Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = elastomeric yarn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8008 KiB  
Article
Real-Time Detection and Localization of Force on a Capacitive Elastomeric Sensor Array Using Image Processing and Machine Learning
by Peter Werner Egger, Gidugu Lakshmi Srinivas and Mathias Brandstötter
Sensors 2025, 25(10), 3011; https://doi.org/10.3390/s25103011 - 10 May 2025
Viewed by 709
Abstract
Soft and flexible capacitive tactile sensors are vital in prosthetics, wearable health monitoring, and soft robotics applications. However, achieving accurate real-time force detection and spatial localization remains a significant challenge, especially in dynamic, non-rigid environments like prosthetic liners. This study presents a real-time [...] Read more.
Soft and flexible capacitive tactile sensors are vital in prosthetics, wearable health monitoring, and soft robotics applications. However, achieving accurate real-time force detection and spatial localization remains a significant challenge, especially in dynamic, non-rigid environments like prosthetic liners. This study presents a real-time force point detection and tracking system using a custom-fabricated soft elastomeric capacitive sensor array in conjunction with image processing and machine learning techniques. The system integrates Otsu’s thresholding, Connected Component Labeling, and a tailored cluster-tracking algorithm for anomaly detection, enabling real-time localization within 1 ms. A 6×6 Dragon Skin-based sensor array was fabricated, embedded with copper yarn electrodes, and evaluated using a UR3e robotic arm and a Schunk force-torque sensor to generate controlled stimuli. The fabricated tactile sensor measures the applied force from 1 to 3 N. Sensor output was captured via a MUCA breakout board and Arduino Nano 33 IoT, transmitting the Ratio of Mutual Capacitance data for further analysis. A Python-based processing pipeline filters and visualizes the data with real-time clustering and adaptive thresholding. Machine learning models such as linear regression, Support Vector Machine, decision tree, and Gaussian Process Regression were evaluated to correlate force with capacitance values. Decision Tree Regression achieved the highest performance (R2=0.9996, RMSE=0.0446), providing an effective correlation factor of 51.76 for force estimation. The system offers robust performance in complex interactions and a scalable solution for soft robotics and prosthetic force mapping, supporting health monitoring, safe automation, and medical diagnostics. Full article
Show Figures

Figure 1

14 pages, 2613 KiB  
Article
Development of Knitted Compression Covers for Amputated Limbs
by Daiva Mikucioniene, Liudmyla Halavska, Ginta Laureckiene, Liudmyla Melnyk, Svitlana Arabuli and Rimvydas Milašius
Fibers 2024, 12(10), 80; https://doi.org/10.3390/fib12100080 - 27 Sep 2024
Viewed by 911
Abstract
Compression therapy can be successfully applied to the treatment of amputated limbs. Compression is known to speed healing and reduce the appearance of complex scars. This is particularly relevant as the number of amputations increases, especially during times of war, such as the [...] Read more.
Compression therapy can be successfully applied to the treatment of amputated limbs. Compression is known to speed healing and reduce the appearance of complex scars. This is particularly relevant as the number of amputations increases, especially during times of war, such as the current war in Ukraine. For the research presented in this article, compression knits of two pattern repeats and twelve structural variations each were created. We investigated how the compression generated by the knit is influenced by the main factors which theoretically could have an effect: knitting pattern, density of loops, speed of the wheel supplying elastomeric inlay-yarn into the knitting zone, and elongation resulting from the difference between the knitted limb cover and limb circumference. It was found that in the area of low elongations (up to 50%) of the investigated elastomeric knits, the speed of supply of the inlay-yarn does not have a significant influence on the compression. However, the effect of loop density and knitting elongation on the generated compression is significant and manifests linearly. In addition, the established equations can be used for compression prediction and knitting design according to the required compression class. Full article
Show Figures

