Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = electric resistivity tomography (ERT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6218 KiB  
Article
Quantitative Relationship Between Electrical Resistivity and Water Content in Unsaturated Loess: Theoretical Model and ERT Imaging Verification
by Hu Zeng, Qianli Zhang, Cui Du, Jie Liu and Yilin Li
Geosciences 2025, 15(8), 302; https://doi.org/10.3390/geosciences15080302 - 5 Aug 2025
Viewed by 287
Abstract
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical [...] Read more.
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical resistivity tomography (ERT) profiles into water content distributions for unsaturated loess through quantitative inversion modeling. Systematic laboratory investigations on remolded loess specimens with controlled density and water content conditions revealed distinct resistivity–water interaction mechanisms. A characteristic two-stage decay pattern was identified: resistivity exhibited an exponential decrease from 420 Ω·m (water saturation (Sw = 10%)) to 90 Ω·m (Sw = 40%), followed by asymptotic stabilization at Sw ≥ 40%. The derived quantitative correlation provides a robust mathematical basis for water content profile inversion. Field validation through integrated ERT and borehole data demonstrated exceptional predictive accuracy in shallow strata (<20 m depth), achieving mean absolute errors of <5%. However, inversion reliability decreased with depth (>20 m), primarily attributed to density-dependent charge transport mechanisms. This underscores the necessity of incorporating coupled thermo-hydro-mechanical processes for deep-layer characterization. This study provides a robust framework for engineering applications of ERT in loess terrains, offering significant advancements in geotechnical monitoring and geohazard prevention. Full article
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 582
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 5440 KiB  
Article
An Improved Shuffled Frog Leaping Algorithm for Electrical Resistivity Tomography Inversion
by Fuyu Jiang, Likun Gao, Run Han, Minghui Dai, Haijun Chen, Jiong Ni, Yao Lei, Xiaoyu Xu and Sheng Zhang
Appl. Sci. 2025, 15(15), 8527; https://doi.org/10.3390/app15158527 - 31 Jul 2025
Viewed by 187
Abstract
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of [...] Read more.
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of each subgroup to the global optimal solution, suppressing the local optimum traps caused by the dominance of high-quality groups. Second, an adaptive movement operator is constructed to dynamically regulate the step size of the search, enhancing the guiding effect of the optimal solution. In synthetic data tests of three typical electrical models, including a high-resistivity anomaly with 5% random noise, a normal fault, and a reverse fault, the improved algorithm shows an approximately 2.3 times higher accuracy in boundary identification of the anomaly body compared to the least squares (LS) method and standard SFLA. Additionally, the root mean square error is reduced by 57%. In the engineering validation at the Baota Mountain mining area in Jurong, the improved SFLA inversion clearly reveals the undulating bedrock morphology. At a measuring point 55 m along the profile, the bedrock depth is 14.05 m (ZK3 verification value 12.0 m, error 17%), and at 96 m, the depth is 6.9 m (ZK2 verification value 6.7 m, error 3.0%). The characteristic of deeper bedrock to the south and shallower to the north is highly consistent with the terrain and drilling data (RMSE = 1.053). This algorithm provides reliable technical support for precise detection of complex geological structures using ERT. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 3099 KiB  
Article
Optimizing Geophysical Inversion: Versatile Regularization and Prior Integration Strategies for Electrical and Seismic Tomographic Data
by Guido Penta de Peppo, Michele Cercato and Giorgio De Donno
Geosciences 2025, 15(7), 274; https://doi.org/10.3390/geosciences15070274 - 20 Jul 2025
Viewed by 399
Abstract
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization [...] Read more.
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization parameters and in the effective incorporation of prior information into the inversion process. In this study, we propose new strategies to address these critical issues by developing versatile and flexible tools for electrical and seismic tomographic data inversion. Specifically, we introduce two automated procedures for regularization parameter selection: a full loop method (fixed-λ optimization) where the regularization parameter is kept constant during the inversion process, and a single-inversion approach (automaticLam) where it varies throughout the iterations. Additionally, we present a novel constrained inversion strategy that effectively balances prior information, minimizes data misfit, and promotes model smoothness. This approach is thoroughly compared with the state-of-the-art methods, demonstrating its superiority in maintaining model reliability and reducing dependence on subjective operator choices. Applications to synthetic, laboratory, and real-world case studies validate the efficacy of our strategies, showcasing their potential to enhance the robustness of geophysical models and standardize the inversion process, ensuring its independence from operator decisions. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

19 pages, 13404 KiB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 496
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

21 pages, 4359 KiB  
Article
Identification of NAPL Contamination Occurrence States in Low-Permeability Sites Using UNet Segmentation and Electrical Resistivity Tomography
by Mengwen Gao, Yu Xiao and Xiaolei Zhang
Appl. Sci. 2025, 15(13), 7109; https://doi.org/10.3390/app15137109 - 24 Jun 2025
Viewed by 258
Abstract
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research [...] Read more.
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research object, we collected apparent resistivity data using the WGMD-9 system, obtained resistivity profiles through inversion imaging, and constructed training sets by generating contamination labels via K-means clustering. A semantic segmentation model with skip connections and multi-scale feature fusion was developed based on the UNet architecture to achieve automatic identification of contaminated areas. Experimental results demonstrate that the model achieves a mean Intersection over Union (mIoU) of 86.58%, an accuracy (Acc) of 99.42%, a precision (Pre) of 75.72%, a recall (Rec) of 76.80%, and an F1 score (f1) of 76.23%, effectively overcoming the noise interference in electrical anomaly interpretation through conventional geophysical methods in low-permeability clay, while outperforming DeepLabV3, DeepLabV3+, PSPNet, and LinkNet models. Time-lapse resistivity imaging verifies the feasibility of dynamic monitoring for contaminant migration, while the integration of the VGG-16 encoder and hyperparameter optimization (learning rate of 0.0001 and batch size of 8) significantly enhances model performance. Case visualization reveals high consistency between segmentation results and actual contamination distribution, enabling precise localization of spatial morphology for contamination plumes. This technological breakthrough overcomes the high-cost and low-efficiency limitations of traditional borehole sampling, providing a high-precision, non-destructive intelligent detection solution for contaminated site remediation. Full article
Show Figures

Figure 1

22 pages, 5197 KiB  
Article
Electrical Resistivity Tomography Methods and Technical Research for Hydrate-Based Carbon Sequestration
by Zitian Lin, Qia Wang, Shufan Li, Xingru Li, Jiajie Ye, Yidi Zhang, Haoning Ye, Yangmin Kuang and Yanpeng Zheng
J. Mar. Sci. Eng. 2025, 13(7), 1205; https://doi.org/10.3390/jmse13071205 - 21 Jun 2025
Viewed by 383
Abstract
This study focuses on the application of electrical resistivity tomography (ERT) for monitoring the growth process of CO2 hydrate in subsea carbon sequestration, aiming to provide technical support for the safety assessment of marine carbon storage. By designing single-target, dual-target, and multi-target [...] Read more.
This study focuses on the application of electrical resistivity tomography (ERT) for monitoring the growth process of CO2 hydrate in subsea carbon sequestration, aiming to provide technical support for the safety assessment of marine carbon storage. By designing single-target, dual-target, and multi-target hydrate samples, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and residual neural networks (ResNets) were constructed and compared with traditional image reconstruction algorithms (e.g., back-projection) to quantitatively analyze ERT imaging accuracy. The experiments used boundary voltage as the input and internal conductivity distribution as the output, employing the relative image error (RIE) and image correlation coefficient (ICC) to evaluate algorithmic performance. The results demonstrate that neural network algorithms—particularly RNNs—exhibit superior performance compared to traditional image reconstruction methods due to their strong noise resistance and nonlinear mapping capabilities. These algorithms significantly improve the edge clarity in target identification, enabling the precise capture of the hydrate distribution during carbon sequestration. This advancement effectively enhances the monitoring capability of CO2 hydrate reservoir characteristics and provides reliable data support for the safety assessment of hydrate reservoirs. Full article
Show Figures

Figure 1

22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 388
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

