Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = elastomer designed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2280 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

12 pages, 2164 KiB  
Article
Preparation of Inverse-Loaded MWCNTs@Fe2O3 Composites and Their Impact on Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Shuo Pang, Yihao Lv, Shuxia Liu, Chao Sang, Bixin Jin and Yunjun Luo
Polymers 2025, 17(15), 2080; https://doi.org/10.3390/polym17152080 - 30 Jul 2025
Viewed by 153
Abstract
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant [...] Read more.
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional Fe2O3 gel framework through a controllable sol-gel process followed by low-temperature calcination. This advanced material architecture not only overcomes the traditional limitations of MWCNTs but also creates abundant Fe-C interfacial sites that synergistically catalyze the thermal decomposition of glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE). Systematic characterization reveals that the MWCNTs@Fe2O3 nanocomposite delivers exceptional catalytic performance for azido group decomposition, achieving a >200% enhancement in decomposition rate compared to physical mixtures while simultaneously improving the mechanical strength of GAP-ETPE-based propellants by 15–20%. More importantly, this work provides fundamental insights into the rational design of advanced carbon-based nanocomposites for next-generation energetic materials, opening new avenues for the application of nanocarbons in propulsion systems. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

18 pages, 20927 KiB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 283
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 552
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
Effect of Rubber Granulate Content on the Compressive Strength of Concrete for Industrial Vibration-Isolating Floors
by Maciej Gruszczyński, Alicja Kowalska-Koczwara and Tadeusz Tatara
Materials 2025, 18(13), 3134; https://doi.org/10.3390/ma18133134 - 2 Jul 2025
Viewed by 332
Abstract
Ensuring vibration and impact isolation is crucial in industrial flooring design, especially where vibroacoustic comfort is a priority. Excessive vibrations can negatively affect sensitive equipment, structural durability, and personnel comfort. With the rise of automation and high-precision processes, effective vibration control in floor [...] Read more.
Ensuring vibration and impact isolation is crucial in industrial flooring design, especially where vibroacoustic comfort is a priority. Excessive vibrations can negatively affect sensitive equipment, structural durability, and personnel comfort. With the rise of automation and high-precision processes, effective vibration control in floor systems is increasingly important. Traditional solutions like elastomer pads, rubber mats, or floating floors often have high installation costs, complex construction, and long-term degradation. Therefore, there is growing interest in integrated, durable alternatives that can be incorporated directly into concrete structures. One such approach uses rubber granulates from recycled tires as a modifying additive in cementitious composites. This can improve damping, enhance impact energy absorption, and reduce the need for external insulating layers. However, adding rubber particles to concrete may affect its compressive strength, a key design parameter. This article presents experimental research on concrete and mortar mixtures modified with rubber granulates for vibration-isolating industrial floor systems. The proposed solution combines a conventional concrete subbase with a rubber-enhanced mortar layer, forming a composite system to mitigate vibration transmission. Laboratory tests and real-scale verification under industrial conditions showed that the slab with hybrid EPDM/SBR rubber granulate mortar achieved the highest vibration-damping efficiency, reducing vertical acceleration by 58.6% compared to the reference slab. The EPDM-only mortar also showed a significant reduction of 45.5%. Full article
Show Figures

Figure 1

17 pages, 2109 KiB  
Article
Three-Dimensional Manufacturing of Mandibular Total Edentulous Simulation Model for In Vitro Studies—Concept and Validation
by Joana Mendes, Maria Cristina Manzanares-Céspedes, José L. Esteves, João Fonseca, Lara Coelho and José Manuel Mendes
Polymers 2025, 17(13), 1820; https://doi.org/10.3390/polym17131820 - 30 Jun 2025
Viewed by 275
Abstract
Background: Stereolithography is a rapid prototyping and 3D printing technique that creates solid three-dimensional models. An accurate and functional 3D model using stereolithography is invaluable in scientific research, particularly in studies involving edentulous patients. Additive manufacture and CAD systems help achieve accurate measurements [...] Read more.
Background: Stereolithography is a rapid prototyping and 3D printing technique that creates solid three-dimensional models. An accurate and functional 3D model using stereolithography is invaluable in scientific research, particularly in studies involving edentulous patients. Additive manufacture and CAD systems help achieve accurate measurements and procedures and be easily replicated by lowering human error mistakes. The main objective of this study was to develop an in vitro simulation model with a reduced alveolar ridge with the same characteristics as mandibular edentulous patients using stereolithography. Methods: A mandibular model with a resorbed mandibular crest was scanned, and the STL model was aligned to the XYZ reference system. A reduction in the alveolar ridge corresponding to the mandibular mucosa of an edentulous patient was achieved. A negative model also derived from the original model was made to ensure the space for oral simulation material. A dimensional stability test was performed to validate the model. Results: The maximal mean displacement of the model was 0.015 mm, and the minimal mean displacement was 0.004 mm. The oral mucosa had a displacement of approximately 1.6 mm. Conclusions: An in vitro 3D simulation model of a complete edentulous patient mucosa was achieved. Full article
(This article belongs to the Special Issue Applications of 3D Printing for Polymers, 3rd Edition)
Show Figures

Figure 1

18 pages, 2140 KiB  
Article
Additive Manufacturing of Thermoset Elastomer–Thermoplastic Composites Using Dual-Extrusion Printing
by Nathalia Diaz Armas, Geet Bhandari, Stiven Kodra, Jinde Zhang, David Kazmer and Joey Mead
Polymers 2025, 17(13), 1800; https://doi.org/10.3390/polym17131800 - 28 Jun 2025
Viewed by 614
Abstract
This work investigated the 3D printing of fully compounded thermoset elastomers using a custom-designed printer capable of processing both thermoplastics and elastomers containing fillers and specific cure packages. The adhesion strength between selected thermoset elastomers and thermoplastic combinations was studied, and the influence [...] Read more.
This work investigated the 3D printing of fully compounded thermoset elastomers using a custom-designed printer capable of processing both thermoplastics and elastomers containing fillers and specific cure packages. The adhesion strength between selected thermoset elastomers and thermoplastic combinations was studied, and the influence of key process parameters on adhesion was evaluated. The results showed that interfacial bonding was favored by the proximity of solubility parameters, the amorphous morphology of the thermoplastic, and increased chain mobility at the processing temperature. Rubber processing parameters significantly influenced adhesion, showing that curing at a lower temperature for a longer duration yielded better results than shorter, higher-temperature cures. Elemental analysis revealed the presence of rubber-specific components on the thermoplastic surface, suggesting interfacial migration. These findings contribute to advancing multi-material 3D printing by enabling the integration of rubber-like materials with thermoplastics, expanding opportunities for applications in high-temperature and chemically demanding environments. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

29 pages, 13225 KiB  
Review
Tuneable Lenses Driven by Dielectric Elastomers: Principles, Structures, Applications, and Challenges
by Zhuoqun Hu, Meng Zhang, Zihao Gan, Jianming Lv, Zhuoyu Lin and Huajie Hong
Appl. Sci. 2025, 15(12), 6926; https://doi.org/10.3390/app15126926 - 19 Jun 2025
Viewed by 373
Abstract
As the core element of adaptive optical systems, tuneable lenses are essential in adaptive optics. Dielectric elastomer-driven tuneable lenses offer significant advantages in tuning range, response speed, and lightweight design compared to traditional mechanical zoom lenses. This paper systematically reviews the working mechanisms [...] Read more.
As the core element of adaptive optical systems, tuneable lenses are essential in adaptive optics. Dielectric elastomer-driven tuneable lenses offer significant advantages in tuning range, response speed, and lightweight design compared to traditional mechanical zoom lenses. This paper systematically reviews the working mechanisms and research advancements of these lenses. Firstly, based on the two driving modes of deformation zoom and displacement zoom, the tuning principle of dielectric elastomer-driven tuneable lenses is analysed in depth. Secondly, the design methodology and current status of the research are systematically elaborated for four typical structures: monolithic, composite, array, and metalenses. Finally, the potential applications of this technology are discussed in the fields of auto-zoom imaging, microscopic imaging, augmented reality display, and infrared imaging, along with an analysis of the key technological challenges faced by this technology, such as material properties, modelling and control, preparation processes, and optical performance. This paper aims to provide a systematic reference for researchers in this field and to help promote the engineering application of dielectric elastomer tuneable lens technology. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Fiber-Coupled Multipass NIR Sensor for In Situ, Real-Time Water Vapor Outgassing Monitoring
by Logan Echeveria, Yue Hao, Michael C. Rushford, Gerardo Chavez, Sean Tardif, Allan Chang, Sylvie Aubry, Maxwell Murialdo, J. Chance Carter, Brandon Foley, Pratanu Roy, S. Roger Qiu and Tiziana Bond
Sensors 2025, 25(12), 3824; https://doi.org/10.3390/s25123824 - 19 Jun 2025
Viewed by 518
Abstract
This work presents the recent development of a fiber-coupled multipass near-infrared (NIR) gas sensor used to monitor water vapor desorption of small material coupons. The gas sensor design employs a White cell topology to maximize the optical path length over a compact, hand-size [...] Read more.
This work presents the recent development of a fiber-coupled multipass near-infrared (NIR) gas sensor used to monitor water vapor desorption of small material coupons. The gas sensor design employs a White cell topology to maximize the optical path length over a compact, hand-size footprint. Water vapor concentrations are quantified over a large dynamic range by simultaneously applying wavelength modulation and tunable diode laser absorption spectroscopy techniques. A custom headspace optimized for material desorption experiments is assembled using commercially available vacuum chamber components. We provide in situ measurements of water vapor desorption from two geometries of the industrially important silicone elastomer Sylgard-184 as a case study for sensor viability. To corroborate the results, the gas sensor data are compared to numerical simulations based on a triple-mode diffusion–sorption model, consisting of Henry, Langmuir, and Pooling modes. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

22 pages, 9995 KiB  
Article
Skin-Inspired Magnetoresistive Tactile Sensor for Force Characterization in Distributed Areas
by Francisco Mêda, Fabian Näf, Tiago P. Fernandes, Alexandre Bernardino, Lorenzo Jamone, Gonçalo Tavares and Susana Cardoso
Sensors 2025, 25(12), 3724; https://doi.org/10.3390/s25123724 - 13 Jun 2025
Cited by 1 | Viewed by 712
Abstract
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with [...] Read more.
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with their environment. This study aimed to develop a biomimetic, skin-inspired tactile sensor device capable of sensing applied force, characterizing it in three dimensions, and determining the point of application. The device was designed as a 4 × 4 matrix of tunneling magnetoresistive sensors, which provide a higher sensitivity in comparison to the ones based on the Hall effect, the current standard in tactile sensors. These detect magnetic field changes along a single axis, wire-bonded to a PCB and encapsulated in epoxy. This sensing array detects the magnetic field from an overlayed magnetorheological elastomer composed of Ecoflex and 5 µm neodymium–iron–boron ferromagnetic particles. Structural integrity tests showed that the device could withstand forces above 100 N, with an epoxy coverage of 0.12 mL per sensor chip. A 3D movement stage equipped with an indenting tip and force sensor was used to collect device data, which was then used to train neural network models to predict the contact location and 3D magnitude of the applied force. The magnitude-sensing model was trained on 31,260 data points, being able to accurately characterize force with a mean absolute error ranging between 0.07 and 0.17 N. The spatial sensitivity model was trained on 171,008 points and achieved a mean absolute error of 0.26 mm when predicting the location of applied force within a sensitive area of 25.5 mm × 25.5 mm using sensors spaced 4.5 mm apart. For points outside the testing range, the mean absolute error was 0.63 mm. Full article
(This article belongs to the Special Issue Smart Magnetic Sensors and Application)
Show Figures

Figure 1

17 pages, 3485 KiB  
Article
Development of an Oblique Cone Dielectric Elastomer Actuator Module-Connected Vertebrate Fish Robot
by Taro Hitomi, Ryuki Sato and Aiguo Ming
Biomimetics 2025, 10(6), 365; https://doi.org/10.3390/biomimetics10060365 - 4 Jun 2025
Viewed by 598
Abstract
As a soft actuator for fish robots, an oblique cone dielectric elastomer actuator (DEA) module inspired by the structure of white muscles in fish was proposed in the authors’ previous study. However, a mathematical model of an oblique cone DEA was not established, [...] Read more.
As a soft actuator for fish robots, an oblique cone dielectric elastomer actuator (DEA) module inspired by the structure of white muscles in fish was proposed in the authors’ previous study. However, a mathematical model of an oblique cone DEA was not established, and designing a drive module that took into account its driving characteristics and passivity for integration into a fish robot remained a challenge. The purpose of this paper is to develop a vertebrate fish robot using multiple oblique cone DEA modules to achieve fish-like bending capability. First, an oblique cone DEA module was modeled for the design of a fish robot. The relationships among bending angle, blocking torque, driving voltage, and design parameters were established and confirmed by comparing the calculated and experimental results. Based on the modeling results, we designed an oblique cone DEA module-connected vertebrate fish robot. Finally, the experimental results of the fabricated fish robot demonstrated that the model-based design enabled flexible body swinging and swimming through a multiple-module-connected vertebrate structure. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

26 pages, 6044 KiB  
Article
Drill-String Vibration Suppression Using Hybrid Magnetorheological Elastomer-Fluid Absorbers
by Jasem M. Kamel, Asan G. A. Muthalif and Abdulazim H. Falah
Actuators 2025, 14(6), 273; https://doi.org/10.3390/act14060273 - 30 May 2025
Viewed by 1219
Abstract
Rotary drilling systems with PDC bits, commonly used for drilling deep wells in the production and exploration of oil and natural gas, frequently encounter severe vibrations. These vibrations can cause significant damage to the drilling system, particularly its downhole components, leading to drilling [...] Read more.
Rotary drilling systems with PDC bits, commonly used for drilling deep wells in the production and exploration of oil and natural gas, frequently encounter severe vibrations. These vibrations can cause significant damage to the drilling system, particularly its downhole components, leading to drilling performance inefficiencies, notably reducing the rate of penetration and incurring high costs. This paper presents a parametric study on a proposed new axial semi-active tool designed to mitigate these unwanted vibrations. The tool, an axial absorber with tunable stiffness and damping coefficients over a wide range, composed of a hybrid magnetorheological elastomer-fluid (MRE-F), is installed above the PDC bit. In this study, the lumped parameter model considering axial and torsional vibrations is followed to assess the effectiveness of including the proposed absorber in the drill-string system’s behavior and to estimate the optimal coefficient values for achieving high-efficiency drilling. The drilling system response shown in this study indicates that, with optimal axial absorber coefficient values, the bit dynamically stabilizes, and unwanted vibrations are minimized, effectively eliminating the occurrence of bit-bounce and stick–slip, even when operating at critical frequencies. The proposed semi-active control tool has been proven to significantly reduce maintenance time, reduce the costs associated with severe vibrations, extend the lifespan of bottom-hole assembly components, and achieve smoother drilling with a simple addition to the drilling system. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

25 pages, 13985 KiB  
Article
A Low-Cost Prototype of a Soft–Rigid Hybrid Pneumatic Anthropomorphic Gripper for Testing Tactile Sensor Arrays
by Rafał Andrejczuk, Moritz Scharff, Junhao Ni, Andreas Richter and Ernst-Friedrich Markus Vorrath
Actuators 2025, 14(5), 252; https://doi.org/10.3390/act14050252 - 17 May 2025
Viewed by 872
Abstract
Soft anthropomorphic robotic grippers are attractive because of their inherent compliance, allowing them to adapt to the shape of grasped objects and the overload protection needed for safe human–robot interaction or gripping delicate objects with sophisticated control. The anthropomorphic design allows the gripper [...] Read more.
Soft anthropomorphic robotic grippers are attractive because of their inherent compliance, allowing them to adapt to the shape of grasped objects and the overload protection needed for safe human–robot interaction or gripping delicate objects with sophisticated control. The anthropomorphic design allows the gripper to benefit from the biological evolution of the human hand to create a multi-functional robotic end effector. Entirely soft grippers could be more efficient because they yield under high loads. A trending solution is a hybrid gripper combining soft and rigid elements. This work describes a prototype of an anthropomorphic, underactuated five-finger gripper with a direct pneumatic drive from soft bending actuators and an integrated resistive tactile sensor array. It is a hybrid construction with soft robotic structures and rigid skeletal elements, which reinforce the body, focus the direction of the actuator’s movement, and make the finger joints follow the forward kinematics. The hand is equipped with a resistive tactile dielectric elastomer sensor array that directly triggers the hand’s actuation in the sense of reflexes. The hand can execute precision grips with two and three fingers, as well as lateral grip and strong grip types. The softness of the actuation allows the finger to adapt to the shape of the objects. Full article
Show Figures

Figure 1

18 pages, 6285 KiB  
Article
A Unified Equation for Predicting Crack Growth in Rubber Composites Across All Crack Growth Rates
by Aaron M. Duncan, Keizo Akutagawa, Dimitrios G. Papageorgiou, Julien L. Ramier and James J. C. Busfield
Polymers 2025, 17(10), 1357; https://doi.org/10.3390/polym17101357 - 15 May 2025
Viewed by 358
Abstract
The relationship between tearing energy and crack growth rates in elastomers is typically divided into three regions—slow crack growth, fast crack growth, and a transitional region—each described by separate power law relationships, requiring six variables to fully characterize the behavior. This study introduces [...] Read more.
The relationship between tearing energy and crack growth rates in elastomers is typically divided into three regions—slow crack growth, fast crack growth, and a transitional region—each described by separate power law relationships, requiring six variables to fully characterize the behavior. This study introduces a novel, unified equation that simplifies this relationship by combining two coexisting energy dissipation mechanisms into a single model with only four variables. The model consists of two terms, one for each energy dissipation mechanism: one term is dominant at slow crack growth rates and limited by a threshold energy, and the other is dominant at fast speeds. The transition region emerges naturally as the dominant mechanism shifts. The model’s simplicity enables new advances, such as predicting fast crack growth tearing and transition energies using only slow crack growth data. This capability is demonstrated across a wide range of non-strain crystallizing rubbers, including filled and unfilled compounds, tested at room temperature and elevated temperatures and in both swollen and unswollen states. This model offers a practical tool for material design, failure prediction, and reducing experimental effort in characterizing elastomer performance. Notably, this is the first model to unify slow, transition, and fast crack growth regimes into a single continuous equation requiring only four variables, enabling the prediction of high-speed behavior using only low-speed experimental data—a major advantage over existing six-parameter models. Full article
(This article belongs to the Special Issue Failure of Polymer Composites)
Show Figures

Graphical abstract

14 pages, 2984 KiB  
Article
A Miniaturized FBG Tactile Sensor for the Tip of a Flexible Ureteroscope
by Shiyuan Dong, Sen Ma, Tenglong Zhou, Yuyang Lou, Xuanwei Xiong, Keyu Wei, Dong Luo, Jianwei Wu, Huanhuan Liu, Ran Tao, Tianyu Yang and Yuming Dong
Sensors 2025, 25(9), 2807; https://doi.org/10.3390/s25092807 - 29 Apr 2025
Viewed by 510
Abstract
This work introduces a novel fiber Bragg grating (FBG)-based tactile sensor specifically developed for real-time force monitoring at the tips of flexible ureteroscopes. With a diameter of only 1.5 mm, the sensor features a dual-FBG configuration that effectively separates temperature effects from force [...] Read more.
This work introduces a novel fiber Bragg grating (FBG)-based tactile sensor specifically developed for real-time force monitoring at the tips of flexible ureteroscopes. With a diameter of only 1.5 mm, the sensor features a dual-FBG configuration that effectively separates temperature effects from force signals, integrated with an innovative elastomer structure based on staggered parallelogram elements. Finite element analyses comparing traditional spiral and parallel groove designs indicate that the new configuration not only enhances axial sensitivity through optimized deformation characteristics but also significantly improves resistance to transverse forces via superior stress distribution and structural stability. In the sensor, a suspended lateral FBG is employed for thermal compensation, while an axially constrained FBG is dedicated to force detection. Calibration using a segmented approach yielded dual-range sensitivities of approximately 283.85 pm/N for the 0–0.5 N range and 258.57 pm/N for the 0.5–1 N range, with a maximum error of 0.07 N. Ex vivo ureteroscopy simulations further demonstrated the sensor’s capability to detect tissue–instrument interactions and to discriminate contact events effectively. This miniaturized solution offers a promising approach to achieving precise force feedback in endoscopic procedures while conforming to the dimensional constraints of standard ureteroscopes. Full article
(This article belongs to the Special Issue Recent Advances in Optoelectronic Materials and Device Engineering)
Show Figures

Figure 1

Back to TopTop