Figure 1

23 pages, 3558 KiB  
Review
Classification, Structure and Construction of Functional Orthopaedic Compression Knits for Medical Application: A Review
by Daiva Mikucioniene, Liudmyla Halavska, Liudmyla Melnyk, Rimvydas Milašius, Ginta Laureckiene and Svitlana Arabuli
Appl. Sci. 2024, 14(11), 4486; https://doi.org/10.3390/app14114486 - 24 May 2024
Cited by 6 | Viewed by 2407
Abstract
Analysis of functional products for medical textiles indicates that there are plenty of different classifications of this group. Requirements for compression generated by compression garments differ depending on the application area, and even more, sometimes are contradictory and can be fulfilled in very [...] Read more.
Analysis of functional products for medical textiles indicates that there are plenty of different classifications of this group. Requirements for compression generated by compression garments differ depending on the application area, and even more, sometimes are contradictory and can be fulfilled in very different ways. The effectiveness of such products depends on mechanical and physical properties as well as psychological barriers. Currently, there is no uniform classification of compression classes, furthermore, there is no uniform standard, test method or technic for evaluation of the product’ compression. Knitted compression fabrics are made by knitting together at least two types of yarns: a ground yarn which ensures stiffness and thickness and an elastomeric yarn which generates compression. Knitted compression products can be produced on both flat and circular knitting machines, though parameters and usage of production are different. Additional elements used in the structure of the compression product can significantly change the generated compression. Purposes and number of additional details depend on the application and functionality of the compression support, nevertheless, all rigid elements must be taken into account at the designing stage. Additional functionality like antimicrobial activity or thermal therapy can also be provided for compression knits. It is highly important to ensure the longevity of all functional properties. Full article
(This article belongs to the Special Issue Recent Advances in the Prevention and Rehabilitation of ACL Injuries)
13 pages, 3720 KiB  
Article
Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance
by Muh Amdadul Hoque, Emily Petersen and Xiaomeng Fang
Actuators 2023, 12(3), 129; https://doi.org/10.3390/act12030129 - 18 Mar 2023
Cited by 4 | Viewed by 17980
Abstract
Thin fiber-shaped pneumatic artificial muscle (PAM) can generate contractile motions upon stimulation, and it is well known for its good compliance, high weight-to-power ratio, resemblance to animal muscle movements, and, most importantly, the capability to be integrated into fabrics and other textile forms [...] Read more.
Thin fiber-shaped pneumatic artificial muscle (PAM) can generate contractile motions upon stimulation, and it is well known for its good compliance, high weight-to-power ratio, resemblance to animal muscle movements, and, most importantly, the capability to be integrated into fabrics and other textile forms for wearable devices. This fiber-shaped device, based on McKibben technology, consists of an elastomeric bladder that is wrapped around by a braided sleeve, which transfers radial expansion into longitudinal contraction due to the change in the sleeve’s braiding angle while being inflated. This paper investigates the effect of material properties on fiber-shaped PAM’s behavior, including the braiding yarn and bladder’s dimensional and mechanical properties. A range of samples with combinations of yarn and bladder parameters were developed and characterized. A robust fabrication process verified through several calibration and control experiments of PAM was applied, which ensured a more accurate characterization of the actuators. The results demonstrate that material properties, such as yarn stiffness, yarn diameter, bladder diameter, and bladder hardness, have significant effects on PAMs’ deformation strains and forces generated. The findings can serve as fundamental guidelines for the future design and development of fiber-shaped pneumatic actuators. Full article
Show Figures

