Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = electrocatalytic oxidation degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3004 KB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Viewed by 477
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

22 pages, 7389 KB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 426
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

24 pages, 5102 KB  
Article
Electrocatalytic Investigation of the SOFC Internal CH4 Dry Reforming with Modified Ni/GDC: Effect of Au Content on the Performance Enhancement by Fe-Au Doping
by Evangelia Ioannidou, Stylianos G. Neophytides and Dimitrios K. Niakolas
Catalysts 2025, 15(7), 618; https://doi.org/10.3390/catal15070618 - 23 Jun 2025
Viewed by 480
Abstract
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect [...] Read more.
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect of X wt.% of Au loading (where X = 1 or 3 wt.%) in binary Au-Ni/GDC and ternary 0.5 wt.% Fe-Au-Ni/GDC fuel electrodes. The investigation combined i-V, Impedance Spectroscopy and Gas Chromatography electrocatalytic measurements. It was found that modification with 0.5Fe-Au enhanced significantly the electrocatalytic activity of Ni/GDC for the IDRM reaction, whereas the low wt.% Au content had the most promoting effect. The positive interaction of 0.5 wt.% Fe with 1 wt.% Au increased the conductivity of Ni/GDC and enhanced the corresponding IDRM charge transfer electrochemical processes, especially those in the intermediate frequency region. Comparative long-term measurements, between cells comprising Ni/GDC and 0.5Fe-1Au-Ni/GDC, highlighted the significantly higher IDRM electrocatalytic activity of the modified electrode. The latter operated for almost twice the time (280 h instead of 160 h for Ni/GDC) with a lower degradation rate (0.44 mV/h instead of 0.51 mV/h). Ni/GDC degradation was ascribed to inhibited charge transfer processes in the intermediate frequencies region and to deteriorated ohmic resistance. Stoichiometric analysis on the (post-mortem) surface state of each fuel electrode showed that the wt.% content of reduced nickel on Ni/GDC was lower, compared to 0.5Fe-1Au-Ni/GDC, verifying the lower re-oxidation degree of the latter. This was further correlated to the hindered H2O production during IDRM operation, due to the lower selectivity of the modified electrode for the non-desired RWGS reaction. Full article
Show Figures

Graphical abstract

17 pages, 11377 KB  
Article
A New [PMo12O40]3−-Based NiII Compound: Electrochemical and Photocatalytic Properties for Water Pollutant Removal
by Guoqing Lin, Shufeng Liu, Dai Shi, Ying Yang, Fangle Yu, Tong Lu, Xiao-Yang Yu and Yuguang Zhao
Molecules 2025, 30(10), 2172; https://doi.org/10.3390/molecules30102172 - 15 May 2025
Viewed by 351
Abstract
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that [...] Read more.
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that the [Ni(H2L)(HL)2] units are interconnected into a 2D layer via hydrogen bonds between adjacent carboxyl groups and water molecules of crystallization. [PMo12O40]3− anions are embedded within the larger pores of the layer and are connected to the adjacent layers through hydrogen bonds, ultimately expanding the structure into a 3D supramolecular architecture. The intermolecular interactions were studied via Hirshfeld surface (HS) analysis. Electrochemical performance tests reveal that 1 exhibits electrocatalytic activity toward the oxidation and reduction of diverse pollutants in water, including NO2, Cr(VI), BrO3, Fe(III), and ascorbic acid (AA). Additionally, it can also serve as an amperometric sensor for the detection of BrO3 and Cr(VI). Photocatalytic studies reveal that compound 1 functions as a bifunctional photocatalyst, which not only achieves efficient degradation of organic dyes but also demonstrates remarkable reduction efficiency for toxic Cr(VI). Compound 1 demonstrates significant potential for practical water remediation applications. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

12 pages, 3675 KB  
Article
Insight on the Ultrafast Water Treatment over NiFe-Layered Double Hydroxides via Electroactivation of Ferrate(VI): The Role of Spin State Regulation
by Xinyu Gai, Ningxuan Xue, Pengxiang Qiu, Yiyang Chen, Da Teng, Zhihui Zhang, Fengling Liu, Zhongyi Liu and Zhaobing Guo
Water 2025, 17(9), 1369; https://doi.org/10.3390/w17091369 - 1 May 2025
Viewed by 529
Abstract
Ferrate (Fe(VI)), an emerging green oxidant and disinfectant in water treatment, faces challenges due to its limited reaction efficiency stemming from a highly electron-deficient state. To address this, we designed NiFe-Layered Double Hydroxides (NiFe-LDHs) with different spin states to enhance electron transfer efficiency [...] Read more.
Ferrate (Fe(VI)), an emerging green oxidant and disinfectant in water treatment, faces challenges due to its limited reaction efficiency stemming from a highly electron-deficient state. To address this, we designed NiFe-Layered Double Hydroxides (NiFe-LDHs) with different spin states to enhance electron transfer efficiency in Fe(VI)-mediated advanced oxidation processes (AOPs). We hypothesized that fine-tuning the spin state of NiFe-LDHs could optimize the balance between adsorption capabilities and electronic structure regulation. Our experiments revealed that intermediate-spin NiFeLDH-1, with a magnetic moment of 0.67 μB, exhibited the best catalytic performance, achieving 100% phenol removal. The NiFeLDH-x/Fe(VI) system demonstrated a significant synergistic enhancement in degradation efficiency. In addition, NiFeLDH-1 showed excellent performance in stability and continuous flow experiments. This study unveils a novel correlation between spin polarization and catalytic efficiency, offering insights into the optimization of electrocatalysts for Fe(VI)-mediated AOPs. The findings suggest that spin state modulation is a promising strategy to enhance the electrocatalytic activity and stability of non-noble metal catalysts. Full article
Show Figures

Figure 1

15 pages, 4806 KB  
Article
Enhanced Electrocatalytic Degradation of Phenol by Mn-MIL-100-Derived Carbon Materials
by Xueping Sun, Haitao Liu, Dan Chen, Ya Zhang, Xinbai Jiang and Jinyou Shen
Water 2025, 17(7), 1103; https://doi.org/10.3390/w17071103 - 7 Apr 2025
Viewed by 617
Abstract
To achieve high electrooxidation efficiency for phenol, this study explored the fabrication of Mn-MIL-100 catalysts at various calcination temperatures, loaded onto a carbon paper (CP) anode. The materials were characterized using scanning electron micros-copy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and X-ray diffraction. Their [...] Read more.
To achieve high electrooxidation efficiency for phenol, this study explored the fabrication of Mn-MIL-100 catalysts at various calcination temperatures, loaded onto a carbon paper (CP) anode. The materials were characterized using scanning electron micros-copy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and X-ray diffraction. Their electrocatalytic activities under various calcination temperatures were evaluated through cyclic voltammetry (CV) tests, while the effect of pH in the Mn-MOF modified CP electrodes on phenol degradation performance was investigated using the potentiostatic discharge method. Mn-MOF@CP calcined at 400 °C and 500 °C (denoted as Mn400@CP and Mn500@CP, respectively) exhibited significantly enhanced cyclic voltammetry current responses in phenol solution, attributed to an increase in oxygen vacancy concentration. A phenol degradation efficiency of 96.00 ± 1.53% was achieved by Mn400@CP within 16 h, while it was only 60.12 ± 2.03% for Mn500@CP and 8.01 ± 2.00% for the blank CP at pH 4. Additionally, Mn400@CP consistently demonstrated superior phenol degradation efficiency over Mn500@CP across various pH values. The outstanding electrocatalytic activity of Mn400@CP for phenol oxidation could be attributed to its lower charge transfer resistance. A radical-mediated oxidation pathway was proposed for the Mn400@CP electrocatalytic system, elucidating its phenol degradation mechanism. These findings highlighted the potential of Mn-MOF-derived carbon-based materials for the degradation of organic contaminants. Full article
Show Figures

Figure 1

11 pages, 5466 KB  
Article
Electrocatalytic PANI-Encapsulated Aluminum Silicate/Ceramic Membranes for Efficient and Energy-Saving Removal of 4-Chlorophenol in Wastewater
by Shuo Wang, Tianhao Huang, Haoran Ma, Zihan Liu, Houbing Xia, Zhiqiang Sun, Jun Ma and Ying Zhao
Membranes 2025, 15(4), 114; https://doi.org/10.3390/membranes15040114 - 7 Apr 2025
Cited by 1 | Viewed by 659
Abstract
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as [...] Read more.
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as a promising alternative, but efficient, energy-saving electrocatalytic membranes for pollutants like 4-chlorophenol (4-CP) are still underexplored. A new type of electrocatalytic coupling membrane catalyst, ASP/CM (PANI-encapsulated aluminum silicate/ceramic membrane), was prepared using inexpensive silicate and polyaniline as the base materials, with in situ polymerization combined with co-focus magnetron sputtering. Under optimal conditions (25 mA/cm2, 10 mM Na2SO4, 1.0 mL·min−1 flow rate, and 50 μM 4-CP concentration), the membrane achieved about 95.1% removal of 4-CP and the degradation rate after five cycles was higher than 85%. In addition, O2•− and •OH are important active species in the electrocatalytic degradation of 4-CP. The 4-CP electrocatalytic membrane filtration process is a dual process of cathode reduction dechlorination and anodic oxidation. This work offers new insights into developing next-generation electrocatalytic membranes and expands the practical applications of electrocatalytic filtration systems. Full article
(This article belongs to the Special Issue Membrane Catalytic Oxidation in Water Treatment)
Show Figures

Figure 1

23 pages, 2792 KB  
Article
Enhanced Electrocatalytic Performance of Nickel-Cobalt-Titanium Dioxide-Embedded Carbon Nanofibers for Direct Alcohol Fuel Cells
by Wael M. Mohammed, Mahmoud A. Mohamed, Mohamed O. Abdel-Hamed and Esam E. Abdel-Hady
J. Compos. Sci. 2025, 9(3), 125; https://doi.org/10.3390/jcs9030125 - 10 Mar 2025
Cited by 1 | Viewed by 1546
Abstract
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these [...] Read more.
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these challenges, we fabricated tri-metallic catalysts composed of nickel, cobalt, and titanium dioxide (TiO2) embedded in carbon nanofibers (CNFs). The synthesis included electrospinning and subsequent carbonization as well as optimization of parameters to achieve uniform nanofiber morphology and high surface area. Electrochemical characterization revealed that the incorporation of TiO2 significantly improved electrocatalytic activity for ethanol and methanol oxidation, with current densities increasing from 57.8 mA/cm2 to 74.2 mA/cm2 for ethanol and from 38.69 mA/cm2 to 60.39 mA/cm2 for methanol as the TiO2 content increased. The catalysts showed excellent stability, with the TiO2-enriched sample (T2) showing superior performance during longer cycling tests. Chronoamperometry and electrochemical impedance spectroscopy are used to examine the stability of the catalysts and the dynamics of the charge carriers. Impedance spectroscopy indicated reduced charge transfer resistance, confirming enhanced activities. These findings suggest that the synthesized non-precious electrocatalysts can serve as effective alternatives to platinum-based materials, offering a promising pathway for the development of cost-efficient and durable fuel cells. Research highlights non-precious metal catalysts for sustainable fuel cell technologies. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

17 pages, 6216 KB  
Article
Efficient Electro-Catalytic Oxidation of Ultra-High-Concentration Organic Dye with Ce-Doped Titanium-Based Composite Electrode
by Chunyang Ni, Yan Zhao, Qiao Li, Zhihui Wang, Shumei Dou, Wei Wang and Feng Zhang
Coatings 2025, 15(3), 276; https://doi.org/10.3390/coatings15030276 - 26 Feb 2025
Cited by 1 | Viewed by 944
Abstract
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate [...] Read more.
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate layer was fabricated and used for the electro-catalytic oxidation of three kinds of ultra-high-concentration organic dyes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed the denser surface structure and morphology of the composite Ti/SnO2-Sb2O5/Ce-PbO2 electrode. Moreover, the electrode exhibited an excellent oxygen evolution potential of 1.58 V. The effect on the removal efficiencies of high concentrations of up to 1 g/L of methyl orange, methylene blue, and neutral red solutions with the above composite electrode was investigated. The research results illustrated that target molecules in the three different dye solutions were rapidly decolorized and decomposed by electro-catalytic oxidation in less than 35 min. Additionally, the degradation process still followed pseudo-first-order kinetics for high-concentration dye solutions. The removal efficiency of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) for the three dye solutions was more than 98%, and the results of the gas chromatography–mass spectrometry (GC-MS) analysis showed that it had the best degradation effects for neutral red, which decomposed more thoroughly. More than 80 h of accelerated life also revealed excellent performance of the composite electrode in the face of high-concentration dye solution degradation. Considering these results, the Ti/SnO2-Sb2O5/Ce-PbO2 anode could be utilized to treat wastewater containing high-concentration dyes with high efficiency. Full article
Show Figures

Figure 1

19 pages, 7411 KB  
Article
Electrochemical Degradation of Sulfamethoxazole Enhanced by Bio-Inspired Iron-Nickel Encapsulated Biochar Particle Electrode
by Shuang Geng, Jingang Yao, Lei Wang, Yangyang Wang, Xiaoshu Wang and Junmin Li
Int. J. Mol. Sci. 2024, 25(24), 13579; https://doi.org/10.3390/ijms252413579 - 19 Dec 2024
Cited by 1 | Viewed by 1219
Abstract
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation [...] Read more.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.0456 min−1. Quenching experiments and electron paramagnetic resonance experiments showed that the excellent SMX degradation efficiency in the EC/FeNi@BC system was attributed to the synergistic effect of multiple reactive oxygen species (ROS) and revealed their evolution path. Characterization results showed that FeNi3 generated in the FeNi@BC electrode was a key bimetallic active site for improving electrocatalytic activity and repolarization ability. More importantly, the degradation pathway and reaction mechanism of SMX in the EC/FeNi@BC system were proposed. In addition, the influencing factors of the reaction system (voltage, pH, initial SMX concentration, electrode dosage, and sodium sulfate concentration, etc.) and the stability of the catalyst (maintained more than 81% after 5 cycles) were systematically evaluated. This study may provide help for the construction of environmentally friendly catalytic and efficient degradation of organic pollutants. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

13 pages, 3551 KB  
Article
Two Co(II) Isostructural Bifunctional MOFs via Mixed-Ligand Strategy: Syntheses, Crystal Structure, Photocatalytic Degradation of Dyes, and Electrocatalytic Water Oxidation
by Siyu Yue, Mengqi Tuo, Yemeng Sheng, Xinyu Guo, Jiufu Lu and Dong Wang
Molecules 2024, 29(21), 4989; https://doi.org/10.3390/molecules29214989 - 22 Oct 2024
Cited by 3 | Viewed by 1061
Abstract
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (H2MIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co4(MIP)4(BMIP)3]·1/2DMA}n (SNUT-31) and {[Co4(MIP)4(BMIP)3]·(EtOH)2·H2O]} [...] Read more.
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (H2MIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co4(MIP)4(BMIP)3]·1/2DMA}n (SNUT-31) and {[Co4(MIP)4(BMIP)3]·(EtOH)2·H2O]}n (SNUT-32) where DMA represents N,N-dimethylacetamide and EtOH signifies ethyl alcohol. Single-crystal X-ray diffraction analyses reveal that SNUT-31 and SNUT-32 possess an isomorphic structure, featuring a unique 2-fold interpenetration of 3D frameworks in a parallel manner. Notably, both SNUT-31 and SNUT-32 demonstrate remarkable performance in electrocatalytic oxygen evolution reactions and exhibit exceptional photocatalytic degradation capabilities against a model comprising three distinct dyes: rhodamine B, methyl orange, and methyl blue. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

12 pages, 2675 KB  
Article
Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction
by Lei He, Qing Tang, Qi Fan, Haizheng Zhuang, Shengchao Wang, Yifan Pang and Kun Liang
Catalysts 2024, 14(10), 708; https://doi.org/10.3390/catal14100708 - 10 Oct 2024
Cited by 3 | Viewed by 2401
Abstract
Hydrogen production from water electrolysis is gaining interest as a source of renewable energy storage due to its high efficiency and low environmental impact. However, the slow kinetics of the oxygen evolution reaction (OER) limits the overall efficiency of electrolyzer systems. This study [...] Read more.
Hydrogen production from water electrolysis is gaining interest as a source of renewable energy storage due to its high efficiency and low environmental impact. However, the slow kinetics of the oxygen evolution reaction (OER) limits the overall efficiency of electrolyzer systems. This study presents the synthesis and characterization of a novel electrocatalyst with a vertical structure, composed of Ti3CN MXene-modified NiFe-layered double hydroxides (LDHs) supported on nickel foam (NF) for efficient OER applications. The 1.0-LDH/3MXNF catalyst exhibits excellent electrocatalytic activity, achieving a low overpotential of 247 mV at a current density of 100 mA cm−2 and a favorable Tafel slope of 67.7 mV/dec. This can be attributed to the transfer of excess electrons from Ti3CN MXene to NiFe-LDH, which reduces the oxidation states of Ni and Fe, resulting in a strong interfacial coupling between Ti3CN MXene and NiFe-LDHs. Additionally, the electrode exhibited exceptional stability, maintaining constant performance with minimal potential degradation over prolonged operation. These findings underscore the potential of hybrid LDH-MXene systems as advanced electrocatalysts for renewable energy applications, paving the way for further innovations in energy conversion technologies. Full article
Show Figures

Figure 1

18 pages, 7776 KB  
Article
Eco-Friendly Facile Conversion of Waste Eggshells into CaO Nanoparticles for Environmental Applications
by Kathalingam Adaikalam, Sajjad Hussain, Periasamy Anbu, Arulmozhi Rajaram, Iyyakkannu Sivanesan and Hyun-Seok Kim
Nanomaterials 2024, 14(20), 1620; https://doi.org/10.3390/nano14201620 - 10 Oct 2024
Cited by 7 | Viewed by 4927
Abstract
Amongst the many types of food waste, eggshells contain various minerals and bioactive materials, and they can become hazardous if not properly disposed of. However, they can be made useful for the environment and people by being converted to environmentally friendly catalytic materials [...] Read more.
Amongst the many types of food waste, eggshells contain various minerals and bioactive materials, and they can become hazardous if not properly disposed of. However, they can be made useful for the environment and people by being converted to environmentally friendly catalytic materials or environmental purification agents. Simple calcination can enhance their properties and thereby render them suitable for catalytic and environmental applications. This work aimed to prepare CaO from waste eggshells and examine its effectiveness in photocatalytic pollution remediation, electrocatalytic activity, optical sensing, and antibacterial activities. As opposed to other techniques, this calcination process does not require any chemical reagents due to the high purity of CaCO3 in eggshells. Calcium oxide nanoparticles were prepared by subjecting waste eggshells (ES) to high-temperature calcination, and the synthesized CaO nanoparticles were characterized for their structural, morphological, chemical, optical, and other properties. Furthermore, their photocatalytic degradation of methylene blue dye and antibacterial efficiency against Escherichia coli and Staphylococcus aureus were investigated. It was found that the green-converted CaO can be efficiently used in environmental applications, showing good catalytic properties. Full article
(This article belongs to the Special Issue Magnetization and Magnetic Disorder at the Nanoscale)
Show Figures

Figure 1

16 pages, 5683 KB  
Article
Effective Fuel Cell Electrocatalyst with Ultralow Pd Loading on Ni-N-Doped Graphene from Upcycled Water Bottle Waste
by Aldona Balčiūnaitė, Noha A. Elessawy, Biljana Šljukić, Arafat Toghan, Sami A. Al-Hussain, Marwa H. Gouda, M. Elsayed Youssef and Diogo M. F. Santos
Sustainability 2024, 16(17), 7469; https://doi.org/10.3390/su16177469 - 29 Aug 2024
Cited by 3 | Viewed by 1672
Abstract
Environmental pollution due to the excessive consumption of fossil fuels for energy production is a critical global issue. Fuel cells convert chemical energy directly into electricity in a clean and silent electrochemical process, but face challenges related to hydrogen storage, handling, and transportation. [...] Read more.
Environmental pollution due to the excessive consumption of fossil fuels for energy production is a critical global issue. Fuel cells convert chemical energy directly into electricity in a clean and silent electrochemical process, but face challenges related to hydrogen storage, handling, and transportation. The direct borohydride fuel cell (DBFC), utilizing sodium borohydride as a liquid fuel, is a promising alternative to overcome such issues but requires the design of cost-effective nanostructured electrocatalysts. In this study, we synthesized nitrogen-doped graphene anchoring Ni nanoparticles (Ni@NG) by thermal degradation of polyethylene terephthalate bottle waste with urea and metallic Ni, and evaluated it as a sustainable carbon support. Electrocatalysts were prepared by incorporating ultralow amounts (0.09 to 0.27 wt.%) of Pd into the Ni@NG support. The resulting PdNi@NG electrocatalysts were characterized using ICP-OES, XPS, TEM, N2-sorption analysis, XRD, and Raman and FTIR spectroscopy. Voltammetry assessed the materials’ electrocatalytic activity for oxygen reduction and borohydride oxidation reactions in alkaline media, corresponding to the anodic and cathodic reactions in DBFCs. The electrocatalyst with 0.27 wt.% Pd loading (PdNi_15@NG) exhibited the best performance for both reactions. Consequently, it was employed as an anodic and cathodic material in a lab-scale DBFC, achieving a specific power of 3.46 kW gPd−1. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 2805 KB  
Review
Electrocatalytic Nanomaterials Improve Microbial Extracellular Electron Transfer: A Review
by Xiaopin Wang, Xu Li and Qisu Zhu
Appl. Sci. 2024, 14(15), 6733; https://doi.org/10.3390/app14156733 - 1 Aug 2024
Cited by 3 | Viewed by 2065
Abstract
Microbial electrochemical systems that integrate the advantages of inorganic electrocatalysis and microbial catalysis are expected to provide sustainable solutions to the increasing energy shortages, resource depletion, and climate degradation. However, sluggish extracellular electron transfer (EET) at the interface between electroactive microorganisms and inorganic [...] Read more.
Microbial electrochemical systems that integrate the advantages of inorganic electrocatalysis and microbial catalysis are expected to provide sustainable solutions to the increasing energy shortages, resource depletion, and climate degradation. However, sluggish extracellular electron transfer (EET) at the interface between electroactive microorganisms and inorganic electrode materials is a critical bottleneck that limits the performance of systems. Electrocatalytic nanomaterials are highly competitive in overcoming this obstacle due to their effective association with microbial catalysis. Therefore, this review focuses on the cutting-edge applications and enhancement mechanisms of nanomaterials with electrocatalytic activity in promoting microbial EET. First, the EET mechanism of microbial electrocatalysis in both microbial anodes and cathodes is briefly introduced, and then recent applications of various electrocatalytic nanomaterials in diverse microbial electrochemical systems are summarized, including heteroatom-doped carbons and precious metal, as well as transition metal oxides, sulfides, carbides, and nitrides. The synergistic effects of nanomaterial electrocatalysis and microbial catalysis on enhancing interfacial EET are analyzed. Finally, the challenges and perspectives of realizing high-performance microbial electrochemical systems are also discussed in order to offer some reference for further research. Full article
Show Figures

Figure 1

Back to TopTop