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Abstract: With the growing emphasis on medical testing, people are seeking more technologies
to detect indexes of the human body quickly and at a low cost. The electrochemical biosensors
became a research hotspot due to their excellent properties. In this study, dicopper hydroxide
phosphate (Cu2(OH)PO4) was incorporated in resin, and the resin sheets were prepared by digital
light processing (DLP). The copper base points were activated on the resin sheet surface by Nd: YAG
laser and then covered by the electroless copper plating and the electroless silver plating. The laser
could effectively activate copper base points on the resin surface. Furthermore, silver electrodes on
the detection chips could distinguish glucose solutions of different concentrations well. Finally, a
novel detection kit with a three-electrode chip was designed for rapid health testing at home or in
medical institutions in the future.

Keywords: biosensor; DLP; laser activation; electroless plating; glucose testing

1. Introduction

With the development of technology and advancement in living conditions, people’s
awareness of kidney health is gradually increasing. As urine is the direct metabolite of
the kidney [1,2], indicators from its tests can effectively reflect kidney health conditions.
Traditional laboratory urine tests utilize automated urine analyzers [3,4], which have
high equipment standards and require professionals to handle them. Novel biosensor
technologies can efficiently analyze levels of metal ions [5], bacteria [6,7], glucose [8,9],
and uric acid [10,11] to help patients form a quick judgment and are thus in high demand.
Among them, electrochemical biosensors have the advantages of high accuracy, excellent
selectivity, quick reaction, simple operation, and low cost. Some researches demonstrated
the sensors exhibited better selectivity, sensitivity, and reproducibility [12–14]. They have
been implemented in multiple fields, including disease monitoring [15,16], environmental
surveillance [17,18], and food examination [19,20], with the most prominent applications in
biology and medicine [21–23]. Electrochemical biosensors usually feature a double or triple
electrode structure [24–27], using differences in electrochemical curves to characterize the
content of substances in the sample [28–30], producing accurate results. Electrode materials
are mainly platinum or gold for the working electrode and silver or silver chloride for the
reference electrode [31–33]. In recent years, with the rapid development of biomonitoring
and biosensing technology, electrochemical biosensors are evolving to become smaller-scale,
multifunctional, digital, intelligent, and networked. Correspondingly, higher requirements
for their manufacturing techniques have been put forward.
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Traditional sensor structures (circuit substrates) often use subtractive manufacturing
and produce circuits at the surface of the substrate by inkjet printing, optical printing,
silkscreen printing, spraying, laser printing, and other methods [34–36]. However, such
methods are time-consuming with long production periods, and are unsuitable for building
customized structures [37,38]. Recently, additive manufacturing (AM) technology is being
put into practice in automobiles, aeronautics and astronautics, printed electronics, and
healthcare areas for its short production cycles and wide range of materials [39–42]. AM
also offers item customization and high complexity. Moreover, compared to traditional
manufacturing, AM can achieve functionalization through creating novel composite ma-
terial and post-processing; examples include building a circuit at the surface of an AM
prototype.

Further research has proved that circuits can be selectively built on the surface of
AM prototypes [43–45]. For example, the selective in-situ growth method allows for a
shorter process and the creation of particular patterns and has gained recognition among
more researchers. Sun et al. [46] used an in situ growth method to deposit Ag particles
directly onto the glucose oxidase (GOD) surface and used Nafion to fix them onto glassy
carbon electrodes to produce Ag/GOD/Nafion composite glucose sensors that exhibited
satisfactory performance. Our earlier research [47] proposes an original technique to
metalize copper on ultraviolet photocuring resin selectively, but the susceptibility of copper
to oxidization suggests that its stability does not satisfy the requirements for sensors.
Therefore, we choose to use copper to induce silver growth in situ and manufacture
electrochemical biosensors.

In this study, dicopper hydroxide phosphate (Cu2(OH)PO4) [48,49] was incorporated
as an auxiliary material to ultraviolet (UV)-curing resin and molded the prototype by pho-
tocuring procedures. Then, the Nd: YAG laser was used to activate and reduce the copper
ions to outline the pattern. Electroless copper plating and electroless silver plating were
subsequently performed. A series of techniques were applied, including Scanning Elec-
tron Microscope (SEM), Energy Dispersing Spectroscopy (EDS), and X-ray Photoelectron
Spectroscopy (XPS), to evaluate and analyze the surface element changes during the sensor
manufacturing process. In addition, Cyclic Voltammetry (CV) was applied to characterize
the electrochemical biosensors. Results demonstrated that the electrochemical biosensors
had good sensing capabilities and could be used for urine testing. Finally, we presented
an innovative and safe integrated testing device that can efficiently perform small-sample
eco-friendly tests.

