Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,776)

Search Parameters:
Keywords = efficiency gains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
18 pages, 2839 KiB  
Article
Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
by Yijie Ren, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei and Shuang Song
Agriculture 2025, 15(15), 1689; https://doi.org/10.3390/agriculture15151689 - 5 Aug 2025
Abstract
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve [...] Read more.
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve the recognition accuracy of various maize disease spores, this study introduced the YOLOv8s-SPM model by incorporating the space-to-depth and convolution (SPD-Conv) layers, the Partial Self-Attention (PSA) mechanism, and Minimum Point Distance Intersection over Union (MPDIoU) loss function. First, we combined SPD-Conv layers into the Backbone of the YOLOv8s to enhance recognition performance on small targets and low-resolution images. To improve computational efficiency, the PSA mechanism was incorporated within the Neck layer of the network. Finally, MPDIoU loss function was applied to refine the localization performance of bounding boxes. The results revealed that the YOLOv8s-SPM model achieved 98.9% accuracy on the mixed spore dataset. Relative to the baseline YOLOv8s, the YOLOv8s-SPM model yielded a 1.4% gain in accuracy. The improved model significantly improved spore detection accuracy and demonstrated superior performance in recognizing diverse spore types under complex background conditions. It met the demands for high-precision spore detection and filled a gap in intelligent spore recognition for maize, offering an effective starting point and practical path for future research in this field. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations
by Weijia Ge, Jing Zhang, Xingjian Shi, Wenzhe Tang and Longlong Qian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 305; https://doi.org/10.3390/ijgi14080305 - 5 Aug 2025
Abstract
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance [...] Read more.
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance in visual search tasks through two eye-tracking experiments. Experiment 1 investigated the effects of two visual coding factors: encoding types (flashing, pulsation, and lightness modulation) and animation rates (low, medium, and high). Experiment 2 focused on the interaction between encoding types and modulation areas (fill, contour, and entire symbol) under a fixed animation rate condition. The results revealed that search performance deteriorates as the animation rate of the fastest target symbol exceeds 10 fps. Flashing and lightness modulation outperformed pulsation, and modulation areas significantly impacted efficiency and accuracy, with notable interaction effects. Based on the experimental results, three visual coding strategies are recommended for optimal performance in map-based interfaces: contour pulsation, contour flashing, and entire symbol lightness modulation. These findings provide valuable insights for optimizing the design of dynamic point symbols, contributing to improved user engagement and task performance in cartographic and geovisual applications. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
19 pages, 9705 KiB  
Article
Reconfigurable Wireless Power Transfer System with High Misalignment Tolerance Using Coaxial Antipodal Dual DD Coils for AUV Charging Applications
by Yonglu Liu, Mingxing Xiong, Qingxuan Zhang, Fengshuo Yang, Yu Lan, Jinhai Jiang and Kai Song
Energies 2025, 18(15), 4148; https://doi.org/10.3390/en18154148 - 5 Aug 2025
Abstract
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output [...] Read more.
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output power stability. To mitigate this issue, this paper proposes a novel reconfigurable WPT system utilizing coaxial antipodal dual DD (CAD-DD) coils, which strategically switches between a detuned S-LCC topology and a detuned S-S topology at a fixed operating frequency. By characterizing the output power versus the coupling coefficient (P-k) profiles under both reconfiguration modes, a parameter design methodology is developed to ensure stable power delivery across wide coupling variations. Experimental validation using a 1.2 kW AUV charging prototype demonstrates remarkable tolerance to misalignment: ±30° rotation, ±120 mm axial displacement, and 20–50 mm air-gap variation. Within this range, the output power fluctuation is confined to within 5%, while the system efficiency exceeds 85% consistently, peaking at 91.56%. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

20 pages, 450 KiB  
Article
Four Organic Protein Source Alternatives to Fish Meal for Pacific White Shrimp (Penaeus vannamei) Feeding
by Yosu Candela-Maldonado, Imane Megder, Eslam Tefal, David S. Peñaranda, Silvia Martínez-Llorens, Ana Tomás-Vidal, Miguel Jover-Cerdá and Ignacio Jauralde
Fishes 2025, 10(8), 384; https://doi.org/10.3390/fishes10080384 - 5 Aug 2025
Abstract
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body [...] Read more.
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body composition, retention efficiency, enzyme activity, and nutrient digestibility of white shrimp Penaeus vannamei. The four dietary formulations tested were formulated with organic ingredients and the fish meal was replaced by the following organic protein meals: Iberian pig viscera meal (PIG), trout by-product meal (TRO), insect meal (FLY), and organic vegetable meal (WHT), in addition to a control diet (CON) that included 15% fish meal. A growth trial was carried out for 83 days, raising 1 g shrimp to commercial size (20 g). Shrimp were stocked at 167 shrimp/m3 (15 individuals per 90 L tank). The results showed that the growth obtained by shrimp fed with TRO (19.27 g) and PIG (19.35 g) were similar in weight gain to the control diet (20.76 g), while FLY (16.04 g) and WHT (16.73 g) meals resulted in a significant lower final weight. The FLY diet showed significantly lower protein digestibility (68.89%) compared to the CON, PIG, TRO, and WHT diets, and significantly higher trypsin activity (0.17 mU/g) compared to shrimp fed with the PIG, TRO, and WHT diets. Shrimp fed with WHT have a significantly lower body weight percentage of protein (19.69%) than shrimp fed with the WHT and TRO diets, and some significant differences in dietary aminoacidic levels affecting amino acid body composition. These results indicate that Iberian pig viscera and trout by-product meal can successfully replace fish meal in Pacific white shrimp aquaculture. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

31 pages, 1755 KiB  
Article
Two-Stage Distributionally Robust Optimization for an Asymmetric Loss-Aversion Portfolio via Deep Learning
by Xin Zhang, Shancun Liu and Jingrui Pan
Symmetry 2025, 17(8), 1236; https://doi.org/10.3390/sym17081236 - 4 Aug 2025
Abstract
In portfolio optimization, investors often overlook asymmetric preferences for gains and losses. We propose a distributionally robust two-stage portfolio optimization (DR-TSPO) model, which is suitable for scenarios where the loss reference point is adaptively updated based on prior decisions. For analytical convenience, we [...] Read more.
In portfolio optimization, investors often overlook asymmetric preferences for gains and losses. We propose a distributionally robust two-stage portfolio optimization (DR-TSPO) model, which is suitable for scenarios where the loss reference point is adaptively updated based on prior decisions. For analytical convenience, we further reformulate the DR-TSPO model as an equivalent second-order cone programming counterpart. Additionally, we develop a deep learning-based constraint correction algorithm (DL-CCA) trained directly on problem descriptions, which enhances computational efficiency for large-scale non-convex distributionally robust portfolio optimization. Our empirical results obtained using global market data demonstrate that during COVID-19, the DR-TSPO model outperformed traditional two-stage optimization in reducing conservatism and avoiding extreme losses. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 6437 KiB  
Article
LEAD-YOLO: A Lightweight and Accurate Network for Small Object Detection in Autonomous Driving
by Yunchuan Yang, Shubin Yang and Qiqing Chan
Sensors 2025, 25(15), 4800; https://doi.org/10.3390/s25154800 - 4 Aug 2025
Abstract
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO [...] Read more.
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO (Lightweight Efficient Autonomous Driving YOLO), an enhanced network architecture based on YOLOv11n that achieves superior small object detection while maintaining computational efficiency. The proposed framework incorporates three innovative components: First, the Backbone integrates a lightweight Convolutional Gated Transformer (CGF) module, which employs normalized gating mechanisms with residual connections, and a Dilated Feature Fusion (DFF) structure that enables progressive multi-scale context modeling through dilated convolutions. These components synergistically enhance small object perception and environmental context understanding without compromising network efficiency. Second, the neck features a hierarchical feature fusion module (HFFM) that establishes guided feature aggregation paths through hierarchical structuring, facilitating collaborative modeling between local structural information and global semantics for robust multi-scale object detection in complex traffic scenarios. Third, the head implements a shared feature detection head (SFDH) structure, incorporating shared convolution modules for efficient cross-scale feature sharing and detail enhancement branches for improved texture and edge modeling. Extensive experiments validate the effectiveness of LEAD-YOLO: on the nuImages dataset, the method achieves 3.8% and 5.4% improvements in mAP@0.5 and mAP@[0.5:0.95], respectively, while reducing parameters by 24.1%. On the VisDrone2019 dataset, performance gains reach 7.9% and 6.4% for corresponding metrics. These findings demonstrate that LEAD-YOLO achieves an excellent balance between detection accuracy and model efficiency, thereby showcasing substantial potential for applications in autonomous driving. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

