Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = electric car-sharing systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 285
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

27 pages, 5522 KiB  
Article
Integrated Vehicle-to-Building and Vehicle-to-Home Services for Residential and Worksite Microgrids
by Andrea Bonfiglio, Manuela Minetti, Riccardo Loggia, Lorenzo Frattale Mascioli, Andrea Golino, Cristina Moscatiello and Luigi Martirano
Smart Cities 2025, 8(3), 101; https://doi.org/10.3390/smartcities8030101 - 19 Jun 2025
Viewed by 447
Abstract
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric [...] Read more.
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric cars. In particular, this paper describes the coordination between a battery management algorithm that optimally assigns its capacity so that at least a part is reserved for mobility and a vehicle-to-building (V2B) service algorithm that uses a share of EV battery energy to improve user participation in renewable energy exploitation at home and at work. The system offers the user the choice of always maintaining a minimum charge for mobility or providing more flexible use of energy for business needs while maintaining established vehicle autonomy. Suitable management at home and at work allows always charging the vehicle to the required level of charge with renewable power excess, highlighting how the cooperation of home and work charging may provide novel frameworks for a smarter and more sustainable integration of electric mobility, reducing energy consumption and providing more effective energy management. The effectiveness of the proposed solution is demonstrated in a realistic configuration with real data and an experimental setup. Full article
Show Figures

Figure 1

28 pages, 6507 KiB  
Article
Sustainable Charging of Electric Transportation Based on Power Modes Model—A Practical Case of an Integrated Factory Grid with RES
by Dariusz Bober, Piotr Miller, Paweł Pijarski and Bartłomiej Mroczek
Sustainability 2025, 17(1), 196; https://doi.org/10.3390/su17010196 - 30 Dec 2024
Cited by 1 | Viewed by 1447
Abstract
The possibility of charging and possibly discharging electric cars can influence not only the balancing of power demand profiles in the grid and the stabilization of voltage profiles but also the appropriate management of electricity within the grid of an industrial plant equipped [...] Read more.
The possibility of charging and possibly discharging electric cars can influence not only the balancing of power demand profiles in the grid and the stabilization of voltage profiles but also the appropriate management of electricity within the grid of an industrial plant equipped with its own RES resources. For this purpose, the concept of “power supply modes” can be introduced, which involves intelligent demand-side management. Each technological process in an industrial plant should be assigned a specific level of importance and priority. These priorities can be numbered according to their importance (weights) and marked with appropriate colors. One thus obtains a qualitative assessment of energy consumption within the plant (demand side) through the lens of power modes. With respect to the ability to charge electric vehicles within the plant grid, such priorities can also be assigned to individual charging options. If a given RES has sufficient generation capacity during a particular time period, the cost of charging is low. However, if the RESs are not operational during a given period (e.g., nighttime in the case of photovoltaics or during calm weather in the case of wind turbines), vehicles can still be charged but according to a different priority, which, of course, involves higher costs. By having access to data on the generation capacity of distributed RESs and knowing the preferences of employees, including the number of electric cars and the expected periods of vehicle charging, it is possible to predict the degree of use of available green energy and manage it efficiently. The analyses presented in the article represent an original approach to the flexibility of operation not only of the electricity grid but also of the internal energy system of industrial plants. It offers a novel perspective aimed at maximizing the share of RESs in the overall energy balance and minimizing the costs associated with the operation of RESs. The theoretical opportunity of sustainable sharing with employees a dedicated charging mode named “free charging”, powered by RESs, could represent an appropriate solution for CO2 emission reduction within Scope 3, Category 3, “employee commuting”, according to the GHG Protocol requirements. The original methodology proposed in the article aligns with activities related to the energy transition. Full article
Show Figures