2. Materials and Methods
2.1. Preparation of Slurry and Digital Light Processing

In this study, the 10 wt.% dicopper hydroxide phosphate (Ningbo Yinzhou Puls Chem-
ical Co., Ltd., Ningbo, China) was incorporated into the acrylic resin. All reagents were
analytical grade. Then, the composite slurry was stirred for 30 min to homogeneously
disperse Cu2(OH)PO4. The digital light processing (DLP) machine was applied to fabri-
cate composite resin parts. Thus, the resin sheets (30 × 30 × 2 mm3) were designed for
experiments. The composite slurry was transferred to the forming cylinder and exposed
layer by layer under UV light. The processing parameters are listed in Table 1. After the
DLP processing, the resin sheets were further cured in a UV oven for 10 min, and then
ultrasonically cleaned with ethanol and distilled water, respectively.

Table 1. The processing parameters of the composite resin sheets.

DLP Processing Parameters Contents

Cured layer thickness 80 µm
Exposure time 12 s
Light intensity 10,000 mW/cm2
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2.2. Surface Modification

As shown in Figure 1, the as-prepared resin sheet was activated by the Nd: YAG laser,
and the laser parameters were listed in Table 2. The patterned regions appeared on the resin
surface after laser activation. Then, the copper and the silver were electroless plated on the
activated surface. The chemical composition of the electroless plating solution was shown
in Table 3. All reagents were analytical grade, and purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. The electroless copper plating was
applied to link the activated copper on the pattern because the copper on the laser-activated
surface was discontinuous and non-conductive. The dense, homogeneous, and inert silver
coating was formed by the electroless silver plating. Besides, the chemical reaction formulas
for the electroless plating were as follows:

Cu2+ + 2H2PO−2 + 2OH− → Cu + 2H2PO−3 + H2 ↑ (1)

2Ag+ + C4H4O2−
6 + H2O + 2NH3 → Ag2O + (NH4)2C4H4O6 (2)

4Ag2O + (NH4)2C4H4O6 → 8Ag + (NH4)2C2O4 + CO2 + 2H2O (3)
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Figure 1. The schematic diagram of the preparation of silver electrodes.

Table 2. The laser parameters of the laser activation.

Laser Parameters Contents

Wavelength 1064 nm
Pulse width 100 ns

Spot diameter 35 µm
Hatch distance 50 µm
Scanning speed 2500 mm

Pulse repetition frequency 20 kHz
Laser fluence 10.4 J/cm2
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Table 3. The composition of the electroless plating solution.

Electroless
copper plating

CuSO4·5H2O HCHO HOCH2COOH C6H15NO3
C6H4SNCSH C12H8N2·H2O NaOH

Time 30 min Temperature 50 ◦C
Electroless

silver plating
AgNO3 KCN C4H4Na2O6 C8H4K2O12Sb2

Time 10 min Temperature 40 ◦C

2.3. Characterization

The field emission scanning electron microscope (FE-SEM, Zeiss Ultra Plus, Oberkochen,
Germany) was used to characterize the morphologies of the coating surfaces. The surface
roughness was measured by the 3D surface profiler (Keyence VK-X1100, Osaka, Japan).
Besides, the chemical composition and distribution of the coating surfaces were analyzed
by the energy dispersive spectroscopy (EDS, Oxford Instruments X-MAX, Abingdon, UK),
and X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi, Waltham,
MA, USA). The cyclic voltammetry (CV) was conducted by an electrochemical workstation
(Chenhua Instruments CHI660E, Shanghai, China). In addition, the silver electrodes were
placed in a 10 M NaCl solution to determine the concentration of glucose at the scanning
rate of 30 mV/s.