Figure 1

18 pages, 4430 KiB  
Article
Effect of Geometric Arrangement on Mechanical Properties of 2D Woven Auxetic Fabrics
by Arif Ali Shah, Muhmmad Shahid, Naveed Ahmad Siddiqui, Yasir Nawab and Mazhar Iqbal
Textiles 2022, 2(4), 606-623; https://doi.org/10.3390/textiles2040035 - 21 Nov 2022
Cited by 5 | Viewed by 2427
Abstract
Textiles-fibres, yarns and fabrics are omnipresent in our daily lives, with unique mechanical properties that fit the design specifications for the tasks for which they are designed. The development of yarns and fabrics with negative Poisson’s ratio (NPR) is an area of current [...] Read more.
Textiles-fibres, yarns and fabrics are omnipresent in our daily lives, with unique mechanical properties that fit the design specifications for the tasks for which they are designed. The development of yarns and fabrics with negative Poisson’s ratio (NPR) is an area of current research interest due to their potential for use in high performance textiles (e.g., military, sports, etc.). The unique braiding technology of interlacement for preparation of braided helically wrapped yarns with NPR effect with later development of auxetic woven fabric made it possible to avoid the slippage of the wrapped component from the core. The applied geometrical configuration and NPR behaviour of the braided helical yarn structure with seven different angles comprising of monofilament elastomeric polyurethane (PU) core with two wrap materials that include multifilament ultra-high molecular weight polyethylene (UHMWPE) and polyethylene terephthalate (PET) fibres were investigated and analysed. The mechanically stable 2D woven textile auxetic fabrics (AF) with various weave patterns such as 2/2 matt and 3/1 twill were developed from the auxetic yarn with PU elastomer core having maximum NPR effect of −1.70 using lower wrapped angle of 9° to study and compare their mechanical responses. The auxetic yarn was used in weft direction and multifilament UHMWPE yarn in warp direction, using semi-automatic loom. Auxeticity of AF was analysed and its various mechanical properties such tensile strength, impact energy absorption, in-plane, and out-of-plane auxeticity, and puncture resistance were studied. Higher energy absorption of 84 Nm for matt fabric was seen compared to twill fabric having an energy of 65 Nm. The puncture resistance capability of matt fabric was better than twill fabric. While twill fabric exhibited better auxetic effect in both in-plane and out-of-plane mode compared to matt fabric. In short, both the twill and matt design AF’s showed unique characteristics which are beneficial in making various protective textiles such as protective helmets, bullet proof shields, cut resistance gloves, blast resistant curtains, and puncture tolerant elastomeric composites. Full article
(This article belongs to the Special Issue Textile Materials: Structure–Property Relationship)
Show Figures

Figure 1

15 pages, 3526 KiB  
Article
Effects of Braid Angle and Material Modulus on the Negative Poisson’s Ratio of Braided Auxetic Yarns
by Arif A. Shah, Muhammad Shahid, John G. Hardy, Naveed A. Siddiqui, Andrew R. Kennedy, Iftikhar H. Gul, Shafi Ur Rehman and Yasir Nawab
Crystals 2022, 12(6), 781; https://doi.org/10.3390/cryst12060781 - 27 May 2022
Cited by 4 | Viewed by 3399
Abstract
Fibers and textiles are ubiquitous in our daily lives, with mechanical properties that match the design specifications for the task for which they are intended; the development of yarns with a negative Poisson’s ratio (NPR) is a hot topic of current research, owing [...] Read more.
Fibers and textiles are ubiquitous in our daily lives, with mechanical properties that match the design specifications for the task for which they are intended; the development of yarns with a negative Poisson’s ratio (NPR) is a hot topic of current research, owing to their potential for use in high-performance textiles (e.g., military, sports, etc.). This study described a simple approach to constructing braided, helically interlaced yarns. When a torque is applied, the yarns prevent the wrapped component from dislodging from the core. The geometry and auxetic behavior of the braided helical structure was analyzed for two different combinations of core materials with similar wrap materials and different braiding angles. Two elastomeric materials (polyurethane (PU) and polyester) served as monofilament cores, while two stiffer multifilament wrap yarns (ultrahigh molecular weight polyethylene (UHMWPE) and polyethylene terephthalate (PET)) served as wrap yarns. In addition, the behavior of yarns braided at seven different angles was investigated to determine the materials’ response to the applied braided configuration’s NPR. The NPR was influenced by the core and wrap materials used and the braiding angle. The NPR value was greater for a core comprising more excellent elasticity (e.g., PU versus polyester); a smaller wrap angle and a slower braiding speed also led to a higher NPR value. The maximum NPR value of −1.70 was obtained using a PU core wrapped at a 9° angle and a strain value of 0.5. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

17 pages, 6673 KiB  
Article
A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study
by Milad Alizadeh-Meghrazi, Gurjant Sidhu, Saransh Jain, Michael Stone, Ladan Eskandarian, Amirali Toossi and Milos R. Popovic
Sensors 2022, 22(2), 666; https://doi.org/10.3390/s22020666 - 15 Jan 2022
Cited by 27 | Viewed by 5552
Abstract
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with [...] Read more.
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with potential skin irritations and discomfort. Alternative dry solid metallic electrodes also face long-term usability and comfort challenges due to their inflexible and non-breathable structures. This is critical when the anatomy of the targeted body region is variable (e.g., residual limbs of individuals with amputation), and conformal contact is essential. In this study, textile electrodes were developed, and their performance in recording EMG signals was compared to gel electrodes. Additionally, to assess the reusability and robustness of the textile electrodes, the effect of 30 consumer washes was investigated. Comparisons were made between the signal-to-noise ratio (SNR), with no statistically significant difference, and with the power spectral density (PSD), showing a high correlation. Subsequently, a fully textile sleeve was fabricated covering the forearm, with 14 textile electrodes. For three individuals, an artificial neural network model was trained, capturing the EMG of 7 distinct finger movements. The personalized models were then used to successfully control a myoelectric prosthetic hand. Full article
(This article belongs to the Special Issue Smart Textiles Technologies and Wearable Sensors)
Show Figures

