Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,040)

Search Parameters:
Keywords = electric heating load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 1646 KiB  
Article
Stochastic Optimization Scheduling Method for Mine Electricity–Heat Energy Systems Considering Power-to-Gas and Conditional Value-at-Risk
by Chao Han, Yun Zhu, Xing Zhou and Xuejie Wang
Energies 2025, 18(15), 4146; https://doi.org/10.3390/en18154146 - 5 Aug 2025
Abstract
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both [...] Read more.
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both the supply and demand sides, a P2G unit is introduced, and a Latin hypercube sampling technique based on Cholesky decomposition is employed to generate wind–solar-load sample matrices that capture source–load correlations, which are subsequently used to construct representative scenarios. Second, a stochastic optimization scheduling model is developed for the mine electricity–heat energy system, aiming to minimize the total scheduling cost comprising day-ahead scheduling cost, expected reserve adjustment cost, and CVaR. Finally, a case study on a typical mine electricity–heat energy system is conducted to validate the effectiveness of the proposed method in terms of operational cost reduction and system reliability. The results demonstrate a 1.4% reduction in the total operating cost, achieving a balance between economic efficiency and system security. Full article
Show Figures

Figure 1

50 pages, 9033 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 - 4 Aug 2025
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0°C), minimal surface temperature deviation (ΔTsurface of 2.8°C), and optimal thermal resistance (Rth of 0.27°C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

16 pages, 3086 KiB  
Article
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
by Jungin Choi and Junhee Hong
Energies 2025, 18(15), 4128; https://doi.org/10.3390/en18154128 - 4 Aug 2025
Viewed by 13
Abstract
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy [...] Read more.
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems, SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework, which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage, direct physical integration and validation are not yet feasible. To address this, the researchers leveraged real-time data from an existing commercial microgrid, specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables high-fidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night, and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan, demonstrating stable performance and approximately 75% SMR utilization, thereby supporting the feasibility of this proxy-based method. Importantly, to the best of our knowledge, this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking, data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 - 1 Aug 2025
Viewed by 252
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

24 pages, 11098 KiB  
Article
Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
by Chien-Te Huang, Fei-Yi Hung and Kai-Chieh Chang
Appl. Sci. 2025, 15(15), 8572; https://doi.org/10.3390/app15158572 (registering DOI) - 1 Aug 2025
Viewed by 173
Abstract
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained [...] Read more.
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained electrical integrity up to 0.30 A for 15,000 cycles. Above 0.35 A, rapid oxide growth and abnormal grain coarsening resulted in surface embrittlement and mechanical degradation. Current-assisted tensile testing revealed a transition from recovery-dominated behavior at ≤0.20 A to significant thermal softening and ductility loss at ≥0.25 A, corresponding to a threshold temperature of approximately 200 °C. These results establish the endurance limit of 631 stainless steel wire under coupled thermal–mechanical–electrical stress and clarify the roles of Joule heating, oxidation, and microstructural evolution in electrical fatigue resistance. A degradation map is proposed to inform design margins and operational constraints for fatigue-tolerant, electrically stable interconnects in high-reliability probe spring applications. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 136
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 257
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

16 pages, 2673 KiB  
Article
Thermal and Volumetric Signatures of the Mullins Effect in Carbon Black Reinforced Styrene-Butadiene Rubber Composites
by Nicolas Candau, Guillaume Corvec, Noel León-Albiter and Miguel Mudarra Lopez
J. Compos. Sci. 2025, 9(8), 393; https://doi.org/10.3390/jcs9080393 - 24 Jul 2025
Viewed by 315
Abstract
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The [...] Read more.
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The study aims to quantify molecular damage and its role in inducing reversible or irreversible heat flow and voiding behavior to inform the design of more resilient rubber composites with improved fatigue life and thermal management capabilities. The study effectively demonstrated how increasing carbon black content, particularly in SBR60, leads to a shift from mostly reversible to irreversible and cumulative damage mechanisms during cyclic loading, as evidenced by thermal, volumetric, and electrical resistivity changes. In particular, we identify a critical mechanical energy of 7 MJ.m−3 associated with such transition. These irreversible changes are strongly linked to the damage and re-arrangement of the carbon black filler network, as well as the rubber chains network and the formation/growth of voids, while reversible mechanisms are likely related to rubber chains alignment associated with entropic elasticity. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 400
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 228
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 7472 KiB  
Article
Research on the Performance and Energy Saving of Solar-Coupled Air Source Heat Pump Heating System: A Case Study of College Dormitory in Hot Summer and Cold Winter Zone
by Xu Wang, Shidong Wang and Tao Li
Energies 2025, 18(14), 3794; https://doi.org/10.3390/en18143794 - 17 Jul 2025
Viewed by 173
Abstract
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation [...] Read more.
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation of the hot water load and the calculation of the available area of the solar roof in a dormitory building of a certain university. Then, different solar-coupled air source heat pump systems were designed, and simulation models of the two systems were established. The thermal performance parameters and solar energy utilization of the two systems were discussed, and the energy efficiency, economy, and environmental protection of the two systems were analyzed. The results show that after coupling with the solar collector, the system operation time is shortened by 26.2%, the annual performance coefficient is 3.4, which is 0.8 higher than that of the original system, and the annual heating energy consumption is reduced by 24.4%. In contrast, the annual energy self-sufficiency rate of the photovoltaic coupled with air source heat pump system is 94.6%, achieving nearly zero energy consumption for heating. Full article
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 232
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

35 pages, 4030 KiB  
Article
An Exergy-Enhanced Improved IGDT-Based Optimal Scheduling Model for Electricity–Hydrogen Urban Integrated Energy Systems
by Min Xie, Lei Qing, Jia-Nan Ye and Yan-Xuan Lu
Entropy 2025, 27(7), 748; https://doi.org/10.3390/e27070748 - 13 Jul 2025
Viewed by 229
Abstract
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents [...] Read more.
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents an exergy-enhanced stochastic optimization framework for the optimal scheduling of electricity–hydrogen urban integrated energy systems (EHUIESs) under multiple uncertainties. By incorporating exergy efficiency evaluation into a Stochastic Optimization–Improved Information Gap Decision Theory (SOI-IGDT) framework, the model dynamically balances economic cost with thermodynamic performance. A penalty-based iterative mechanism is introduced to track exergy deviations and guide the system toward higher energy quality. The proposed approach accounts for uncertainties in renewable output, load variation, and Hydrogen-enriched compressed natural gas (HCNG) combustion. Case studies based on a 186-bus UIES coupled with a 20-node HCNG network show that the method improves exergy efficiency by up to 2.18% while maintaining cost robustness across varying confidence levels. These results underscore the significance of integrating exergy into real-time robust optimization for resilient and high-quality energy scheduling. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

25 pages, 3071 KiB  
Article
Li-Ion Battery Cooling and Heating System with Loop Thermosyphon for Electric Vehicles
by Ju-Chan Jang, Taek-Kyu Lim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(14), 3687; https://doi.org/10.3390/en18143687 - 12 Jul 2025
Viewed by 482
Abstract
Water, acetone, and TiO2/nano-silver water (NSW) nanofluids were investigated as working fluids in loop thermosyphon battery thermal management systems (LTBMS) under simulated electric vehicle (EV) conditions to evaluate scalability and robustness across inclinations (0° to 60°) and ambient temperatures (−10 °C [...] Read more.
Water, acetone, and TiO2/nano-silver water (NSW) nanofluids were investigated as working fluids in loop thermosyphon battery thermal management systems (LTBMS) under simulated electric vehicle (EV) conditions to evaluate scalability and robustness across inclinations (0° to 60°) and ambient temperatures (−10 °C to 20 °C). Experimental conditions were established with 60 °C as the reference temperature, corresponding to the onset of battery thermal runaway, to ensure relevance to critical thermal management scenarios. Results indicate that LTBMS A maintained battery cell temperatures at 50.4 °C with water and 31.6 °C with acetone under a 50 W heat load. In contrast, LTBMS B achieved cell temperatures of 41.8 °C with water and 42.8 °C with 0.01 vol% TiO2 nanofluid, however, performance deteriorated at higher nanofluid concentrations due to increased viscosity and related thermophysical constraints. In heating mode, LTBMS A elevated cell temperatures by 16 °C at an ambient temperature of −10 °C using acetone, while LTBMS B attained 52–55 °C at a 100 W heat load with nanofluids. The lightweight LTBMS design demonstrated superior thermal performance compared to conventional air-cooling systems and performance comparable to liquid-cooling systems. Pure water proved to be the most effective working fluid, while nanofluids require further optimization to enhance their practical applicability in EV thermal management. Full article
Show Figures

Figure 1

Back to TopTop