15 pages, 4753 KiB  
Article
Continuous Electrical Resistivity Tomography Monitoring in Waste Landfill Sites with Different Properties and Visualization of Water Channels
by Yugo Isobe and Hiroyuki Ishimori
Appl. Sci. 2025, 15(12), 6920; https://doi.org/10.3390/app15126920 - 19 Jun 2025
Cited by 1 | Viewed by 517
Abstract
This study aims to obtain findings on the internal water behavior, the presence of water channels, and the degree of washout due to rainfall infiltration in Japanese municipal solid waste (MSW) final disposal sites. Electrical resistivity tomography (ERT) monitoring and undistributed waste sampling [...] Read more.
This study aims to obtain findings on the internal water behavior, the presence of water channels, and the degree of washout due to rainfall infiltration in Japanese municipal solid waste (MSW) final disposal sites. Electrical resistivity tomography (ERT) monitoring and undistributed waste sampling for X-ray computed tomography (X-ray CT) analysis were conducted in the field. The study sites were targeted at Site A, which is mainly composed of non-combustible residues, and Site B, which is mainly composed of incineration ash. The time-dependent resistivity distributions obtained from real-time ERT monitoring were effective for us to understand the water content distribution after water infiltration during water injection tests. As a result, the global flow behavior and the local water channel flow were determined. In addition, X-ray CT analysis of the undisturbed waste samples obtained from the sites clarified the different pore structures, indicating the possibility of more advanced washing out at Site A than at Site B. Furthermore, the soil cover layer and gas extraction wells had a significant effect on the resistivity structure with respect to water flow behavior. Since soil cover layer and gas extraction wells are significant factors affecting waste stabilization by washout, it is suggested that these factors should be considered in the design and maintenance of landfills. Full article
(This article belongs to the Special Issue Advanced Technologies in Landfills)
Show Figures

Figure 1

22 pages, 4328 KiB  
Article
Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment
by Paolo Ciampi, Massimo Mangifesta, Leonardo Maria Giannini, Carlo Esposito, Gianni Scalella, Benedetto Burchini and Nicola Sciarra
Remote Sens. 2025, 17(12), 2029; https://doi.org/10.3390/rs17122029 - 12 Jun 2025
Cited by 1 | Viewed by 1064
Abstract
Landslides pose significant risks to human life and infrastructure, driven by a complex interplay of geological and hydrological factors. This study investigates the ongoing slope instability affecting the village of Borrano, in Central Italy, where large-scale landslides are triggered or reactivated by extreme [...] Read more.
Landslides pose significant risks to human life and infrastructure, driven by a complex interplay of geological and hydrological factors. This study investigates the ongoing slope instability affecting the village of Borrano, in Central Italy, where large-scale landslides are triggered or reactivated by extreme rainfall and seismic activity. A multidisciplinary approach was employed, integrating traditional geological surveys, direct investigations, and advanced geophysical techniques—including electrical resistivity tomography (ERT) and seismic refraction tomography (SRT)—to characterize subsurface structures. Additionally, Sentinel-1 interferometric synthetic aperture radar (InSAR) was employed to parametrize the deformation rates induced by the landslide. The results reveal a complex geological framework dominated by the Teramo Flysch, where weak clayey facies and structurally controlled dip-slopes predispose the area to gravitational instability. ERT and SRT identified resistivity and velocity contrasts associated with shallow and depth sliding surfaces. At the same time, satellite-based synthetic aperture radar (SAR) data confirmed persistent slow movements, with vertical displacement rates between −10 and −24 mm/year. These findings underscore the importance of lithological heterogeneity and structural settings in the evolution of landslides. The integrated geophysical and remote sensing approach enhances the understanding of slope dynamics. It can be used to cross-check interpretations, capture displacement trends, characterize the internal structure of unstable slopes, and resolve the limitations of each method. This synergy provides a more comprehensive assessment of complex slope instability, offering valuable insights for hazard mitigation strategies in landslide-prone areas. Full article
Show Figures

Figure 1

50 pages, 2738 KiB  
Review
Geophysical Survey and Monitoring of Transportation Infrastructure Slopes (TISs): A Review
by Zeynab Rosa Maleki, Paul Wilkinson, Jonathan Chambers, Shane Donohue, Jessica Lauren Holmes and Ross Stirling
Geosciences 2025, 15(6), 220; https://doi.org/10.3390/geosciences15060220 - 12 Jun 2025
Viewed by 990
Abstract
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding [...] Read more.
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding the geophysical methods most employed, the subsurface properties revealed, and the design of monitoring systems, including sensor deployment. It evaluates the benefits and challenges associated with each geophysical approach, explores the potential for integrating geophysical techniques with other methods, and identifies the emerging technologies. Geophysical techniques such as Electrical Resistivity Tomography (ERT), Multichannel Analysis of Surface Waves (MASW), and Fiber Optic Cable (FOC) have proven effective in monitoring slope stability and detecting subsurface features, including soil moisture dynamics, slip surfaces, and material heterogeneity. Both temporary and permanent monitoring setups have been used, with increasing interest in real-time monitoring solutions. The integration of advanced technologies like Distributed Acoustic Sensing (DAS), UAV-mounted sensors, and artificial intelligence (AI) promises to enhance the resolution, accessibility, and predictive capabilities of slope monitoring systems. The review concludes with recommendations for future research, emphasizing the need for integrated monitoring frameworks that combine geophysical data with real-time analysis to improve the safety and efficiency of transportation infrastructure management. Full article
Show Figures

Figure 1

20 pages, 14467 KiB  
Article
Optimization of 3D Borehole Electrical Resistivity Tomography (ERT) Measurements for Real-Time Subsurface Imaging
by Marios Karaoulis
Water 2025, 17(11), 1695; https://doi.org/10.3390/w17111695 - 3 Jun 2025
Viewed by 559
Abstract
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole [...] Read more.
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole configurations lead to an extremely large number of potential electrode combinations. However, not all these combinations contribute significantly to the final resistivity model, and a complete measurement cycle requires substantial time to perform. This becomes particularly problematic in dynamic subsurface conditions, where changes may occur during data acquisition. In such cases, the measurements collected within a single cycle may reflect different subsurface states. Conversely, attempting to shorten acquisition time can result in too few measurements to resolve the subsurface structure at high resolution. Furthermore, most existing approaches assume a uniform half-space model and treat all measurements equally, failing to prioritize those that are most sensitive to actual subsurface changes. To address these challenges, we propose a 3D measurement optimization approach that yields an efficient acquisition scheme. This method produces inversion results comparable to those obtained from much larger datasets while reducing both measurement and processing requirements. Our optimization is based on a sensitivity-driven selection algorithm that accounts for the real subsurface structure rather than assuming a generic half-space. The proposed methodology is validated using synthetic data and tested with experimental data obtained from a laboratory tank setup. These experimental measurements were used to monitor permeation grouting; a technique applied to reduce permeability and/or increase the strength of granular soils through targeted injection. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology—Second Edition)
Show Figures

Figure 1

17 pages, 3139 KiB  
Article
Forward Modeling in ERT Employing Resistor Network—Alternative to Standard Approaches
by Jaroslav Jirků and Jan Vilhelm
Geosciences 2025, 15(6), 195; https://doi.org/10.3390/geosciences15060195 - 23 May 2025
Viewed by 404
Abstract
This paper uses an orthogonal resistor network model instead of traditional finite-difference or finite-element methods to explore an alternative approach to forward modeling in Electrical Resistivity Tomography (ERT). A resistor network is advantageous for modeling high-contrast resistivity environments, particularly in crystalline rock scenarios [...] Read more.
This paper uses an orthogonal resistor network model instead of traditional finite-difference or finite-element methods to explore an alternative approach to forward modeling in Electrical Resistivity Tomography (ERT). A resistor network is advantageous for modeling high-contrast resistivity environments, particularly in crystalline rock scenarios with thin conductive fractures. The key idea is to represent the resistivity problem as a network of resistors, where each resistor corresponds to a unit cell edge with assigned resistance values. The study compares this approach with existing numerical methods and analytical solutions for 2D conductive dipping faults, showing that the resistor network method produces comparable results for shallow depths while offering better resolution for thin conductive fractures. This study demonstrates that a resistor network can serve as an auxiliary tool for qualitatively assessing the effects of thin conductive fractures in crystalline rock environments or masonry. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

33 pages, 15457 KiB  
Article
A Hybrid Approach for Assessing Aquifer Health Using the SWAT Model, Tree-Based Classification, and Deep Learning Algorithms
by Amit Bera, Litan Dutta, Sanjit Kumar Pal, Rajwardhan Kumar, Pradeep Kumar Shukla, Wafa Saleh Alkhuraiji, Bojan Đurin and Mohamed Zhran
Water 2025, 17(10), 1546; https://doi.org/10.3390/w17101546 - 21 May 2025
Viewed by 2034
Abstract
Aquifer health assessment is essential for sustainable groundwater management, particularly in semi-arid regions with challenging geological conditions. This study presents a novel methodology for assessing aquifer health in the Barakar River Basin, a hard-rock terrain, by integrating tree-based classification, deep learning, and the [...] Read more.
Aquifer health assessment is essential for sustainable groundwater management, particularly in semi-arid regions with challenging geological conditions. This study presents a novel methodology for assessing aquifer health in the Barakar River Basin, a hard-rock terrain, by integrating tree-based classification, deep learning, and the Soil and Water Assessment Tool (SWAT) model. Employing Random Forest, Decision Tree, and Convolutional Neural Network (CNN) models, the research examines 20 influential factors, including hydrological, water quality, and socioeconomic variables, to classify aquifer health into four categories: Good, Moderately Good, Semi-Critical, and Critical. The CNN model exhibited the highest predictive accuracy, identifying 33% of the basin as having good aquifer health, while Random Forest assessed 27% as Critical heath. Pearson correlation analysis of CNN-predicted aquifer health indicates that groundwater recharge (r = 0.52), return flow (r = 0.50), and groundwater fluctuation (r = 0.48) are the most influential positive factors. Validation results showed that the CNN model performed strongly, with a precision of 0.957, Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) of 0.95, and F1 score of 0.828, underscoring its reliability and robustness. Geophysical Electrical Resistivity Tomography (ERT) field surveys validated these classifications, particularly in high- and low-aquifer health zones. This study enhances understanding of aquifer dynamics and presents a robust methodology with broader applicability for sustainable groundwater management worldwide. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

24 pages, 13246 KiB  
Article
Non-Destructive Methods for Diagnosing Surface-Fire-Damaged Pinus densiflora and Quercus variabilis
by Yeonggeun Song, Yugyeong Jung, Younggeun Lee, Wonseok Kang, Jeonghyeon Bae, Sangsub Han and Kyeongcheol Lee
Forests 2025, 16(5), 817; https://doi.org/10.3390/f16050817 - 14 May 2025
Viewed by 464
Abstract
Wildfires impact forest ecosystems, affecting tree survival and physiological responses. This study explored the effects of surface fires on Pinus densiflora and Quercus variabilis, assessing mortality, internal injuries, and canopy health. By 2024, P. densiflora had an 18.0% mortality rate, whereas Q. [...] Read more.
Wildfires impact forest ecosystems, affecting tree survival and physiological responses. This study explored the effects of surface fires on Pinus densiflora and Quercus variabilis, assessing mortality, internal injuries, and canopy health. By 2024, P. densiflora had an 18.0% mortality rate, whereas Q. variabilis exhibited no crown dieback. Morphological traits, including tree height, the bark scorch index (BSI), and bark thickness, influenced fire resistance. Despite superior stand characteristics, P. densiflora showed higher mortality due to thin bark, whereas Q. variabilis maintained xylem integrity. While sonic tomography (SoT) showed no significant differences, electrical resistance tomography (ERT) detected physiological stress, with higher ERTR and ERTY area ratios correlating with mortality risk. Notably, F-W-W classified trees showed elevated resistance a year before mortality, suggesting ERT as a predictive tool. ERTR values exceeding 15.0% were associated with a 37.5% mortality rate, whereas ERTB values below 55.0% corresponded to 42.9% mortality. Despite fire exposure, canopy responses, including chlorophyll fluorescence and photosynthetic efficiency, remained stable, indicating that the surviving trees maintained functional integrity. This study underscores ERT’s efficacy in diagnosing fire-induced stress and predicting mortality risk. The findings highlight species-specific diagnostic criteria and inform post-fire management, supporting forest resilience through the early detection of high-risk trees and improved restoration strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

Back to TopTop