3. Results and Discussion
3.1. Surface Morphology

Figure 2 shows the surface morphology of composite resin, laser-activated surface,
electroless copper plating, and electroless silver plating. In Figure 2a,e, the composite
resin surface manufactured by DLP was relatively flat, and the Cu2(OH)PO4 particles
were homogeneously distributed on the resin surface. The diameter of the particles was
about 5 µm. In Figure 2b,f, laser-irradiated holes of approximately 50 µm were formed
on the composite resin surface by the laser. In this study, the pulsed Nd: YAG laser was
applied to activate the internal Cu2(OH)PO4 particles on the composite resin surface. In
Figure 2c, the laser irradiation holes on the surface were filled with copper atoms formed
by electroless copper plating on the laser-activated surface. However, the electroless
copper coating cannot completely change the laser-activated resin surface, as shown in
Figure 2g. In Figure 2e, the electroless copper plating was used to deposit copper on the
laser-activated surface because the distribution of Cu2(OH)PO4 particles in the composite
resin is discontinuous. Then, electroless copper plating formed a continuous electroless
copper plating layer on the discontinuous activated copper layer surface. Finally, the dense
silver coating was prepared on the electroless copper surface by electroless silver plating, as
shown in Figure 2d,h. Since electroless copper plating was used as the pre-coating, the silver
coating was evenly distributed on the surface, and the morphology of the laser-activated
surface was significantly changed.
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Figure 3 shows the cross-section of composite resin after electroless silver plating. In
Figure 3a, the cross-section of the composite resin prepared by DLP shows a periodic cured
layer with a thickness of 80 µm for each layer which is consistent with the cured layer
thickness of DLP in Table 1. In Figure 3b at the 10 µm scale, the Cu2(OH)PO4 particles were
observed to be homogeneously distributed in the composite resin and form a fragmented
structure. It implied that Cu2(OH)PO4 could not be dissolved in photosensitive resin.
Copper and silver prepared by electroless plating were attached to the surface of the
composite resin and formed an 18 µm coating, as shown in Figure 3c. Different from the
composite resin surface, the silver coating surface presented the cellular structure, which
proved that the silver coating was well combined with the substrate and had no pores
or cracks.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. The SEM images of (a,e) composite resin; (b,f) laser-activated surface; (c,g) electroless cop-

per plating; (d,h) electroless silver plating. 

Figure 3 shows the cross-section of composite resin after electroless silver plating. In 

Figure 3a, the cross-section of the composite resin prepared by DLP shows a periodic 

cured layer with a thickness of 80 μm for each layer which is consistent with the cured 

layer thickness of DLP in Table 1. In Figure 3b at the 10 μm scale, the Cu2(OH)PO4 particles 

were observed to be homogeneously distributed in the composite resin and form a frag-

mented structure. It implied that Cu2(OH)PO4 could not be dissolved in photosensitive 

resin. Copper and silver prepared by electroless plating were attached to the surface of 

the composite resin and formed an 18 μm coating, as shown in Figure 3c. Different from 

the composite resin surface, the silver coating surface presented the cellular structure, 

which proved that the silver coating was well combined with the substrate and had no 

pores or cracks. 

 

Figure 3. The SEM cross-sectional images of (a,b) composite resin; (c) silver coating. 

Figure 4 shows the three-dimensional morphology of the surfaces. As shown in Fig-

ure 4a, the composite resin surface had small needle-like protrusions due to the accuracy 

error in DLP printing. Deeper pits appeared on the laser-activated surface in Figure 4b 

because the pulsed laser damaged the composite resin surface. In Figure 4c, the electroless 

copper plating process not only filled the pits but also further covered the protruding 

structures on the surface. In addition, Figure 4d shows the electroless silver plating area 

and the composite resin surface. The concave area was the edge of the laser-scanning pat-

tern. It could be observed that the surface height above the concave area was lower than 

the surface height below the concave area because the upper area was the electroless plat-

ing area after laser activation, so it could be concluded that laser activation reduces the 

surface thickness. It was noted that the flatness of the upper area was better than that of 

the lower area. In Table 3, the surface roughness of the composite resin was 13.520 μm, 

which increased to 15.525 μm after laser activation. It was noted that the surface rough-

ness of the electroless copper-plated surface and the electroless silver-plated surface de-

creased to 8.958 μm and 7.891 μm, respectively. It suggested that electroless copper plat-

ing and silver plating could improve the surface roughness by electroless deposition of 

metal. For electrochemical sensors, the electrical performance of the sensor is affected by 

the surface roughness of the substrate. Generally, the greater the surface roughness, the 

Figure 3. The SEM cross-sectional images of (a,b) composite resin; (c) silver coating.

Figure 4 shows the three-dimensional morphology of the surfaces. As shown in
Figure 4a, the composite resin surface had small needle-like protrusions due to the accuracy
error in DLP printing. Deeper pits appeared on the laser-activated surface in Figure 4b
because the pulsed laser damaged the composite resin surface. In Figure 4c, the electroless
copper plating process not only filled the pits but also further covered the protruding
structures on the surface. In addition, Figure 4d shows the electroless silver plating area
and the composite resin surface. The concave area was the edge of the laser-scanning
pattern. It could be observed that the surface height above the concave area was lower
than the surface height below the concave area because the upper area was the electroless
plating area after laser activation, so it could be concluded that laser activation reduces
the surface thickness. It was noted that the flatness of the upper area was better than that
of the lower area. In Table 3, the surface roughness of the composite resin was 13.520 µm,
which increased to 15.525 µm after laser activation. It was noted that the surface roughness
of the electroless copper-plated surface and the electroless silver-plated surface decreased
to 8.958 µm and 7.891 µm, respectively. It suggested that electroless copper plating and
silver plating could improve the surface roughness by electroless deposition of metal. For
electrochemical sensors, the electrical performance of the sensor is affected by the surface
roughness of the substrate. Generally, the greater the surface roughness, the greater the
resistance of the sensor. In addition, the surface uniformity of the sensor substrate can also
improve the electrical performance of the sensor.

3.2. Chemical Composition

The chemical composition of the electrode surfaces was measured by EDS and XPS
because it influenced the stability of the signal transmitted by the electrodes. Figure 5
shows the chemical composition distribution of laser-activated surfaces and electroless
copper plating surfaces. Phosphorus was homogeneously distributed on the composite
resin surface activated by the laser. However, the distribution of copper and oxygen was not
entirely uniform. Copper was mainly distributed in the laser-activated region, and oxygen
was mainly distributed near the region not activated by the laser. The results suggested
that a small amount of copper was effectively activated on the surface of the composite
resin through the laser activation process. However, the laser spot did not completely cover
the surface, and the Cu2(OH)PO4 inside the composite resin was discontinuous. As a result,
a continuous and conductive copper layer could not be obtained on the laser-activated
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surface. Figure 5b1,b2 shows that the electroless copper plating covered uniformly the
laser-activated surface. In addition, in Figure 5b3,b4, oxygen and phosphorus were also
uniformly distributed on the surface, but the distribution density was lower than that of the
laser-activated surface. It indicated that the electroless copper plating covered the activated
surface evenly.
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Figure 6a1–a5 shows the chemical composition of the electrode surface after electroless
silver plating. In Figure 6a2–a5, small amounts of oxygen and phosphorus were distributed
on the surface of the silver plating, but large amounts of copper and silver were evenly
distributed on the coating surface. It was noted that silver was mainly distributed on the
coating surface, up to 58.87 wt.%, and copper reached 28.99 wt.%, as shown in Table 4.
About 30 wt.% copper was considered in the copper layer that was not completely re-
placed during electroless silver plating. Figure 6b1 shows the cross-section of the electrode
after electroless silver plating. In Figure 6b2, oxygen was mainly distributed in the com-
posite resin because oxygen was one of the main chemical components of the resin. In
Figure 6b3,b4, copper and silver were mainly distributed in the laser-activated surface area,
but a small amount of copper was still distributed in the composite resin layer because
copper existed as Cu2(OH)PO4 in the composite resin layer. As shown in Figure 6b5, phos-
phorus was evenly distributed throughout the electrode cross-section, and Cu2(OH)PO4
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was distributed not only in the composite resin layer, but also in a small amount in the
metal electrode layer because the laser activation did not activate all the Cu2(OH)PO4.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 13 
 

 

Figure 5. The EDS mapping of (a1–a4) laser-activated surface; (b1–b4) electroless copper plating. 

Figure 6a1–a5 shows the chemical composition of the electrode surface after electro-

less silver plating. In Figure 6a2–a5, small amounts of oxygen and phosphorus were dis-

tributed on the surface of the silver plating, but large amounts of copper and silver were 

evenly distributed on the coating surface. It was noted that silver was mainly distributed 

on the coating surface, up to 58.87 wt.%, and copper reached 28.99 wt.%, as shown in Table 

4. About 30 wt.% copper was considered in the copper layer that was not completely re-

placed during electroless silver plating. Figure 6b1 shows the cross-section of the electrode 

after electroless silver plating. In Figure 6b2, oxygen was mainly distributed in the com-

posite resin because oxygen was one of the main chemical components of the resin. In 

Figure 6b3,b4, copper and silver were mainly distributed in the laser-activated surface area, 

but a small amount of copper was still distributed in the composite resin layer because 

copper existed as Cu2(OH)PO4 in the composite resin layer. As shown in Figure 6b5, phos-

phorus was evenly distributed throughout the electrode cross-section, and Cu2(OH)PO4 

was distributed not only in the composite resin layer, but also in a small amount in the 

metal electrode layer because the laser activation did not activate all the Cu2(OH)PO4. 

Table 4. The chemical proportion of the electroless silver coatings. 

Elements Ag Cu O P 

(wt.%) 58.87 28.99 11.99 0.14 

 

Figure 6. The EDS mapping of (a1–a5) silver coating; (b1–b5) cross-section of silver coating. 

In order to explore the activation effect of laser on the Cu2(OH)PO4 in the composite 

resin, XPS was carried out to detect the chemical composition of the composite resin sur-

face and the laser-activated surface. Figure 7 shows the chemical composition of the com-

posite resin surface and the laser-activated surface. In Figure 7a, phosphorus, carbon, and 

oxygen can be detected on the surfaces, but copper was only detected on laser-activated 

surfaces. As shown in Figure 7b,c,e, the carbon, oxygen, and phosphorus peaks of the two 

surfaces were similar. According to Figure 7b,c, the carbon on the surface mainly consisted 

Figure 6. The EDS mapping of (a1–a5) silver coating; (b1–b5) cross-section of silver coating.

Table 4. The chemical proportion of the electroless silver coatings.

Elements Ag Cu O P

(wt.%) 58.87 28.99 11.99 0.14

In order to explore the activation effect of laser on the Cu2(OH)PO4 in the composite
resin, XPS was carried out to detect the chemical composition of the composite resin surface
and the laser-activated surface. Figure 7 shows the chemical composition of the composite
resin surface and the laser-activated surface. In Figure 7a, phosphorus, carbon, and oxygen
can be detected on the surfaces, but copper was only detected on laser-activated surfaces. As
shown in Figure 7b,c,e, the carbon, oxygen, and phosphorus peaks of the two surfaces were
similar. According to Figure 7b,c, the carbon on the surface mainly consisted of three bonds:
C-C/C-H, C-O-C, and O-C=O, which were 284.8 eV, 286.3 eV, and 288.82 eV, respectively.
These bonds mainly came from acrylic acid used to prepare composite resin. In addition,
the oxygen peak was mainly composed of C-O and Cu2(OH)PO4 at 531.68 eV and 532.93 eV,
respectively. In Figure 7e, the phosphate peaks of both surfaces were approximately at
133 eV, so phosphorus mainly came from metal phosphate (Cu2(OH)PO4). As shown in
Figure 7d, the peak of copper was not detected in the composite resin because only copper
metal or copper oxide could be detected near the copper peak by XPS. Copper in the
composite resin mainly existed in the metal phosphate, so the Cu2(OH)PO4 could be found
in the composite resin near the phosphorus peak. In addition, the copper peaks on the
laser-activated surface were distributed at 932.18 eV, 934.81 eV, and 952.29 eV, respectively.
In addition to two different hybrid copper elements (Cu 2p3/2 and Cu 2p1/2), copper also
existed in the form of copper hydroxide, mainly from the by-product of laser activation.
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Therefore, according to the XPS test results, it could be inferred that the chemical reaction
under laser activation is:

Cu2(OH)PO4 + 2H2O→ Cu + Cu(OH)2 + H3PO3 + O2 ↑ (4)
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3.3. Cyclic Voltammetry and Applications

We aimed to fabricate an electrochemical biosensor that can be used for urine detection.
We designed and manufactured the working electrode (WE), counter electrode (CE), and
reference electrode (RE) made of silver on a prototype based on the previous manufacturing
method to form a three-electrode electrochemical biosensor for urine detection. High uri-
nary glucose levels may indicate the presence of diabetes mellitus. We have experimentally
characterized the electrochemical biosensor using cyclic voltammetry (CV). For the assay,
three electrodes were connected separately to an electrochemical workstation to perform
the electrochemical measurements.