Figure 1

46 pages, 21655 KiB  
Article
Analysis of the Selected Design Changes in a Wheel Hub Motor Electromagnetic Circuit on Motor Operating Parameters While Car Driving
by Piotr Dukalski and Roman Krok
Energies 2024, 17(23), 6091; https://doi.org/10.3390/en17236091 - 3 Dec 2024
Cited by 1 | Viewed by 1406
Abstract
The drive system of an electric car must meet road requirements related to overcoming obstacles and driving dynamics depending on the class and purpose of the vehicle. The driving dynamics of modern cars as well as size and weight limitations mean that wheel [...] Read more.
The drive system of an electric car must meet road requirements related to overcoming obstacles and driving dynamics depending on the class and purpose of the vehicle. The driving dynamics of modern cars as well as size and weight limitations mean that wheel hub motors operate with relatively high current density and high power supply frequency, which may generate significant power losses in the windings and permanent magnets and increase their operating temperature. Designers of this type of motor often face the need to minimize the motor’s weight, as it constitutes the unsprung mass of the vehicle. Another limitation for motor designers is the motor dimensions, which are limited by the dimensions of the rim, the arrangement of suspension elements and the braking system. The article presents two directions in the design of wheel hub motors. The first one involves minimizing the length of the stator magnetic core, which allows for shortening of the axial dimension and mass of the motor but involves increasing the thermal load and the need for deeper de-excitation. The second one involves increasing the number of pairs of magnetic poles, which reduces the mass, increases the internal diameter of the motor and shortens the construction of the fronts, but is associated with an increase in the motor operating frequency and increased power losses. Additionally, increasing the number of pairs of magnetic poles is often associated with reducing the number of slots per pole and the phase for technological reasons, which in turn leads to a greater share of spatial harmonics of the magnetomotive force in the air gap and may lead to the generation of higher power losses and higher operating temperatures of permanent magnets. The analysis is based on a simulation of the motor operation, modeled on the basis of laboratory tests of the prototype, while the car is driving in various driving cycles. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

53 pages, 2271 KiB  
Review
Exploring Smart Mobility Potential in Kinshasa (DR-Congo) as a Contribution to Mastering Traffic Congestion and Improving Road Safety: A Comprehensive Feasibility Assessment
by Antoine Kazadi Kayisu, Miroslava Mikusova, Pitshou Ntambu Bokoro and Kyandoghere Kyamakya
Sustainability 2024, 16(21), 9371; https://doi.org/10.3390/su16219371 - 29 Oct 2024
Cited by 3 | Viewed by 4405
Abstract
The urban landscape of Kinshasa, Democratic Republic of Congo, faces significant mobility challenges, primarily stemming from rapid urbanization, overpopulation, and outdated infrastructure. These challenges necessitate the exploration of modern smart mobility concepts to improve traffic flow, road safety, and sustainability. This study investigates [...] Read more.
The urban landscape of Kinshasa, Democratic Republic of Congo, faces significant mobility challenges, primarily stemming from rapid urbanization, overpopulation, and outdated infrastructure. These challenges necessitate the exploration of modern smart mobility concepts to improve traffic flow, road safety, and sustainability. This study investigates the potential of solutions such as Mobility-as-a-Service, car sharing, micro-mobility, Vehicle-as-a-Service, and electric vehicles in addressing these challenges. Through a comparative analysis of global implementations, this research identifies key success factors and barriers that inform the feasibility of integrating these solutions into Kinshasa’s unique socio-political and infrastructural context. The study presents a conceptual framework, supported by stakeholder analysis, for adapting these solutions locally. A detailed feasibility analysis considers technological, economic, social, environmental, and regulatory factors, offering a clear roadmap for implementation. Drawing on lessons from cities facing similar urban mobility challenges, the paper concludes with actionable recommendations and insights for policymakers and urban planners in Kinshasa. This research not only highlights the viability of smart mobility solutions in Kinshasa but also contributes to the broader discourse on sustainable urban development in rapidly growing cities. While smart mobility studies have largely focused on cities with developed infrastructure, there is a gap in understanding how these solutions apply to cities like Kinshasa with different infrastructural and socio-political contexts. Previous research has often overlooked the challenges of integrating smart mobility in rapidly urbanizing cities with underdeveloped transportation systems and financial constraints. This study fills that gap by offering a feasibility analysis tailored to Kinshasa, assessing smart mobility solutions for its traffic congestion and road safety issues. The smart mobility solutions studied—Mobility-as-a-Service (MaaS), car sharing, electric vehicles (EVs), and micro-mobility—were chosen for their ability to address Kinshasa’s key mobility challenges. MaaS reduces reliance on private vehicles, easing congestion and improving public transport. Car sharing offers affordable alternatives to vehicle ownership, essential in a city with income inequality. EVs align with sustainability goals by reducing emissions, while micro-mobility (bikes and e-scooters) improves last-mile connectivity, addressing public transit gaps. These solutions are adaptable to Kinshasa’s context and offer scalable, sustainable improvements for urban mobility. Full article
(This article belongs to the Special Issue Towards Safe Horizons: Redefining Mobility in Future Transport)
Show Figures

Figure 1

27 pages, 2409 KiB  
Article
Supply Chain Management in Smart City Manufacturing Clusters: An Alternative Approach to Urban Freight Mobility with Electric Vehicles
by Agnieszka Deja, Wojciech Ślączka, Magdalena Kaup, Jacek Szołtysek, Lyudmyla Dzhuguryan and Tygran Dzhuguryan
Energies 2024, 17(21), 5284; https://doi.org/10.3390/en17215284 - 24 Oct 2024
Cited by 2 | Viewed by 1955
Abstract
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and [...] Read more.
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and crowdshipping systems into smart CMMCs to improve urban logistics operations related to the distribution of products to consumers. The aim of this study is to improve the LMPD performance of these integrated systems and to provide alternative solutions for sustainable city logistics using the potential of crowdshipping and vehicle sharing fleets (VSFs) in the city logistics nodes (CLNs) of CMFMCs. The issues presented by the loading–unloading operations and sustainable crowdshipping scenarios for LMPD in CMFMCs are considered. This paper presents a new performance evaluation model for crowdshipping LMPD in CMFMCs using VSFs. The case study shows that the proposed model enables the analysis of LMPD performance in CMFMCs, taking into account their finite production capacity, and that it facilitates the planning of cargo turnover and the structure of VSFs consisting of e-bicycles, e-cars, and e-light commercial vehicles (e-LCVs). The model is verified based on a case study for sustainable LMPD scenarios using VSFs. The proposed model enables the planning of both short- and long-term logistics operations with the specified performance indicator of VSF usage in CMFMCs. The validity of using the integrated potential of crowdshipping and vehicle sharing services for LMPD under demand uncertainty in CMFMCs is discussed. This study should prove useful for decision-making and planning processes related to LMPD in CMFMCs and large cities. Full article
(This article belongs to the Special Issue Blockchain, IoT and Smart Grids Challenges for Energy II)
Show Figures

Figure 1

25 pages, 1767 KiB  
Article
Sustainable Business Models for Innovative Urban Mobility Services
by Adriano Alessandrini, Fabio Cignini and Fernando Ortenzi
World Electr. Veh. J. 2024, 15(9), 420; https://doi.org/10.3390/wevj15090420 - 14 Sep 2024
Viewed by 1501
Abstract
Any sharing mobility service aims to make urban mobility sustainable to help reduce environmental impacts and improve the quality of life for all in cities. Many transport services are not currently self-sustainable. The Life for Silver Coast (LifeSC) opened its mobility services on [...] Read more.
Any sharing mobility service aims to make urban mobility sustainable to help reduce environmental impacts and improve the quality of life for all in cities. Many transport services are not currently self-sustainable. The Life for Silver Coast (LifeSC) opened its mobility services on 22 May 2021 and offered electric mobility services during the summer for a few cities in Tuscany. E-bikes and e-scooters can be financially neutral, and even profitable, thanks to the low costs of the vehicles, but they only see a high utilization rate in winter. Shared electric cars, meanwhile, are not profitable. A new shared service that is viable must be profitable to become widely adopted and significantly contribute to sustainability. A few key characteristics have been identified, and one has been tested with a new business model that combines ride-sharing and car-sharing. The innovative Ride Sharing Algorithm (RSA) has been tested based on data from a potential city, Monterondo, where many commuters travel daily to Rome by train. The Italian census and local survey data allowed for the simulation of the scheduling of vehicle rides and an evaluation of the economic results, which could be positive if enough interest for such a system exists among the people, as at least 400 commuters from Monterotondo go to the train station daily in the morning and return in the afternoon. Such a transport demand would justify a new commercial sharing service by using the model tested with the RSA algorithm. Full article
Show Figures

Figure 1

25 pages, 1040 KiB  
Article
Optimal Vehicle-to-Grid Strategies for Energy Sharing Management Using Electric School Buses
by Ruengwit Khwanrit, Saher Javaid, Yuto Lim, Chalie Charoenlarpnopparut and Yasuo Tan
Energies 2024, 17(16), 4182; https://doi.org/10.3390/en17164182 - 22 Aug 2024
Cited by 10 | Viewed by 1590
Abstract
In today’s power systems, electric vehicles (EVs) constitute a significant factor influencing electricity dynamics, with their important role anticipated in future smart grid systems. An important feature of electric vehicles is their dual capability to both charge and discharge energy to/from their battery [...] Read more.
In today’s power systems, electric vehicles (EVs) constitute a significant factor influencing electricity dynamics, with their important role anticipated in future smart grid systems. An important feature of electric vehicles is their dual capability to both charge and discharge energy to/from their battery storage. Notably, the discharge capability enables them to offer vehicle-to-grid (V2G) services. However, most V2G research focuses on passenger cars, which typically already have their own specific usage purposes and various traveling schedules. This situation may pose practical challenges in providing ancillary services to the grid. Conversely, electric school buses (ESBs) exhibit a more predictable usage pattern, often deployed at specific times and remaining idle for extended periods. This makes ESBs more practical for delivering V2G services, especially when prompted by incentive price signals from grid or utility companies (UC) requesting peak shaving services. In this paper, we introduce a V2G energy sharing model focusing on ESBs in various schools in a single community by formulating the problem as a leader–follower game. In this model, the UC assumes the role of the leader, determining the optimal incentive price to offer followers for discharging energy from their battery storage. The UC aims to minimize additional costs from generating energy during peak demand. On the other hand, schools in a community possessing multiple ESBs act as followers, seeking the optimal quantity of discharged energy from their battery storage. They aim to maximize utility by responding to the UC’s incentive price. The results demonstrate that the proposed model and algorithm significantly aid the UC in reducing the additional cost of energy generation during peak periods by 36% compared to solely generating all electricity independently. Furthermore, they substantially reduce the utility bills for schools by up to 22.6% and lower the peak-to-average ratio of the system by up to 9.5%. Full article
(This article belongs to the Special Issue Advances in Battery Technologies for Electric Vehicles)
Show Figures

Figure 1

29 pages, 4718 KiB  
Article
Optimal Operation of an Industrial Microgrid within a Renewable Energy Community: A Case Study of a Greentech Company
by Matteo Fresia, Tommaso Robbiano, Martina Caliano, Federico Delfino and Stefano Bracco
Energies 2024, 17(14), 3567; https://doi.org/10.3390/en17143567 - 20 Jul 2024
Cited by 6 | Viewed by 1424
Abstract
The integration of renewable energy sources in the European power system is one of the main goals set by the European Union. In order to ease this integration, in recent years, Renewable Energy Communities (RECs) have been introduced that aim to increase the [...] Read more.
The integration of renewable energy sources in the European power system is one of the main goals set by the European Union. In order to ease this integration, in recent years, Renewable Energy Communities (RECs) have been introduced that aim to increase the exploitation of renewable energy at the local level. This paper presents an Energy Management System (EMS) for an industrial microgrid owned and operated by a greentech company located in the north of Italy. The company is a member of an REC. The microgrid is made of interconnected busbars, integrating photovoltaic power plants, a fleet of electric vehicles, including company cars and delivery trucks supporting Vehicle-to-Grid (V2G), dedicated charging stations, and a centralized battery energy storage system. The industrial site includes two warehouses, an office building, and a connection to the external medium-voltage network. The EMS is designed to optimize the operation of the microgrid and minimize the operating costs related to the sale and purchase of energy from the external network. Furthermore, as the company is a member of an REC, the EMS must try to follow a desired power exchange profile with the grid, suggested by the REC manager, with the purpose of maximizing the energy that is shared within the community and incentivized. The results demonstrate that, when minimizing only costs, local self-consumption is favored, leading to a Self-Sufficiency Rate (SSR) of 65.37%. On the other hand, when only the adherence to the REC manager’s desired power exchange profile is considered in the objective function, the SSR decreases to 56.43%, net operating costs increase, and the energy shared within the REC is maximized. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 5946 KiB  
Article
Optimizing Station Placement for Free-Floating Electric Vehicle Sharing Systems: Leveraging Predicted User Spatial Distribution from Points of Interest
by Qi Cao, Shunchao Wang, Bingtong Wang and Jingfeng Ma
ISPRS Int. J. Geo-Inf. 2024, 13(7), 233; https://doi.org/10.3390/ijgi13070233 - 1 Jul 2024
Viewed by 1786
Abstract
Rapid growth rate indicates that the free-floating electric vehicle sharing (FFEVS) system leads to a new carsharing idea. Like other carsharing systems, the FFEVS system faces significant regional demand fluctuations. In such a situation, the rental stations and charging stations should be constructed [...] Read more.
Rapid growth rate indicates that the free-floating electric vehicle sharing (FFEVS) system leads to a new carsharing idea. Like other carsharing systems, the FFEVS system faces significant regional demand fluctuations. In such a situation, the rental stations and charging stations should be constructed in high-demand areas to reduce the scheduling costs. However, the planning of the FFEVS system includes a series of aspects of rental stations and charging stations, such as the location, size, and number, which interact with each other. In this paper, we first provide a method for forecasting the demand for car sharing based on the land characteristics of Beijing FFEVS station catchment areas. Then, the multi-objective MILP model for planning FFEVS systems is developed, which considers the requirements of vehicle relocation and electric vehicle charging. Afterward, the capabilities of the proposed models are demonstrated by the real data obtained from Beijing, China. Finally, the sensitivity analysis of the model is made based on varying demand and subsidy levels. From the results, the proposed model can provide decision-makers with useful insights about the planning of FFEVS systems, which bring great benefits to formulating more rational policies. Full article
Show Figures

Figure 1

16 pages, 3801 KiB  
Article
Optimization Study of Fire Prevention Structure of Electric Vehicle Based on Bottom Crash Protection
by Jianhong Chen, Peng Xiong, Kai Li and Shan Yang
Fire 2024, 7(7), 209; https://doi.org/10.3390/fire7070209 - 22 Jun 2024
Cited by 3 | Viewed by 2516
Abstract
As the market share of electric vehicles continues to expand, fire accidents due to impacts from the power battery located at the bottom of the electric vehicles are receiving increasing attention. Lithium-ion batteries, as the mainstream choice of power battery for electric vehicles [...] Read more.
As the market share of electric vehicles continues to expand, fire accidents due to impacts from the power battery located at the bottom of the electric vehicles are receiving increasing attention. Lithium-ion batteries, as the mainstream choice of power battery for electric vehicles solving the problem that they are prone to thermal runaway due to damage when impacted, are the key to preventing and controlling fire accidents in electric vehicles. To address the protective problem of the bottom power battery of electric vehicles when it is impacted by road debris, two new types of sandwich structures with an enhanced regular hexagonal structure and semicircular arch structure as the core layer, respectively, are innovatively proposed in this article. They are used to protect the bottom power battery of electric vehicles and are compared with the traditional homogeneous protective structure in terms of protective performance. A local finite element simulation (FEM) of an electric vehicle containing the necessary components was established for simulation. Stress distribution, deformation, and energy absorption data for each component of an electric vehicle assembled with a protective structure when subjected to a bottom impact were obtained safely and cost-effectively. Three evaluation coefficients, namely, the cell shape variable (Bcmax), the protective effect parameter (ƒPE), and the total energy absorption of the structure (Ea), are proposed to compare and analyze the simulation results of different protective structures under equal mass conditions. The maximum values of the battery deformation of arched sandwich construction and reinforced honeycomb sandwich construction were 0.35 mm and 0.40 mm, respectively, which are much smaller than that of the maximum deformation of the battery under the protection of a homogeneous protective structure, which is 0.62 mm. Their protective effect parameters are 43.55 and 35.48, respectively, which proves that the optimization degree of the protective structure of the bottom of the electric vehicle after the application of the new structure is 35% or more. The total energy absorptions of the two structures are 91.77 J and 87.19 J, respectively, accounting for more than 70% of the kinetic energy in the system, which proves that the deformation of the sandwich structure can effectively absorb the kinetic energy of the collision between the road obstacle and the bottom of the car. The final results show that the arched sandwich structure showed the best impact resistance in the simulation, which can be used for the power battery’s protective structure on the electric vehicle’s bottom. This study fills a gap in local finite element modeling in electric vehicle crash simulations and provides ideas for fire prevention designs of electric vehicle structures. Full article
Show Figures

Figure 1

23 pages, 3708 KiB  
Review
Carsharing Worldwide: Case Studies on Carsharing Development in China, Europe, Japan, and the United States
by Yue Wang, Yuanfang Zhu, Chunyi Wei, Meilan Jiang and Toshiyuki Yamamoto
Sustainability 2024, 16(10), 3994; https://doi.org/10.3390/su16103994 - 10 May 2024
Cited by 4 | Viewed by 3009
Abstract
Carsharing has received considerable attention as a sustainable mobility paradigm. Various service designs and dynamic business environments have increased the decision complexity for the carsharing business. Therefore, carsharing operators require a tool for assessing business development from holistic perspectives. This research provides a [...] Read more.
Carsharing has received considerable attention as a sustainable mobility paradigm. Various service designs and dynamic business environments have increased the decision complexity for the carsharing business. Therefore, carsharing operators require a tool for assessing business development from holistic perspectives. This research provides a framework for outlining the requirements of the carsharing system with holistic perspectives of stakeholders being considered, as well as to derive assessment metrics for examining carsharing development. To create the framework, the system modeling tool, context diagram, was adopted to map out the interactions of externalities with the system and the requirements of the system. Eight assessment metrics: the market condition, business advantage, parking condition, electric vehicle deployment, self-serving configuration, vehicle reservation, vehicle maintenance, and pricing scheme, were eventually identified from the system modeling. From these dimensions, we review 24 carsharing cases from China, Europe, Japan, and the United States, and we summarize discrepancies among different marketplaces and some managerial insights on carsharing development, such as carsharing motivators and inhibitors, innovations in respect of different business backgrounds, approaches of increasing parking privileges, approaches of increasing electrifications, essential digital features, reservation regimes, methods of vehicle maintenances, and service pricing regimes. Full article
(This article belongs to the Special Issue System Design and Operation in Sustainable Transport Networks)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles
by Carlos Armenta-Déu
Sustainability 2024, 16(5), 2110; https://doi.org/10.3390/su16052110 - 3 Mar 2024
Cited by 1 | Viewed by 3197
Abstract
This work aims to study and analyze sustainability improvement in urban and road transportation by using a hybrid power system for electric vehicles consisting of a dual low- and high-rate operation lithium battery block and a fuel cell. The proposed power system reduces [...] Read more.
This work aims to study and analyze sustainability improvement in urban and road transportation by using a hybrid power system for electric vehicles consisting of a dual low- and high-rate operation lithium battery block and a fuel cell. The proposed power system reduces the energy consumption in electric vehicles, thus helping to enhance a sustainable process of environmental urban pollution and reducing or eliminating fossil fuel dependence, enhancing global sustainability. In this configuration, the high-rate lithium battery powers the electric vehicle in high-power-demand processes like acceleration mode or on an uphill road; the low-rate battery operates at a low output power range, servicing the auxiliary systems and low power loads, and the fuel cell supplies energy in intermediate-power-demand conditions, normal driving mode, constant velocity, or flat and downhill terrain. The dual power system improves global efficiency, since every power unit operates optimally, depending on the driving conditions. Power sharing optimizes the lithium battery performance and fuel cell capacity, minimizing the size and weight of each energy system and enlarging the driving range. A comparative study between different lithium battery configurations and fuel cells shows an efficiency improvement of 31.4% for the hybrid dual-battery block and fuel cell operating in low, high, and intermediate output power ranges, respectively. The study is based on a simulation process recreating current driving conditions for electric cars in urban, peripheral, and intercity routes. An alternative solution consisting of a hybrid system, fuel cell, and high-rate lithium battery produces a 29% power gain. Full article
(This article belongs to the Special Issue Hybrid Energy System in Electric Vehicles)
Show Figures

Figure 1

19 pages, 3260 KiB  
Article
Managing BEV Charge to Obtain a Positive Impact on a National Power System
by Stefano Barsali, Massimo Ceraolo, Gianluca Pasini and Davide Poli
Energies 2024, 17(2), 348; https://doi.org/10.3390/en17020348 - 10 Jan 2024
Cited by 3 | Viewed by 1430
Abstract
This paper’s research question is to evaluate the potential impact of large numbers of battery electric vehicles (BEVs) on the future electric grid, and whether the flexibility of BEV charging can induce enough system benefits to remunerate BEV users for the change in [...] Read more.
This paper’s research question is to evaluate the potential impact of large numbers of battery electric vehicles (BEVs) on the future electric grid, and whether the flexibility of BEV charging can induce enough system benefits to remunerate BEV users for the change in their recharging pattern. The considered scenario refers to the Italian situation and what might occur through the year 2040, where a share of BEV stock of 40% can be foreseen, as well as significant increases in PV and wind generation. Although this study is focused on Italy, its results are applicable, with minor differences, to several EU countries. This paper first shows that the future impact of increasing penetration of BEVs appears to be compatible with the expected growth of generation from renewable energy sources (RES) and the corresponding reduction in fossil fuel-based generation. It also gives an estimate of the CO2 emission reduction resulting from these changes, considering an unmanaged BEV charge profile and two different managed profiles that shift the car’s charging period to hours of the day when they have no negative impact on the grid and maximize the utilization of RES. Finally, it shows an evaluation of the economic benefits of displacing private car charging ranging from 4 to 10 cEUR/kWh, which could be used as tariff incentives to stimulate this displacing in recharging time. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

21 pages, 6049 KiB  
Article
Comparison of Feedback Field-Weakening Techniques for Synchronous Machines with Permanent Magnets
by Anton Dianov
Vehicles 2023, 5(4), 1671-1691; https://doi.org/10.3390/vehicles5040091 - 13 Nov 2023
Cited by 6 | Viewed by 2543
Abstract
In recent decades the market share of electrical cars has increased significantly, which has paved the way for the development of automotive electronics. Some of the most important parts of modern electrical vehicles are motor drives, which are used in car training and [...] Read more.
In recent decades the market share of electrical cars has increased significantly, which has paved the way for the development of automotive electronics. Some of the most important parts of modern electrical vehicles are motor drives, which are used in car training and mechanization. Electrical drives are used in powertrains for traction, in air conditioning systems to cool cars and their parts, in doors for opening/closing as well as window movements, etc. The most popular motor type in electrical vehicles is synchronous motors with permanent magnets, which are compact and provide high torque. However, these motors require the development of control systems for proper operation. This system has to have the capacity to implement several state-of-the-art techniques, which can fully utilize motor potential, increase its efficiency, and decrease battery usage. One of these techniques is field-weakening, which overcomes speed limitations due to a lack of supply voltage and increases the motor’s speed operation range. This paper discusses the most popular approaches to field-weakening, including a new method proposed by the author. It considers both the pros and cons of each approach and provides recommendations for their usage. After that, this manuscript demonstrates the experimental results of each field-weakening technique obtained in the same motor drive, compares their performance, and discusses their strengths and weaknesses. Finally, the experimental part demonstrates that the proposed field-weakening approach demonstrates similar dynamics in load transients but provides 10 times less load to the microcontroller. Full article
Show Figures

Figure 1

Back to TopTop