shaohua Wang and Tingyue Gu
Antibiotics 2024, 13(8), 728; https://doi.org/10.3390/antibiotics13080728 - 3 Aug 2024
Cited by 1 | Viewed by 1925
Abstract
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of [...] Read more.
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of a disposable electrochemical biofilm test kit using two solid-state electrodes (a 304 stainless steel working electrode, and a graphite counter electrode, which also served as the reference electrode) in a 10 mL serum vial. It was found that the C. difficile 630∆erm Adp-4 mutant had a minimum inhibitory concentration (MIC) for vancomycin twice that of the 630∆erm wild type strain in biofilm prevention (2 ppm vs. 1 ppm by mass) on 304 stainless steel. Glutaraldehyde, a commonly used hospital disinfectant, was found ineffective at 2% (w/w) for the prevention of C. difficile 630∆erm wild type biofilm formation, while tetrakis(hydroxymethyl)phosphonium sulfate (THPS) disinfectant was very effective at 100 ppm for both biofilm prevention and biofilm killing. These antimicrobial efficacy data were consistent with sessile cell count and biofilm imaging results. Furthermore, the test kit provided additional transient biocide treatment information. It showed that vancomycin killed C. difficile 630∆erm wild type biofilms in 2 d, while THPS only required minutes. Full article
Show Figures

Figure 1

18 pages, 6582 KiB  
Article
Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme
by Mostafa Ahmed Samy, Muhammed Abdel-Hamied Abdel-Tawab, Nour. T. Abdel-Ghani and Rasha M. El Nashar
Chemosensors 2023, 11(5), 262; https://doi.org/10.3390/chemosensors11050262 - 27 Apr 2023
Cited by 6 | Viewed by 2538
Abstract
Alanine amino transaminase (ALT) is an enzyme that can be used as a biomarker for liver injury and other diseases. In this work, we report the development of the first microelectrode based on a molecularly imprinted pyruvate oxidase enzyme to be applied as [...] Read more.
Alanine amino transaminase (ALT) is an enzyme that can be used as a biomarker for liver injury and other diseases. In this work, we report the development of the first microelectrode based on a molecularly imprinted pyruvate oxidase enzyme to be applied as an electrochemical biosensor for ALT detection. The biosensor is based on pyruvate oxidase enzyme (POx), imprinted using 4-aminophenol (functional monomer-on-platinum microelectrode modified (PME)) with platinum nanoparticles and 4-aminoantypirine (4-AAP)/sodium pyruvate as an electrochemical indicator. The operational conditions of the biosensor were optimized and characterized morphologically using scanning electron microscopy (SEM) and electrochemically using electrochemical impedance spectroscopy (EIS). The biosensor was found to have a fast response towards ALT within a linear range of 25–700 U/L and a limit of detection of 2.97 U/L. The biosensor did not exhibit cross-reactivity towards other tested enzymes, including nicotinamide adenine dinucleotide (Beta-NAD), catalase (CAT), glutathione peroxidase (GPx), and L-glutathione reduced (GSH) enzymes. The biosensor was efficiently applied for the assay of ALT in plasma samples; with recovery values ranging from 99.80–103.82% and RSD of values 0.27–2.01% and these results were found to be comparable to those of the reference diagnostic kits, without any need for complicated procedures or protein extraction. In addition to being highly sensitive, low cost, and portable, the use of microelectrodes allows the application of the proposed sensor for point-of-care diagnostics of liver function and online monitoring of ALT levels in hospitalized patients without the need for withdrawing samples, which indicates the promising applicability of the presented ALT sensor for point-of-care diagnostics. Full article
(This article belongs to the Special Issue Advances in Chemosensors Technologies for Monitoring and Diagnostics)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Model of Chronoamperometric Response towards Glucose Sensing by Arrays of Gold Nanostructures Obtained by Laser, Thermal and Wet Processes
by Antonino Scandurra, Valentina Iacono, Stefano Boscarino, Silvia Scalese, Maria Grazia Grimaldi and Francesco Ruffino
Nanomaterials 2023, 13(7), 1163; https://doi.org/10.3390/nano13071163 - 24 Mar 2023
Cited by 4 | Viewed by 2279
Abstract
Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as [...] Read more.
Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as great sensitivity and little dependence on analyte diffusion close to the electrode–solution interface. Obtaining electrodes based on nanomaterials without using expensive lithographic techniques represents a great added value. In this paper, we modeled the chronoamperometric response towards glucose determination by four electrodes consisting of nanostructured gold onto graphene paper (GP). The nanostructures were obtained by electrochemical etch, thermal and laser processes of thin gold layer. We addressed experiments obtaining different size and shape of gold nanostructures. Electrodes have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and chronoamperometry. We modeled the current-time response at the potential corresponding to two-electrons oxidation process of glucose by the different nanostructured gold systems. The finest nanostructures of 10–200 nm were obtained by laser dewetting of 17 nm thin and 300 °C thermal dewetting of 8 nm thin gold layers, and they show that semi-infinite linear diffusion mechanism predominates over radial diffusion. Electrochemical etching and 17 nm thin gold layer dewetted at 400 °C consist of larger gold islands up to 1 μm. In the latter case, the current-time curves can be fitted by a two-phase exponential decay function that relies on the mixed second-order formation of adsorbed glucose intermediate followed by its first-order decay to gluconolactone. Full article
Show Figures

Figure 1

13 pages, 4079 KiB  
Article
Biosensors Fabricated by Laser-Induced Metallization on DLP Composite Resin
by Ran Zhang, Qinyi Wang, Ya Chen, Chen Jiao, Fuxi Liu, Junwei Xu, Qiuwei Zhang, Jiantao Zhao, Lida Shen and Changjiang Wang
Electronics 2022, 11(19), 3254; https://doi.org/10.3390/electronics11193254 - 10 Oct 2022
Cited by 4 | Viewed by 2186
Abstract
With the growing emphasis on medical testing, people are seeking more technologies to detect indexes of the human body quickly and at a low cost. The electrochemical biosensors became a research hotspot due to their excellent properties. In this study, dicopper hydroxide phosphate [...] Read more.
With the growing emphasis on medical testing, people are seeking more technologies to detect indexes of the human body quickly and at a low cost. The electrochemical biosensors became a research hotspot due to their excellent properties. In this study, dicopper hydroxide phosphate (Cu2(OH)PO4) was incorporated in resin, and the resin sheets were prepared by digital light processing (DLP). The copper base points were activated on the resin sheet surface by Nd: YAG laser and then covered by the electroless copper plating and the electroless silver plating. The laser could effectively activate copper base points on the resin surface. Furthermore, silver electrodes on the detection chips could distinguish glucose solutions of different concentrations well. Finally, a novel detection kit with a three-electrode chip was designed for rapid health testing at home or in medical institutions in the future. Full article
Show Figures

Figure 1

30 pages, 6279 KiB  
Article
Advanced Fabrication of miRNA-Based Electrochemical Nanobiosensor for Diagnosis of Breast Cancer
by Cansu İlke Kuru and Sinan Akgöl
Nanomanufacturing 2022, 2(3), 146-175; https://doi.org/10.3390/nanomanufacturing2030011 - 7 Sep 2022
Cited by 4 | Viewed by 2534
Abstract
Early diagnosis is the key to easy, low cost, and effective treatment of breast cancer. Therefore, studies have been accelerated to identify breast cancer diagnostic biomarkers and diagnose cancer before it progresses. The use of miR-155 as a potential biomarker in breast cancer, [...] Read more.
Early diagnosis is the key to easy, low cost, and effective treatment of breast cancer. Therefore, studies have been accelerated to identify breast cancer diagnostic biomarkers and diagnose cancer before it progresses. The use of miR-155 as a potential biomarker in breast cancer, which has different levels at different stages of the disease, provides a simple serological test for breast cancer prognosis/diagnosis, follow-up, and treatment. Nanopolymers containing different functional groups that are formed by thiol affinity technique were synthesized by mini emulsion polymerization method and advanced characterization studies were carried out in this study to be used as bioactive layers in the nanobiosensor system for miRNA detection. The working conditions of the electrochemical nanobiosensor in which nanopolymers are used as bioactive layers were optimized. Analytical measurement characteristics and validation studies of the nanobiosensor were determined and analysis was performed on commercial blood serum. The potential of the developed electrochemical biosensor to be used as a medical diagnostic kit was explained by comparing it with commercial miRNA kit currently used for the detection of miR-155. This novel nanobiosensor provide sensitive, reliable, and rapid detection of miR-155 and it can provide the potential for breast cancer early diagnosis, prognosis, and follow-up. Full article
(This article belongs to the Special Issue Feature Papers for Nanomanufacturing)
Show Figures

Figure 1

21 pages, 4859 KiB  
Review
Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review
by Muhammad Afiq Abdul Ghani, Anis Nurashikin Nordin, Munirah Zulhairee, Adibah Che Mohamad Nor, Mohd Shihabuddin Ahmad Noorden, Muhammad Khairul Faisal Muhamad Atan, Rosminazuin Ab Rahim and Zainiharyati Mohd Zain
Biosensors 2022, 12(8), 666; https://doi.org/10.3390/bios12080666 - 22 Aug 2022
Cited by 24 | Viewed by 7606
Abstract
With the rise of zoonotic diseases in recent years, there is an urgent need for improved and more accessible screening and diagnostic methods to mitigate future outbreaks. The recent COVID-19 pandemic revealed an over-reliance on RT-PCR, a slow, costly and lab-based method for [...] Read more.
With the rise of zoonotic diseases in recent years, there is an urgent need for improved and more accessible screening and diagnostic methods to mitigate future outbreaks. The recent COVID-19 pandemic revealed an over-reliance on RT-PCR, a slow, costly and lab-based method for diagnostics. To better manage the pandemic, a high-throughput, rapid point-of-care device is needed for early detection and isolation of patients. Electrochemical biosensors offer a promising solution, as they can be used to perform on-site tests without the need for centralized labs, producing high-throughput and accurate measurements compared to rapid test kits. In this work, we detail important considerations for the use of electrochemical biosensors for the detection of respiratory viruses. Methods of enhancing signal outputs via amplification of the analyte, biorecognition of elements and modification of the transducer are also explained. The use of portable potentiostats and microfluidics chambers that create a miniature lab are also discussed in detail as an alternative to centralized laboratory settings. The state-of-the-art usage of portable potentiostats for detection of viruses is also elaborated and categorized according to detection technique: amperometry, voltammetry and electrochemical impedance spectroscopy. In terms of integration with microfluidics, RT-LAMP is identified as the preferred method for DNA amplification virus detection. RT-LAMP methods have shorter turnaround times compared to RT-PCR and do not require thermal cycling. Current applications of RT-LAMP for virus detection are also elaborated upon. Full article
Show Figures

Figure 1

16 pages, 3236 KiB  
Article
Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers
by Francisco Burgos-Flórez, Alexander Rodríguez, Eliana Cervera, Marcio De Ávila, Marco Sanjuán and Pedro J. Villalba
Micromachines 2022, 13(5), 706; https://doi.org/10.3390/mi13050706 - 29 Apr 2022
Cited by 19 | Viewed by 5561
Abstract
A current challenge regarding microfluidic paper-based analytical devices (µPAD) for blood plasma separation (BPS) and electrochemical immunodetection of protein biomarkers is how to achieve a µPAD that yields enough plasma to retain the biomarker for affinity biosensing in a functionalized electrode system. This [...] Read more.
A current challenge regarding microfluidic paper-based analytical devices (µPAD) for blood plasma separation (BPS) and electrochemical immunodetection of protein biomarkers is how to achieve a µPAD that yields enough plasma to retain the biomarker for affinity biosensing in a functionalized electrode system. This paper describes the development of a BPS µPAD to detect and quantify the S100B biomarker from peripheral whole blood. The device uses NaCl functionalized VF2 filter paper as a sample collection pad, an MF1 filter paper for plasma retention, and an optimized microfluidic channel geometry. An inverted light microscope, scanning electron microscope (SEM), and image processing software were used for visualizing BPS efficiency. A design of experiments (DOE) assessed the device’s efficacy using an S100B ELISA Kit to measure clinically relevant S100B concentrations in plasma. The BPS device obtained 50 μL of plasma from 300 μL of whole blood after 3.5 min. The statistical correlation of S100B concentrations obtained using plasma from standard centrifugation and the BPS device was 0.98. The BPS device provides a simple manufacturing protocol, short fabrication time, and is capable of S100B detection using ELISA, making one step towards the integration of technologies aimed at low-cost POC testing of clinically relevant biomarkers. Full article
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Voltammetric Immunosensor to Track a Major Peanut Allergen (Ara h 1) in Food Products Employing Quantum Dot Labels
by Maria Freitas, Henri P. A. Nouws and Cristina Delerue-Matos
Biosensors 2021, 11(11), 426; https://doi.org/10.3390/bios11110426 - 29 Oct 2021
Cited by 19 | Viewed by 2811
Abstract
Tracking unreported allergens in commercial foods can avoid acute allergic reactions. A 2-step electrochemical immunosensor was developed for the analysis of the peanut allergen Ara h 1 in a 1-h assay (<15 min hands-on time). Bare screen-printed carbon electrodes (SPCE) were used as transducers [...] Read more.
Tracking unreported allergens in commercial foods can avoid acute allergic reactions. A 2-step electrochemical immunosensor was developed for the analysis of the peanut allergen Ara h 1 in a 1-h assay (<15 min hands-on time). Bare screen-printed carbon electrodes (SPCE) were used as transducers and monoclonal capture and detection antibodies were applied in a sandwich-type immunoassay. The short assay time was achieved by previously combining the target analyte and the detection antibody. Core/shell CdSe@ZnS Quantum Dots were used as electroactive label for the detection of the immunological interaction by differential pulse anodic stripping voltammetry. A linear range between 25 and 1000 ng·mL−1 (LOD = 3.5 ng·mL−1), an adequate precision of the method (Vx0 ≈ 6%), and a sensitivity of 23.0 nA·mL·ng−1·cm−2 were achieved. The immunosensor was able to detect Ara h 1 in a spiked allergen-free product down to 0.05% (m/m) of peanut. Commercial organic farming cookies and cereal and protein bars were tested to track and quantify Ara h 1. The results were validated by comparison with an ELISA kit. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

14 pages, 1327 KiB  
Article
Green Composite Sensor for Monitoring Hydroxychloroquine in Different Water Matrix
by Danyelle M. de Araújo, Suelya da Silva M. Paiva, João Miller M. Henrique, Carlos A. Martínez-Huitle and Elisama V. Dos Santos
Materials 2021, 14(17), 4990; https://doi.org/10.3390/ma14174990 - 31 Aug 2021
Cited by 26 | Viewed by 3686
Abstract
Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain [...] Read more.
Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain hospitalized patients. However, it is considered as an unproven hypothesis for treating COVID-19 which even itself must be investigated. Consequently, the high risk of natural water contamination due to the large production and utilization of HCQ is a key issue to overcome urgently. In fact, in Brazil, the COVID-19 kit (hydroxychloroquine and/or ivermectin) has been indicated as pre-treatment, and consequently, several people have used these drugs, for longer periods, converting them in emerging water pollutants when these are excreted and released to aquatic environments. For this reason, the development of tools for monitoring HCQ concentration in water and the treatment of polluted effluents is needed to minimize its hazardous effects. Then, in this study, an electrochemical measuring device for its environmental application on HCQ control was developed. A raw cork–graphite electrochemical sensor was prepared and a simple differential pulse voltammetric (DPV) method was used for the quantitative determination of HCQ. Results indicated that the electrochemical device exhibited a clear current response, allowing one to quantify the analyte in the 5–65 µM range. The effectiveness of the electrochemical sensor was tested in different water matrices (in synthetic and real) and lower HCQ concentrations were detected. When comparing electrochemical determinations and spectrophotometric measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of this sensor in different environmental applications. Full article
Show Figures

Figure 1

18 pages, 5514 KiB  
Article
In Vitro Studies on Mg-Zn-Sn-Based Alloys Developed as a New Kind of Biodegradable Metal
by Yafeng Wen, Qingshan Liu, Weikang Zhao, Qiming Yang, Jingfeng Wang and Dianming Jiang
Materials 2021, 14(7), 1606; https://doi.org/10.3390/ma14071606 - 25 Mar 2021
Cited by 13 | Viewed by 2951
Abstract
Mg-Zn-Sn-based alloys are widely used in the industrial field because of their low-cost, high-strength and heat-resistant characteristics. However, their application in the biomedical field has been rarely reported. In the present study, biodegradable Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were fabricated. Their microstructure, surface characteristics, [...] Read more.
Mg-Zn-Sn-based alloys are widely used in the industrial field because of their low-cost, high-strength and heat-resistant characteristics. However, their application in the biomedical field has been rarely reported. In the present study, biodegradable Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were fabricated. Their microstructure, surface characteristics, mechanical properties and bio-corrosion properties were carried out using an optical microscope (OM), X-ray diffraction (XRD), electron microscopy (SEM), mechanical testing, electrochemical and immersion test. The cell viability and morphology were studied by cell counting kit-8 (CCK-8) assay, live/dead cell assay, confocal laser scanning microscopy (CLSM) and SEM. The osteogenic activity was systematically investigated by alkaline phosphatase (ALP) assay, Alizarin Red S (ARS) staining, immunofluorescence staining and quantitative real time-polymerase chain reaction (qRT-PCR). The results showed that a small amount of strontium (Sr) (0.2 wt.%) significantly enhanced the corrosion resistance of the Mg-1Zn-1Sn alloy by grain refinement and decreasing the corrosion current density. Meanwhile, the mechanical properties were also improved via the second phase strengthening. Both Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys showed excellent biocompatibility, significantly promoted cell proliferation, adhesion and spreading. Particularly, significant increases in ALP activity, ARS staining, type I collagen (COL-I) expression as well as the expressions of three osteogenesis-related genes (runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (Bglap)) were observed for the Mg-1Zn-1Sn-0.2Sr group. In summary, this study demonstrated that Mg-Zn-Sn-based alloy has great application potential in orthopedics and Sr is an ideal alloying element of Mg-Zn-Sn-based alloy, which optimizes its corrosion resistance, mechanical properties and osteoinductive activity. Full article
(This article belongs to the Special Issue Absorbable Metals for Biomedical Applications)
Show Figures

Figure 1

12 pages, 3880 KiB  
Article
Influence of Cu2+ Ions on the Corrosion Resistance of AZ31 Magnesium Alloy with Microarc Oxidation
by Madiha Ahmed, Yuming Qi, Longlong Zhang, Yanxia Yang, Asim Abas, Jun Liang and Baocheng Cao
Materials 2020, 13(11), 2647; https://doi.org/10.3390/ma13112647 - 10 Jun 2020
Cited by 11 | Viewed by 3897
Abstract
The objectives of this study were to reduce the corrosion rate and increase the cytocompatibility of AZ31 Mg alloy. Two coatings were considered. One coating contained MgO (MAO/AZ31). The other coating contained Cu2+ (Cu/MAO/AZ31), and it was produced on the AZ31 Mg [...] Read more.
The objectives of this study were to reduce the corrosion rate and increase the cytocompatibility of AZ31 Mg alloy. Two coatings were considered. One coating contained MgO (MAO/AZ31). The other coating contained Cu2+ (Cu/MAO/AZ31), and it was produced on the AZ31 Mg alloy via microarc oxidation (MAO). Coating characterization was conducted using a set of methods, including scanning electron microscopy, energy-dispersive spectrometry, X-ray photoelectron spectroscopy, and X-ray diffraction. Corrosion properties were investigated through an electrochemical test, and a H2 evolution measurement. The AZ31 Mg alloy with the Cu2+-containing coating showed an improved and more stable corrosion resistance compared with the MgO-containing coating and AZ31 Mg alloy specimen. Cell morphology observation and cytotoxicity test via Cell Counting Kit-8 assay showed that the Cu2+-containing coating enhanced the proliferation of L-929 cells and did not induce a toxic effect, thus resulting in excellent cytocompatibility and biological activity. In summary, adding Cu ions to MAO coating improved the corrosion resistance and cytocompatibility of the coating. Full article
Show Figures

Figure 1

18 pages, 3760 KiB  
Article
Single-Use Printed Biosensor for L-Lactate and Its Application in Bioprocess Monitoring
by Lorenz Theuer, Judit Randek, Stefan Junne, Peter Neubauer, Carl-Fredrik Mandenius and Valerio Beni
Processes 2020, 8(3), 321; https://doi.org/10.3390/pr8030321 - 9 Mar 2020
Cited by 9 | Viewed by 5228
Abstract
There is a profound need in bioprocess manufacturing for low-cost single-use sensors that allow timely monitoring of critical product and production attributes. One such opportunity is screen-printed enzyme-based electrochemical sensors, which have the potential to enable low-cost online and/or off-line monitoring of specific [...] Read more.
There is a profound need in bioprocess manufacturing for low-cost single-use sensors that allow timely monitoring of critical product and production attributes. One such opportunity is screen-printed enzyme-based electrochemical sensors, which have the potential to enable low-cost online and/or off-line monitoring of specific parameters in bioprocesses. In this study, such a single-use electrochemical biosensor for lactate monitoring is designed and evaluated. Several aspects of its fabrication and use are addressed, including enzyme immobilization, stability, shelf-life and reproducibility. Applicability of the biosensor to off-line monitoring of bioprocesses was shown by testing in two common industrial bioprocesses in which lactate is a critical quality attribute (Corynebacterium fermentation and mammalian Chinese hamster ovary (CHO) cell cultivation). The specific response to lactate of the screen-printed biosensor was characterized by amperometric measurements. The usability of the sensor at typical industrial culture conditions was favorably evaluated and benchmarked with commonly used standard methods (HPLC and enzymatic kits). The single-use biosensor allowed fast and accurate detection of lactate in prediluted culture media used in industrial practice. The design and fabrication of the biosensor could most likely be adapted to several other critical bioprocess analytes using other specific enzymes. This makes this single-use screen-printed biosensor concept a potentially interesting and versatile tool for further applications in bioprocess monitoring. Full article
(This article belongs to the Special Issue Measurement Technologies for up- and Downstream Bioprocessing)
Show Figures

Figure 1

Back to TopTop