As a proof-of-concept demonstration, the different concentrations of glucose solution
were used instead of urine. The different amounts of anhydrous glucose powder were
added to 1 mol/L NaCl solution to create a concentration gradient, and 1 mol/L NaCl solu-
tion without glucose was used as a blank control. The CV was recorded and calculated as
the normalized peak-to-peak current change (NPPCC), which was defined by Equation (5):

NPPPCC =
Ib − Ia

Ib
(5)

where Ia and Ib are the inter-peak currents in the presence and absence of glucose respectively.
The CV curves for the real-time cyclic voltammetry assay with different concentrations

of glucose were shown in Figure 8. Firstly, CV curves can be obtained at negative potential
values and positive potential values because the reaction on the reversible electrodes is
reversible. Then, CV is a vital method to study the electrode reversibility, and single
metal electrodes are usually reversible electrodes. Thus, the silver electrode is a reversible
electrode. All peak current values were normalized to the peak current of the NaCl solution
without glucose. After the blank assay, the electrodes were placed sequentially into different
concentrations of glucose solutions. The experimental results illustrated that an increase in
glucose concentration led to a decrease in the CV peak current. So that we can characterize
the concentration of glucose by the magnitude of the peak current measured.
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The current difference obtained was calculated using NPPCC and plotted against the
glucose concentration to find the correlation between glucose concentration and current
response, as shown in Figure 9. Equation (6) was obtained based on the glucose response
at different concentrations:

NPPCC = 0.0323C + 0.0410 (6)

where C denotes the glucose concentration.
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Figure 9. The correlation between glucose concentration of current response.

The glucose detection kit consists of a box body manufactured by 3D printing and a
detection chip manufactured based on the process method in this study. The detection chip
consists of three vertical electrodes, which are a reference electrode, a working electrode,
and a counter electrode. The liquid injection port is designed above the box to add the
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liquid to be tested. The detection requires only a small amount of the liquid to be tested
due to the small size of the designed box, as shown in Figure 10.
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Figure 10. The glucose detection kit: (a) overall appearance; (b) detection chip with three silver
electrodes; (c) internal structure of the kit.

In the actual inspection process, the chip is inserted into the box through the groove.
A small amount of urine is added to the cartridge body through the injection port until the
three electrode ends are submerged in urine. Connect the electrodes to the electrochemical
workstation to complete the detection. The chip is directly taken out from the groove
and can be reused after being sterilized after the test is completed, and the box body is
a disposable consumable. The entire detection process can be completed within 5 min,
realizing rapid detection.

In this work, the sensor chip is designed on a flat surface. In the future, 3D structures
with patterned flow channels can be directly printed at the photocuring processing stage.
In addition, this chip is expected to be applied to the detection of various body fluids (such
as blood, sweat, tears, etc.).

3.4. Repeatability and Reproducibility of the Sensor

Repeatability and reproducibility were used to judge the performance of the sensors.
The repeatability of the sensors was achieved by repeated detection of 10 mM glucose at
the NaCl solution. The results showed that the repeatability of the sensors gave relative
standard deviation value (RSD) of peak current 8.4%. Besides, the reproducibility of the
sensors was checked at room temperature. The data showed 7.6% of RSD value, and that
the repeatability and reproducibility of the sensors needed to be enhanced. Thus, the
morphology and chemical composition of the sensors were compared, indicating that the
chemical composition changes should be further improved to enhance the stability and
reproducibility of the sensors.

4. Conclusions

In this study, the three-electrode electrochemical biosensor was fabricated by a facile
multi-step. Firstly, the detection chips were prepared by DLP, and the Nd: YAG laser
activated the copper pattern. The copper pattern was discontinuous and non-conductive,
thus the copper pattern provided base points for the electroless plating. Then, the copper
and silver coatings were prepared by electroless plating. Finally, the silver electrodes were
validated for the effective detection of glucose concentrations in body fluids, and a novel
glucose detection kit was designed for convenient detection. The main conclusions are
as follows:
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(1) Cu2(OH)PO4 was added to the resin, and the composite resin could be efficiently
fabricated for the detection chips and detection kits by DLP.

(2) The composite resin was activated by the Nd: YAG laser to form copper base points
on the composite resin surface.

(3) The continuous and conductive copper and silver coatings were prepared by electro-
less plating. The three-electrode chips were suitable for glucose detection according
to the CV and NPPCC.
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