21 pages, 6219 KiB  
Article
Semi-Supervised Density Estimation with Background-Augmented Data for In Situ Seed Counting
by Baek-Gyeom Sung, Chun-Gu Lee, Yeong-Ho Kang, Seung-Hwa Yu and Dae-Hyun Lee
Agriculture 2025, 15(15), 1682; https://doi.org/10.3390/agriculture15151682 - 4 Aug 2025
Abstract
Direct seeding has gained prominence as a labor-efficient and environmentally sustainable alternative to conventional transplanting in rice cultivation. In direct seeding systems, early-stage management is crucial for stable seedling establishment, with sowing uniformity measured by seed counts being a critical indicator of success. [...] Read more.
Direct seeding has gained prominence as a labor-efficient and environmentally sustainable alternative to conventional transplanting in rice cultivation. In direct seeding systems, early-stage management is crucial for stable seedling establishment, with sowing uniformity measured by seed counts being a critical indicator of success. However, conventional manual seed counting methods are time-consuming, prone to human error, and impractical for large-scale or repetitive tasks, necessitating advanced automated solutions. Recent advances in computer vision technologies and precision agriculture tools, offer the potential to automate seed counting tasks. Nevertheless, challenges such as domain discrepancies and limited labeled data restrict robust real-world deployment. To address these issues, we propose a density estimation-based seed counting framework integrating semi-supervised learning and background augmentation. This framework includes a cost-effective data acquisition system enabling diverse domain data collection through indoor background augmentation, combined with semi-supervised learning to utilize augmented data effectively while minimizing labeling costs. The experimental results on field data from unknown domains show that our approach reduces seed counting errors by up to 58.5% compared to conventional methods, highlighting its potential as a scalable and effective solution for agricultural applications in real-world environments. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 8993 KiB  
Article
A Lightweight Spatiotemporal Graph Framework Leveraging Clustered Monitoring Networks and Copula-Based Pollutant Dependency for PM2.5 Forecasting
by Mohammad Taghi Abbasi, Ali Asghar Alesheikh and Fatemeh Rezaie
Land 2025, 14(8), 1589; https://doi.org/10.3390/land14081589 - 4 Aug 2025
Abstract
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. [...] Read more.
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. However, many existing models, despite their high predictive accuracy, face computational complexity and scalability challenges. This study introduces clustered and lightweight spatio-temporal graph convolutional network with gated recurrent unit (ClusLite-STGCN-GRU), a hybrid model that integrates spatial clustering based on pollutant time series for graph construction, Copula-based dependency analysis for selecting relevant pollutants to predict PM2.5, and graph convolution combined with gated recurrent units to extract spatiotemporal features. Unlike conventional approaches that require learning or dynamically updating adjacency matrices, ClusLite-STGCN-GRU employs a fixed, simple cluster-based structure. Experimental results on Tehran air quality data demonstrate that the proposed model not only achieves competitive predictive performance compared to more complex models, but also significantly reduces computational cost—by up to 66% in training time, 83% in memory usage, and 84% in number of floating-point operations—making it suitable for real-time applications and offering a practical balance between accuracy, interpretability, and efficiency. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

36 pages, 2033 KiB  
Article
Beyond GDP: COVID-19’s Effects on Macroeconomic Efficiency and Productivity Dynamics in OECD Countries
by Ümit Sağlam
Econometrics 2025, 13(3), 29; https://doi.org/10.3390/econometrics13030029 - 4 Aug 2025
Abstract
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to [...] Read more.
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to 2024Q4. By employing a Slack-Based Measure Data Envelopment Analysis (SBM-DEA) and the Malmquist Productivity Index (MPI), we decompose total factor productivity (TFP) into efficiency change (EC) and technological change (TC) across three periods: pre-pandemic, during-pandemic, and post-pandemic. Our framework incorporates both desirable (GDP) and undesirable outputs (inflation, unemployment, housing price inflation, and interest rate distortions), offering a multidimensional view of macroeconomic efficiency. Results show broad but uneven productivity gains, with technological progress proving more resilient than efficiency during the pandemic. Post-COVID recovery trajectories diverged, reflecting differences in structural adaptability and innovation capacity. Regression analysis reveals that stringent lockdowns in 2020 were associated with lower productivity in 2023–2024, while more adaptive policies in 2021 supported long-term technological gains. These findings highlight the importance of aligning crisis response with forward-looking economic strategies and demonstrate the value of DEA-based methods for evaluating macroeconomic performance beyond GDP. Full article
(This article belongs to the Special Issue Advancements in Macroeconometric Modeling and Time Series Analysis)
Show Figures

Figure 1

17 pages, 2487 KiB  
Article
Personalized Language Training and Bi-Hemispheric tDCS Improve Language Connectivity in Chronic Aphasia: A fMRI Case Study
by Sandra Carvalho, Augusto J. Mendes, José Miguel Soares, Adriana Sampaio and Jorge Leite
J. Pers. Med. 2025, 15(8), 352; https://doi.org/10.3390/jpm15080352 - 3 Aug 2025
Viewed by 56
Abstract
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising neuromodulatory tool for language rehabilitation in chronic aphasia. However, the effects of bi-hemispheric, multisite stimulation remain largely unexplored, especially in people with chronic and treatment-resistant language impairments. The goal of this [...] Read more.
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising neuromodulatory tool for language rehabilitation in chronic aphasia. However, the effects of bi-hemispheric, multisite stimulation remain largely unexplored, especially in people with chronic and treatment-resistant language impairments. The goal of this study is to look at the effects on behavior and brain activity of an individualized language training program that combines bi-hemispheric multisite anodal tDCS with personalized language training for Albert, a patient with long-standing, treatment-resistant non-fluent aphasia. Methods: Albert, a right-handed retired physician, had transcortical motor aphasia (TCMA) subsequent to a left-hemispheric ischemic stroke occurring more than six years before the operation. Even after years of traditional treatment, his expressive and receptive language deficits remained severe and persistent despite multiple rounds of traditional therapy. He had 15 sessions of bi-hemispheric multisite anodal tDCS aimed at bilateral dorsal language streams, administered simultaneously with language training customized to address his particular phonological and syntactic deficiencies. Psycholinguistic evaluations were performed at baseline, immediately following the intervention, and at 1, 2, 3, and 6 months post-intervention. Resting-state fMRI was conducted at baseline and following the intervention to evaluate alterations in functional connectivity (FC). Results: We noted statistically significant enhancements in auditory sentence comprehension and oral reading, particularly at the 1- and 3-month follow-ups. Neuroimaging showed decreased functional connectivity (FC) in the left inferior frontal and precentral regions (dorsal stream) and in maladaptive right superior temporal regions, alongside increased FC in left superior temporal areas (ventral stream). This pattern suggests that language networks may be reorganizing in a more efficient way. There was no significant improvement in phonological processing, which may indicate reduced connectivity in the left inferior frontal areas. Conclusions: This case underscores the potential of combining individualized, network-targeted language training with bi-hemispheric multisite tDCS to enhance recovery in chronic, treatment-resistant aphasia. The convergence of behavioral gains and neuroplasticity highlights the importance of precision neuromodulation approaches. However, findings are preliminary and warrant further validation through controlled studies to establish broader efficacy and sustainability of outcomes. Full article
(This article belongs to the Special Issue Personalized Medicine in Neuroscience: Molecular to Systems Approach)
Show Figures

Figure 1

22 pages, 4943 KiB  
Article
Predicting De-Handing Point in Bananas Using Crown Morphology and Interpretable Machine Learning
by Lei Zhao, Zhou Yang, Chunxia Wang, Mohui Jin and Jieli Duan
Agronomy 2025, 15(8), 1880; https://doi.org/10.3390/agronomy15081880 - 3 Aug 2025
Viewed by 57
Abstract
Banana de-handing is a critical yet labor-intensive step in postharvest processing, with current manual methods resulting in high costs and occupational risks. This study addresses the automation of de-handing point localization by integrating high-resolution 3D scanning and morphometric analysis of banana crowns with [...] Read more.
Banana de-handing is a critical yet labor-intensive step in postharvest processing, with current manual methods resulting in high costs and occupational risks. This study addresses the automation of de-handing point localization by integrating high-resolution 3D scanning and morphometric analysis of banana crowns with machine learning techniques. A total of 210 crown samples were analyzed to extract key morphological features, including inner arc length (Li), inner arc radius (Ri), outer arc radius (Ro), and the distance between inner and outer arcs (Doi), among others. Four machine learning algorithms, namely, Multi-Layer Perceptron (MLP), Gradient Boosted Decision Trees (GBDT), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), were developed to predict the target radius (Rt) and target distance (Dti) of the de-handing point. The RF models achieved the optimal predictive performance on the testing set, with the following results: for Rt, R2 = 0.95, MAE = 1.50, and RMSE = 1.94; for Dti, R2 = 0.91, MAE = 1.33, and RMSE = 1.66. A Shapley Additive Explanations (SHAP) analysis revealed that Li, Ri, and Ro were the most influential features for Rt, while Doi was the most important for Dti. Notably, feature threshold effects were observed, with limited gains in prediction accuracy beyond specific morphological values. These results provide a quantitative foundation for vision-guided automated de-handing systems, advancing intelligent and efficient banana postharvest management. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 101
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop