Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = electrical resistivity tomography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5440 KiB  
Article
An Improved Shuffled Frog Leaping Algorithm for Electrical Resistivity Tomography Inversion
by Fuyu Jiang, Likun Gao, Run Han, Minghui Dai, Haijun Chen, Jiong Ni, Yao Lei, Xiaoyu Xu and Sheng Zhang
Appl. Sci. 2025, 15(15), 8527; https://doi.org/10.3390/app15158527 (registering DOI) - 31 Jul 2025
Abstract
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of [...] Read more.
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of each subgroup to the global optimal solution, suppressing the local optimum traps caused by the dominance of high-quality groups. Second, an adaptive movement operator is constructed to dynamically regulate the step size of the search, enhancing the guiding effect of the optimal solution. In synthetic data tests of three typical electrical models, including a high-resistivity anomaly with 5% random noise, a normal fault, and a reverse fault, the improved algorithm shows an approximately 2.3 times higher accuracy in boundary identification of the anomaly body compared to the least squares (LS) method and standard SFLA. Additionally, the root mean square error is reduced by 57%. In the engineering validation at the Baota Mountain mining area in Jurong, the improved SFLA inversion clearly reveals the undulating bedrock morphology. At a measuring point 55 m along the profile, the bedrock depth is 14.05 m (ZK3 verification value 12.0 m, error 17%), and at 96 m, the depth is 6.9 m (ZK2 verification value 6.7 m, error 3.0%). The characteristic of deeper bedrock to the south and shallower to the north is highly consistent with the terrain and drilling data (RMSE = 1.053). This algorithm provides reliable technical support for precise detection of complex geological structures using ERT. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

28 pages, 146959 KiB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 (registering DOI) - 30 Jul 2025
Viewed by 144
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

19 pages, 3099 KiB  
Article
Optimizing Geophysical Inversion: Versatile Regularization and Prior Integration Strategies for Electrical and Seismic Tomographic Data
by Guido Penta de Peppo, Michele Cercato and Giorgio De Donno
Geosciences 2025, 15(7), 274; https://doi.org/10.3390/geosciences15070274 - 20 Jul 2025
Viewed by 318
Abstract
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization [...] Read more.
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization parameters and in the effective incorporation of prior information into the inversion process. In this study, we propose new strategies to address these critical issues by developing versatile and flexible tools for electrical and seismic tomographic data inversion. Specifically, we introduce two automated procedures for regularization parameter selection: a full loop method (fixed-λ optimization) where the regularization parameter is kept constant during the inversion process, and a single-inversion approach (automaticLam) where it varies throughout the iterations. Additionally, we present a novel constrained inversion strategy that effectively balances prior information, minimizes data misfit, and promotes model smoothness. This approach is thoroughly compared with the state-of-the-art methods, demonstrating its superiority in maintaining model reliability and reducing dependence on subjective operator choices. Applications to synthetic, laboratory, and real-world case studies validate the efficacy of our strategies, showcasing their potential to enhance the robustness of geophysical models and standardize the inversion process, ensuring its independence from operator decisions. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

19 pages, 13404 KiB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 432
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

26 pages, 4761 KiB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 342
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 7369 KiB  
Article
Freezing Behavior of Clayey Sand and Spatiotemporal Evolution of Seasonally Frozen Soil Distribution in the Qinghai–Tibet Plateau
by Yunlei Xu, Haiyan Yang, Jianhua Yue, He Wei, Rongqi Che, Qibao Duan, Shulong Zhou and Meng Sun
Appl. Sci. 2025, 15(13), 7498; https://doi.org/10.3390/app15137498 - 3 Jul 2025
Viewed by 308
Abstract
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying [...] Read more.
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying initial volumetric water contents. The relationship between electrical resistivity and unfrozen water content was examined through laboratory tests, while six-month resistivity monitoring tests were conducted in a representative frozen soil region of the plateau. The results show that the freezing points for samples with initial volumetric water contents of 30%, 18.5%, and 10% were −2.34 °C, −4.69 °C, and −6.48 °C, respectively, whereas the thawing temperature remained approximately −4 °C across all cases. A strong inverse correlation between resistivity and unfrozen water content was observed during the freezing process. Moreover, the resistivity exhibited a typical U-shaped trend with increasing initial water content, with a minimum level observed at 6~10%. Field resistivity profiles demonstrated limited variation between July and September, while in December, a pronounced thickening of the transition zone and an upward shift in the high-resistivity layer were evident. These findings enhance the understanding of the freeze–thaw mechanisms and the spatiotemporal evolution of frozen soils in high-altitude environments. Full article
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 732
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

21 pages, 4359 KiB  
Article
Identification of NAPL Contamination Occurrence States in Low-Permeability Sites Using UNet Segmentation and Electrical Resistivity Tomography
by Mengwen Gao, Yu Xiao and Xiaolei Zhang
Appl. Sci. 2025, 15(13), 7109; https://doi.org/10.3390/app15137109 - 24 Jun 2025
Viewed by 227
Abstract
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research [...] Read more.
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research object, we collected apparent resistivity data using the WGMD-9 system, obtained resistivity profiles through inversion imaging, and constructed training sets by generating contamination labels via K-means clustering. A semantic segmentation model with skip connections and multi-scale feature fusion was developed based on the UNet architecture to achieve automatic identification of contaminated areas. Experimental results demonstrate that the model achieves a mean Intersection over Union (mIoU) of 86.58%, an accuracy (Acc) of 99.42%, a precision (Pre) of 75.72%, a recall (Rec) of 76.80%, and an F1 score (f1) of 76.23%, effectively overcoming the noise interference in electrical anomaly interpretation through conventional geophysical methods in low-permeability clay, while outperforming DeepLabV3, DeepLabV3+, PSPNet, and LinkNet models. Time-lapse resistivity imaging verifies the feasibility of dynamic monitoring for contaminant migration, while the integration of the VGG-16 encoder and hyperparameter optimization (learning rate of 0.0001 and batch size of 8) significantly enhances model performance. Case visualization reveals high consistency between segmentation results and actual contamination distribution, enabling precise localization of spatial morphology for contamination plumes. This technological breakthrough overcomes the high-cost and low-efficiency limitations of traditional borehole sampling, providing a high-precision, non-destructive intelligent detection solution for contaminated site remediation. Full article
Show Figures

Figure 1

22 pages, 5197 KiB  
Article
Electrical Resistivity Tomography Methods and Technical Research for Hydrate-Based Carbon Sequestration
by Zitian Lin, Qia Wang, Shufan Li, Xingru Li, Jiajie Ye, Yidi Zhang, Haoning Ye, Yangmin Kuang and Yanpeng Zheng
J. Mar. Sci. Eng. 2025, 13(7), 1205; https://doi.org/10.3390/jmse13071205 - 21 Jun 2025
Viewed by 315
Abstract
This study focuses on the application of electrical resistivity tomography (ERT) for monitoring the growth process of CO2 hydrate in subsea carbon sequestration, aiming to provide technical support for the safety assessment of marine carbon storage. By designing single-target, dual-target, and multi-target [...] Read more.
This study focuses on the application of electrical resistivity tomography (ERT) for monitoring the growth process of CO2 hydrate in subsea carbon sequestration, aiming to provide technical support for the safety assessment of marine carbon storage. By designing single-target, dual-target, and multi-target hydrate samples, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and residual neural networks (ResNets) were constructed and compared with traditional image reconstruction algorithms (e.g., back-projection) to quantitatively analyze ERT imaging accuracy. The experiments used boundary voltage as the input and internal conductivity distribution as the output, employing the relative image error (RIE) and image correlation coefficient (ICC) to evaluate algorithmic performance. The results demonstrate that neural network algorithms—particularly RNNs—exhibit superior performance compared to traditional image reconstruction methods due to their strong noise resistance and nonlinear mapping capabilities. These algorithms significantly improve the edge clarity in target identification, enabling the precise capture of the hydrate distribution during carbon sequestration. This advancement effectively enhances the monitoring capability of CO2 hydrate reservoir characteristics and provides reliable data support for the safety assessment of hydrate reservoirs. Full article
Show Figures

Figure 1

22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 317
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

15 pages, 4753 KiB  
Article
Continuous Electrical Resistivity Tomography Monitoring in Waste Landfill Sites with Different Properties and Visualization of Water Channels
by Yugo Isobe and Hiroyuki Ishimori
Appl. Sci. 2025, 15(12), 6920; https://doi.org/10.3390/app15126920 - 19 Jun 2025
Cited by 1 | Viewed by 445
Abstract
This study aims to obtain findings on the internal water behavior, the presence of water channels, and the degree of washout due to rainfall infiltration in Japanese municipal solid waste (MSW) final disposal sites. Electrical resistivity tomography (ERT) monitoring and undistributed waste sampling [...] Read more.
This study aims to obtain findings on the internal water behavior, the presence of water channels, and the degree of washout due to rainfall infiltration in Japanese municipal solid waste (MSW) final disposal sites. Electrical resistivity tomography (ERT) monitoring and undistributed waste sampling for X-ray computed tomography (X-ray CT) analysis were conducted in the field. The study sites were targeted at Site A, which is mainly composed of non-combustible residues, and Site B, which is mainly composed of incineration ash. The time-dependent resistivity distributions obtained from real-time ERT monitoring were effective for us to understand the water content distribution after water infiltration during water injection tests. As a result, the global flow behavior and the local water channel flow were determined. In addition, X-ray CT analysis of the undisturbed waste samples obtained from the sites clarified the different pore structures, indicating the possibility of more advanced washing out at Site A than at Site B. Furthermore, the soil cover layer and gas extraction wells had a significant effect on the resistivity structure with respect to water flow behavior. Since soil cover layer and gas extraction wells are significant factors affecting waste stabilization by washout, it is suggested that these factors should be considered in the design and maintenance of landfills. Full article
(This article belongs to the Special Issue Advanced Technologies in Landfills)
Show Figures

Figure 1

41 pages, 7139 KiB  
Review
Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
by Guohui Pang, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng and Xingliang Jiang
Energies 2025, 18(12), 3138; https://doi.org/10.3390/en18123138 - 14 Jun 2025
Viewed by 652
Abstract
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal [...] Read more.
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal insulation for overhead transmission lines, and its performance directly affects the overall operational condition of the insulator. However, it remains susceptible to failures induced by complex actions of mechanical, electrical, thermal, and environmental stresses. This paper systematically reviews the major failure modes of core rods, including mechanical failures (normal fracture, brittle fracture, and decay-like fracture) and electrical failures (flashunder and abnormal heating of the core rod). Through analysis of extensive field data and research findings, key failure mechanisms are identified. Preventive strategies encompassing material modification (such as superhydrophobic coatings, self-diagnostic materials, and self-healing epoxy resin), structural optimization (like the optimization of grading rings), and advanced inspection methods (such as IRT detection, Terahertz (THz) detection, X-ray computed tomography (XCT)) are proposed. Furthermore, the limitations of current technologies are discussed, emphasizing the need for in-depth studies on deterioration mechanisms, materials innovation, and defect detection technologies to enhance the long-term reliability of composite insulators in transmission networks. Full article
Show Figures

Figure 1

22 pages, 4328 KiB  
Article
Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment
by Paolo Ciampi, Massimo Mangifesta, Leonardo Maria Giannini, Carlo Esposito, Gianni Scalella, Benedetto Burchini and Nicola Sciarra
Remote Sens. 2025, 17(12), 2029; https://doi.org/10.3390/rs17122029 - 12 Jun 2025
Cited by 1 | Viewed by 1017
Abstract
Landslides pose significant risks to human life and infrastructure, driven by a complex interplay of geological and hydrological factors. This study investigates the ongoing slope instability affecting the village of Borrano, in Central Italy, where large-scale landslides are triggered or reactivated by extreme [...] Read more.
Landslides pose significant risks to human life and infrastructure, driven by a complex interplay of geological and hydrological factors. This study investigates the ongoing slope instability affecting the village of Borrano, in Central Italy, where large-scale landslides are triggered or reactivated by extreme rainfall and seismic activity. A multidisciplinary approach was employed, integrating traditional geological surveys, direct investigations, and advanced geophysical techniques—including electrical resistivity tomography (ERT) and seismic refraction tomography (SRT)—to characterize subsurface structures. Additionally, Sentinel-1 interferometric synthetic aperture radar (InSAR) was employed to parametrize the deformation rates induced by the landslide. The results reveal a complex geological framework dominated by the Teramo Flysch, where weak clayey facies and structurally controlled dip-slopes predispose the area to gravitational instability. ERT and SRT identified resistivity and velocity contrasts associated with shallow and depth sliding surfaces. At the same time, satellite-based synthetic aperture radar (SAR) data confirmed persistent slow movements, with vertical displacement rates between −10 and −24 mm/year. These findings underscore the importance of lithological heterogeneity and structural settings in the evolution of landslides. The integrated geophysical and remote sensing approach enhances the understanding of slope dynamics. It can be used to cross-check interpretations, capture displacement trends, characterize the internal structure of unstable slopes, and resolve the limitations of each method. This synergy provides a more comprehensive assessment of complex slope instability, offering valuable insights for hazard mitigation strategies in landslide-prone areas. Full article
Show Figures

Figure 1

50 pages, 2738 KiB  
Review
Geophysical Survey and Monitoring of Transportation Infrastructure Slopes (TISs): A Review
by Zeynab Rosa Maleki, Paul Wilkinson, Jonathan Chambers, Shane Donohue, Jessica Lauren Holmes and Ross Stirling
Geosciences 2025, 15(6), 220; https://doi.org/10.3390/geosciences15060220 - 12 Jun 2025
Viewed by 707
Abstract
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding [...] Read more.
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding the geophysical methods most employed, the subsurface properties revealed, and the design of monitoring systems, including sensor deployment. It evaluates the benefits and challenges associated with each geophysical approach, explores the potential for integrating geophysical techniques with other methods, and identifies the emerging technologies. Geophysical techniques such as Electrical Resistivity Tomography (ERT), Multichannel Analysis of Surface Waves (MASW), and Fiber Optic Cable (FOC) have proven effective in monitoring slope stability and detecting subsurface features, including soil moisture dynamics, slip surfaces, and material heterogeneity. Both temporary and permanent monitoring setups have been used, with increasing interest in real-time monitoring solutions. The integration of advanced technologies like Distributed Acoustic Sensing (DAS), UAV-mounted sensors, and artificial intelligence (AI) promises to enhance the resolution, accessibility, and predictive capabilities of slope monitoring systems. The review concludes with recommendations for future research, emphasizing the need for integrated monitoring frameworks that combine geophysical data with real-time analysis to improve the safety and efficiency of transportation infrastructure management. Full article
Show Figures

Figure 1

24 pages, 7924 KiB  
Article
Mechanisms and Optimization of Foam Flooding in Heterogeneous Thick Oil Reservoirs: Insights from Large-Scale 2D Sandpack Experiments
by Qingchun Meng, Hongmei Wang, Weiyou Yao, Yuyang Han, Xianqiu Chao, Tairan Liang, Yongxian Fang, Wenzhao Sun and Huabin Li
ChemEngineering 2025, 9(3), 62; https://doi.org/10.3390/chemengineering9030062 - 4 Jun 2025
Viewed by 969
Abstract
To address the challenges of low displacement efficiency and gas channeling in the Lukqin thick oil reservoir, characterized by high viscosity (286 mPa·s) and strong heterogeneity (permeability contrast 5–10), this study systematically investigated water flooding and foam flooding mechanisms using a large-scale 2D [...] Read more.
To address the challenges of low displacement efficiency and gas channeling in the Lukqin thick oil reservoir, characterized by high viscosity (286 mPa·s) and strong heterogeneity (permeability contrast 5–10), this study systematically investigated water flooding and foam flooding mechanisms using a large-scale 2D sandpack model (5 m × 1 m × 0.04 m). Experimental results indicate that water flooding achieves only 30% oil recovery due to a mobility ratio imbalance (M = 128) and preferential channeling. In contrast, foam flooding enhances recovery by 15–20% (final recovery: 45%) through synergistic mechanisms of dynamic high-permeability channel plugging and mobility ratio optimization. By innovatively integrating electrical resistivity tomography with HSV color mapping, this work achieves the first visualization of foam migration pathways in meter-scale heterogeneous reservoirs at a spatial resolution of ≤0.5 cm, reducing monitoring costs by approximately 30% compared to conventional CT techniques. Key controlling factors for gas channeling (injection rate, foam quality, permeability contrast) are identified, and a nonlinear predictive model for plugging strength ((S = 0.70C0.6 kr−0.28) (R2 = 0.91)) is established. A composite optimization strategy—combining high-concentration slugs (0.7% AOS), salt-resistant polymer-enhanced foaming, and multi-round profile control—achieves a 67% reduction in gas channeling. This study elucidates the dynamic plugging mechanisms of foam flooding in heterogeneous thick oil reservoirs through large-scale physical simulations and data fusion, offering direct technical guidance for optimizing foam flooding operations in the Lukqin Oilfield and analogous reservoirs. Full article
Show Figures

Figure 1

Back to TopTop