Figure 1

23 pages, 9197 KiB  
Article
Effect of Stretching on Thermal Behaviour of Electro-Conductive Weft-Knitted Composite Fabrics
by Md. Reazuddin Repon, Ginta Laureckiene and Daiva Mikucioniene
Polymers 2022, 14(2), 249; https://doi.org/10.3390/polym14020249 - 8 Jan 2022
Cited by 4 | Viewed by 2595
Abstract
This experiment presents a study carried out on the electric charge passing textiles for heat production in compression weft-knitted composite fabrics used for medical purposes. The aim was to flourish compression support of knitted structure with integrated highly sensitive metal (silver) coated polyamide [...] Read more.
This experiment presents a study carried out on the electric charge passing textiles for heat production in compression weft-knitted composite fabrics used for medical purposes. The aim was to flourish compression support of knitted structure with integrated highly sensitive metal (silver) coated polyamide multifilament yarns and to evaluate its heat origination attributes after stretching in different levels as well as changes of the temperature during the time. A flat double needle-bed knitting machine was utilized to fabricate the selected specimens together with elastomeric inlay-yarn incorporated into the structure for compression generation and silver coated polyamide yarn laid as ground yarn in a plated structure for heat generation. Six different variants depending on the metal coated yarn amount used and the fabric structure along with two types of the conductive yarn linear density were fabricated for this research work. Scanning electron microscope (SEM) images were preoccupied to show the morphology of conductive yarn and thermal pictures were captured to study the evenness of the heat over the surface of composite fabrics depending on conductive yarn distribution in the pattern repeat. The temperature profile of fabricated composite fabrics and comparison of the heat generation by specimens after stretching in different levels was studied Full article
(This article belongs to the Special Issue Conducting Polymer Nanocomposites and Their Potential Applications)
Show Figures

Figure 1

11 pages, 2481 KiB  
Article
Development of an Elastic, Electrically Conductive Coating for TPU Filaments
by Henriette Grellmann, Mathis Bruns, Felix Michael Lohse, Iris Kruppke, Andreas Nocke and Chokri Cherif
Materials 2021, 14(23), 7158; https://doi.org/10.3390/ma14237158 - 24 Nov 2021
Cited by 3 | Viewed by 2922
Abstract
Electrically conductive filaments are used in a wide variety of applications, for example, in smart textiles and soft robotics. Filaments that conduct electricity are required for the transmission of energy and information, but up until now, most electrically conductive fibers, filaments and wires [...] Read more.
Electrically conductive filaments are used in a wide variety of applications, for example, in smart textiles and soft robotics. Filaments that conduct electricity are required for the transmission of energy and information, but up until now, most electrically conductive fibers, filaments and wires offer low mechanical elongation. Therefore, they are not well suited for the implementation into elastomeric composites and textiles that are worn close to the human body and have to follow a wide range of movements. In order to overcome this issue, the presented study aims at the development of electrically conductive and elastic filaments based on a coating process suited for multifilament yarns made of thermoplastic polyurethane (TPU). The coating solution contains TPU, carbon nanotubes (CNT) and N-Methyl-2-pyrrolidone (NMP) with varied concentrations of solids and electrically conductive particles. After applying the coating to TPU multifilament yarns, the mechanical and electrical properties are analyzed. A special focus is given to the electromechanical behavior of the coated yarns under mechanical strain loading. It is determined that the electrical conductivity is maintained even at elongations of up to 100%. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites)
Show Figures

Figure 1

22 pages, 11758 KiB  
Article
The Influence of Electro-Conductive Compression Knits Wearing Conditions on Heating Characteristics
by Md. Reazuddin Repon, Ginta Laureckiene and Daiva Mikucioniene
Materials 2021, 14(22), 6780; https://doi.org/10.3390/ma14226780 - 10 Nov 2021
Cited by 12 | Viewed by 3207
Abstract
Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed [...] Read more.
Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics. Full article
Show Figures

Figure 1

16 pages, 5593 KiB  
Article
Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band
by Yong Wang, Stuart Gordon, Thomas Baum and Zhenzhen Xu
Polymers 2020, 12(2), 399; https://doi.org/10.3390/polym12020399 - 10 Feb 2020
Cited by 11 | Viewed by 4519
Abstract
Elastomeric, conductive composite yarns have recently received attention around the opportunity for them to offer special protective fields. A straightforward approach for fabricating tri-component elastic-conductive composite yarns (t-ECCYs) containing stainless steel wire (SSW) was proposed previously. This work mainly focuses on the electromagnetic [...] Read more.
Elastomeric, conductive composite yarns have recently received attention around the opportunity for them to offer special protective fields. A straightforward approach for fabricating tri-component elastic-conductive composite yarns (t-ECCYs) containing stainless steel wire (SSW) was proposed previously. This work mainly focuses on the electromagnetic shielding effectiveness (EMSE) of weft-stretchable woven fabric containing t-ECCY over the X-band under different testing conditions, e.g., single step-by-step elongation, cyclic stretch and lamination events. Results showed that a woven cotton fabric with weft yarn of t-ECCY not only exhibited superior weft stretch-ability to a higher elongation (>40%) compared with a pure cotton control but also had an acceptable 15-cyclic stability with 80% shape recovery retention. The t-ECCY weft fabric was effective in shielding electromagnetic radiation, and its EMSE was also enhanced at elevated elongations during stretch at parallel polarization of EM waves. There was also no decay in EMSE before and after the t-ECCY fabric was subject to 15 stretch cycles at extension of 20%. In addition, a 90° by 90° cross lamination of t-ECCY fabric remarkably improved the EMSE compared to a 0°/90° one. The scalable fabrication strategy and excellent EMSE seen in t-ECCY-incorporated fabrics represent a significant step forward in protective fields. Full article
(This article belongs to the Special Issue Functional Polymer Composites)
Show Figures

Graphical abstract

14 pages, 2585 KiB  
Article
Fabric Circuit Board Connecting to Flexible Sensors or Rigid Components for Wearable Applications
by Qiao Li, Ziyuan Ran, Xin Ding and Xi Wang
Sensors 2019, 19(17), 3745; https://doi.org/10.3390/s19173745 - 29 Aug 2019
Cited by 20 | Viewed by 5201
Abstract
Electronic textiles demand a new family of flexible circuit boards in the construction of fiber or fiber assemblies. This paper presents a stretchable woven fabric circuit board (FCB) with permanent as well as detachable electrical connections to sensors or other wearable electronics components. [...] Read more.
Electronic textiles demand a new family of flexible circuit boards in the construction of fiber or fiber assemblies. This paper presents a stretchable woven fabric circuit board (FCB) with permanent as well as detachable electrical connections to sensors or other wearable electronics components. The woven FCB was created by integrating conductive yarns into an elastic woven fabric. Permanent connection was designed between the conductive tracks and flexible sensors; detachable connection was achieved by the helical structure of conductive yarns wrapping around the rigid component electrode encapsulated within elastomeric layer. The developed FCB, with its connections to flexible sensors or rigid components, is porous, flexible, and capable of stretching to 30% strain. The woven FCB with permanent connection to temperature sensors has a large fatigue life of more than 10,000 cycles while maintaining constant electrical resistance due to crimped configurations of the conductive track in the elastic fabric substrate and stable contact resistance. A prototype of the FCB assembly, with independent light-emitting diodes electrically linked and mechanically supported by the woven FCB, is also demonstrated for wearable applications. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

19 pages, 810 KiB  
Article
Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties
by Ozgur Atalay and William Richard Kennon
Sensors 2014, 14(3), 4712-4730; https://doi.org/10.3390/s140304712 - 7 Mar 2014
Cited by 108 | Viewed by 12057
Abstract
This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor [...] Read more.
This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

14 pages, 1282 KiB  
Article
Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties
by Ozgur Atalay, William Richard Kennon and Muhammad Dawood Husain
Sensors 2013, 13(8), 11114-11127; https://doi.org/10.3390/s130811114 - 21 Aug 2013
Cited by 140 | Viewed by 18032
Abstract
The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing [...] Read more.
The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop