Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = efferent mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4644 KiB  
Article
Vagus Nerve Stimulation Regulates the Th17/Treg Balance and Alleviates Lung Injury in Acute Respiratory Distress Syndrome by Upregulating α7nAChR
by Furong Zheng, Xin Zhang, Sisi Wang, Gongwei Jia and Li Cheng
Biomedicines 2025, 13(6), 1294; https://doi.org/10.3390/biomedicines13061294 - 24 May 2025
Viewed by 585
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a high-mortality disease strongly associated with an imbalance in the inflammatory response. The ratio of helper T 17 (Th17) cells to regulatory T (Treg) cells is significantly correlated with prognosis and outcomes in ARDS. Vagus nerve [...] Read more.
Background: Acute respiratory distress syndrome (ARDS) is a high-mortality disease strongly associated with an imbalance in the inflammatory response. The ratio of helper T 17 (Th17) cells to regulatory T (Treg) cells is significantly correlated with prognosis and outcomes in ARDS. Vagus nerve stimulation (VNS) alleviates lung injury in ARDS model rats. The objective of this study was to further investigate whether VNS attenuates lipopolysaccharide-induced ARDS by regulating Th17/Treg homeostasis and to explore the underlying mechanisms. Methods: We assessed the degree of lung injury using hematoxylin and eosin staining, the lung wet-to-dry ratio, and total protein and pro-inflammatory cytokine levels in bronchoalveolar lavage fluid. The expression levels of Th17 and Treg cells were determined using flow cytometry, Western blotting, quantitative real-time PCR, and enzyme-linked immunosorbent assays. Results: We found that VNS reduced lung injury in ARDS model rats. Additionally, VNS regulated Th17/Treg homeostasis and reduced the levels of inflammatory factors in both the lungs and spleens. Notably, the effects of VNS were consistent when the afferent or efferent vagus nerve, or both, were stimulated. Further investigation revealed that VNS upregulated splenic α7 nicotinic acetylcholine receptors (α7nAChRs). The administration of an α7nAChR agonist enhanced VNS-mediated regulation of Th17/Treg homeostasis and attenuated lung injury, while these effects were blocked by α7nAChR antagonists. Conclusions: Our study demonstrated that VNS regulates the Th17/Treg balance through α7nAChR activation in the spleen, thereby mitigating lung injury in ARDS. These findings provide new theoretical support for the use of VNS in attenuating ARDS. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

11 pages, 1160 KiB  
Article
Purinergic Receptor Activation Protects Glomerular Microvasculature from Increased Mechanical Stress in Angiotensin II-Induced Hypertension: A Modeling Study
by Owen Richfield, Ricardo Cortez, Supaporn Kulthinee, Martha Franco and L. Gabriel Navar
Int. J. Mol. Sci. 2025, 26(5), 1928; https://doi.org/10.3390/ijms26051928 - 24 Feb 2025
Cited by 1 | Viewed by 643
Abstract
Angiotensin II (Ang II)-induced hypertension increases afferent (AA) and efferent (EA) arteriole resistances via the actions of Ang II on the AT1 receptor. In addition to the increased interstitial levels of Ang II, the increased arterial pressure increases interstitial ATP concentrations. In turn, [...] Read more.
Angiotensin II (Ang II)-induced hypertension increases afferent (AA) and efferent (EA) arteriole resistances via the actions of Ang II on the AT1 receptor. In addition to the increased interstitial levels of Ang II, the increased arterial pressure increases interstitial ATP concentrations. In turn, ATP acts on the purinergic receptors P2X1 and P2X7 to constrict the AA, preventing increases in plasma flow and single-nephron GFR (SNGFR). While the hemodynamic effects of P2 activation have been characterized, the resulting increases in mechanical stresses (shear stress and circumferential hoop stress) on the glomerular microvasculature have not been quantified. A mathematical microvascular hemodynamic glomerular model was developed to simulate blood flow and plasma filtration in an anatomically accurate rat glomerular capillary network. AA and EA resistances were adjusted to match glomerular hemodynamic data for control, Ang II-induced hypertension, and P2X1-blocked conditions. A blockade of the purinergic receptors reduced both afferent and efferent resistances, maintaining glomerular pressure at hypertensive levels but increasing blood flow and sheer stress significantly. Because glomerular pressure was maintained, hoop stress barely changed. Our results indicate that the activation of the purinergic system protects the glomerular microvasculature from elevated shear stress caused by increased blood flow that would occur in the absence of purinergic stimulation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 3997 KiB  
Review
Peripheral Mechanisms Underlying Bacillus Calmette–Guerin-Induced Lower Urinary Tract Symptoms (LUTS)
by Meera Elmasri, Aaron Clark and Luke Grundy
Brain Sci. 2024, 14(12), 1203; https://doi.org/10.3390/brainsci14121203 - 28 Nov 2024
Viewed by 1502
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70–75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette–Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to [...] Read more.
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70–75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette–Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to the development of lower urinary tract symptoms (LUTS) such as urinary urgency, frequency, dysuria, and pelvic discomfort. These symptoms can significantly diminish patients’ quality of life and may result in the discontinuation of BCG treatment, adversely affecting oncological outcomes. Despite the considerable clinical impact of BCG-induced LUTS, the underlying mechanisms remain unclear, hindering the implementation or development of effective treatments. This review provides novel insights into the potential mechanisms underlying BCG-induced LUTS, focusing on the integrated roles of afferent and efferent nerves in both normal and pathological bladder sensation and function. Specifically, this review examines how the body’s response to BCG—through the development of inflammation, increased urothelial permeability, and altered urothelial signalling—might contribute to LUTS development. Drawing from known mechanisms in other common urological disorders and data from successful clinical trials involving NMIBC patients, this review summarises evidence supporting the likely changes in both sensory nerve signalling and bladder muscle function in the development of BCG-induced LUTS. However, further research is required to understand the intricate mechanisms underlying the development of BCG-induced LUTS and identify why some patients are more likely to experience BCG intolerance. Addressing these knowledge gaps could have profound implications for patients’ quality of life, treatment adherence, and overall outcomes in NMIBC care. Full article
(This article belongs to the Special Issue Reviews in Neural Control of Peripheral Function)
Show Figures

Figure 1

28 pages, 1245 KiB  
Review
Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics
by Anthony J. Evans and Yu-Long Li
Int. J. Mol. Sci. 2024, 25(22), 12464; https://doi.org/10.3390/ijms252212464 - 20 Nov 2024
Cited by 3 | Viewed by 1729
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the [...] Read more.
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients. Full article
(This article belongs to the Special Issue Cellular and Molecular Progression of Cardiovascular Diseases)
Show Figures

Figure 1

16 pages, 1217 KiB  
Review
Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant
by Scott T. Benken, Riya Thomas, Dustin R. Fraidenburg and Jamie J. Benken
Biomedicines 2024, 12(8), 1817; https://doi.org/10.3390/biomedicines12081817 - 9 Aug 2024
Viewed by 2795
Abstract
During the perioperative period of transplantation, patients experience hypotension secondary to the side effects of anesthesia, surgical stress, inflammatory triggering, and intraoperative fluid shifts, among others causes. Vasopressor support, in this context, must reverse systemic hypotension, but ideally, the agents used should benefit [...] Read more.
During the perioperative period of transplantation, patients experience hypotension secondary to the side effects of anesthesia, surgical stress, inflammatory triggering, and intraoperative fluid shifts, among others causes. Vasopressor support, in this context, must reverse systemic hypotension, but ideally, the agents used should benefit allograft function and avoid the adverse events commonly seen after transplantation. Traditional therapies to reverse hypotension include catecholamine vasopressors (norepinephrine, epinephrine, dopamine, and phenylephrine), but their utility is limited when considering allograft complications and adverse events such as arrhythmias with agents with beta-adrenergic properties. Synthetic angiotensin II (AT2S–[Giapreza]) is a novel vasopressor indicated for distributive shock with a unique mechanism of action as an angiotensin receptor agonist restoring balance to an often-disrupted renin angiotensin aldosterone system. Additionally, AT2S provides a balanced afferent and efferent arteriole vasoconstriction at the level of the kidney and could avoid the arrhythmic complications of a beta-adrenergic agonist. While the data, to date, are limited, AT2S has demonstrated safety in case reports, pilot studies, and small series in the kidney, liver, heart, and lung transplant populations. There are physiologic and hemodynamic reasons why AT2S could be a more utilized agent in these populations, but further investigation is warranted. Full article
Show Figures

Figure 1

20 pages, 2507 KiB  
Article
Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats
by Choong-Ku Lee, Huu Son Nguyen, Seong Jun Kang and Seong-Woo Jeong
Biomedicines 2024, 12(8), 1722; https://doi.org/10.3390/biomedicines12081722 - 1 Aug 2024
Viewed by 1314
Abstract
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary [...] Read more.
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions. Full article
Show Figures

Figure 1

19 pages, 3124 KiB  
Article
Capacitive Neuromodulation via Material-Based Passive Interaction: Efficacy in Motor Function Improvement in Parkinson Disease
by Fabrizio D’Errico, Francesco Serio and Gianluigi Carioni
Biosensors 2024, 14(7), 354; https://doi.org/10.3390/bios14070354 - 20 Jul 2024
Viewed by 2457
Abstract
A non-invasive and non-pharmacological approach is evaluated for the proprioceptive and postural improvement of PD subjects. The authors evaluated the effectiveness of a class I medical device according to EU regulation 745/2017 designed to develop the mechanism of action based on the modulation [...] Read more.
A non-invasive and non-pharmacological approach is evaluated for the proprioceptive and postural improvement of PD subjects. The authors evaluated the effectiveness of a class I medical device according to EU regulation 745/2017 designed to develop the mechanism of action based on the modulation of action potentials, which occurs in prevalent pathways of the afferent peripheral nervous system efferent in subjects with spasticity. The present observational study, structured in a double-blind randomized manner, therefore, had the main aim of evaluating the ability of the device to improve on the motor and proprioceptive function of PD patients. This study was based on the instrumented gait analysis performed according to the Timed Up and Go (TUG) test procedure, as well as using a fall risk assessment in accordance with the Berg Balance Scale (BBS) procedures. This study involved 25 participants in the active group (no placebo) and 25 in the non-active group (placebo), the latter to whom non-functional devices were applied, but in every respect identical to the functional devices applied to the 25 patients in the no placebo group. Data analysis was conducted using statistical methodologies for statistics, the statistical significance of the results for the observed samples and the interdependence between the measured variables. The study of the mechanism of action based on the remodulation of action potentials was preliminary conducted through numerical modeling of the Hodgkin–Huxley axon, modified by introducing the influence of the capacitive device applied in clinical tests into the validated model to target the dielectric properties of materials constituting the passive sensor. The use of the neuromodulation device promises observable improvements in motor function among PD patients, including increased limb mobility and greater postural stability. Full article
(This article belongs to the Special Issue Wearable Devices for Biosensors and Healthcare)
Show Figures

Figure 1

22 pages, 1607 KiB  
Review
pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization
by Pengyuan Dai, Meng Zou, Ziyi Cai, Xuhui Zeng, Xiaoning Zhang and Min Liang
Biomolecules 2024, 14(6), 685; https://doi.org/10.3390/biom14060685 - 12 Jun 2024
Cited by 7 | Viewed by 5107
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize [...] Read more.
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3 transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3 or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis’s low HCO3 concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3 in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends. Full article
Show Figures

Figure 1

14 pages, 1183 KiB  
Review
Well-Established and Traditional Use of Vegetal Extracts as an Approach to the “Deep Roots” of Cough
by Luca Pecoraro, Enrico Peterle, Elisa Dalla Benetta, Michele Piazza, Grigorios Chatziparasidis and Ahmad Kantar
Children 2024, 11(5), 584; https://doi.org/10.3390/children11050584 - 11 May 2024
Cited by 4 | Viewed by 4454
Abstract
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient’s quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough [...] Read more.
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient’s quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough center in the brain. This “cough center” functions to receive these impulses and produce a cough by activating efferent nervous pathways to the diaphragm and laryngeal, thoracic, and abdominal musculature. Drugs that suppress the neural activity of cough are non-specific as those treatments are not directed toward pathogenic causes such as inflammation and oxidative stress. Moreover, they block a reflex called the watchdog of the lung and have a defense mechanism. Acute respiratory infections of the upper and lower airways most commonly cause acute cough. In contrast, the most common causes of chronic cough are upper airway cough syndrome, asthma, and gastroesophageal reflux disease, all associated with an inflammatory reaction at the level of the cough receptors. The use of natural compounds or herbal drugs such as carob syrup, dry blackcurrant extract, dry extract of caraway fruit, dry extract of ginger rhizome, dry extract of marshmallow root, and dry extract of ivy leaves, to name a few, not only have anti-inflammatory and antioxidant activity, but also act as antimicrobials, bronchial muscle relaxants, and increase gastric motility and empty. For these reasons, these natural substances are widely used to control cough at its deep roots (i.e., contrasting its causes and not inhibiting the arch reflex). With this approach, the lung watchdog is not put to sleep, as with peripheral or central inhibition of the cough reflex, and by contrasting the causes, we may control cough that viruses use at self-advantage to increase transmission. Full article
(This article belongs to the Section Pediatric Drugs)
Show Figures

Figure 1

21 pages, 6519 KiB  
Review
Hypothalamic Neuromodulation of Hypothermia in Domestic Animals
by Daniel Mota-Rojas, Marcelo Daniel Ghezzi, Ismael Hernández-Ávalos, Adriana Domínguez-Oliva, Alejandro Casas-Alvarado, Pamela Anahí Lendez, María Carolina Ceriani and Dehua Wang
Animals 2024, 14(3), 513; https://doi.org/10.3390/ani14030513 - 4 Feb 2024
Cited by 5 | Viewed by 3507
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes [...] Read more.
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 3165 KiB  
Article
Acid-Sensing Ion Channels’ Immunoreactivity in Nerve Profiles and Glomus Cells of the Human Carotid Body
by Graciela Martínez-Barbero, Yolanda García-Mesa, Ramón Cobo, Patricia Cuendias, Benjamín Martín-Biedma, Olivia García-Suárez, Jorge Feito, Teresa Cobo and José A. Vega
Int. J. Mol. Sci. 2023, 24(24), 17161; https://doi.org/10.3390/ijms242417161 - 5 Dec 2023
Cited by 1 | Viewed by 1486
Abstract
The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 [...] Read more.
The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 are well known; conversely, the mechanisms by which it senses pH variations are almost unknown. Here, we used immunohistochemistry to investigate how the human carotid body contributes to the detection of acidosis, analyzing whether it expresses acid-sensing ion channels (ASICs) and determining whether these channels are in the chemosensory glomic cells or in the afferent nerves. In ASIC1, ASIC2, and ASIC3, and to a much lesser extent ASIC4, immunoreactivity was detected in subpopulations of type I glomus cells, as well as in the nerves of the carotid body. In addition, immunoreactivity was found for all ASIC subunits in the neurons of the petrosal and superior cervical sympathetic ganglia, where afferent and efferent neurons are located, respectively, innervating the carotid body. This study reports for the first time the occurrence of ASIC proteins in the human carotid body, demonstrating that they are present in glomus chemosensory cells (ASIC1 < ASIC2 > ASIC3 > ASIC4) and nerves, presumably in both the afferent and efferent neurons supplying the organ. These results suggest that the detection of acidosis by the carotid body can be mediated via the ASIC ion channels present in the type I glomus cells or directly via sensory nerve fibers. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 3601 KiB  
Article
EfferDeepNet: An Efficient Semantic Segmentation Method for Outdoor Terrain
by Yuhai Wei, Wu Wei and Yangbiao Zhang
Machines 2023, 11(2), 256; https://doi.org/10.3390/machines11020256 - 9 Feb 2023
Cited by 3 | Viewed by 2695
Abstract
The recognition of terrain and outdoor complex environments based on vision sensors is a key technology in practical robotics applications, and forms the basis of autonomous navigation and motion planning. While traditional machine learning methods can be applied to outdoor terrain recognition, their [...] Read more.
The recognition of terrain and outdoor complex environments based on vision sensors is a key technology in practical robotics applications, and forms the basis of autonomous navigation and motion planning. While traditional machine learning methods can be applied to outdoor terrain recognition, their recognition accuracy is low. In order to improve the accuracy of outdoor terrain recognition, methods based on deep learning are widely used. However, the network structure of deep learning methods is very complex, and the number of parameters is large, which cannot meet the actual operating requirements of of unmanned systems. Therefore, in order to solve the problems of poor real-time performance and low accuracy of deep learning algorithms for terrain recognition, this paper proposes the efficient EfferDeepNet network for pixel level terrain recognition in order to realize global perception of outdoor environment. First, this method uses convolution kernels with different sizes in the depthwise separable convolution (DSC) stage to extract more semantic feature information. Then, an attention mechanism is introduced to weight the acquired features, focusing on the key local feature areas. Finally, in order to avoid redundancy due to a large number of features and parameters in the model, this method uses a ghost module to make the network more lightweight. In addition, to solve the problem of pixel level terrain recognition having a negative effect on image boundary segmentation, the proposed method integrates an enhanced feature extraction network. Experimental results show that the proposed EfferDeepNet network can quickly and accurately perform global recognition and semantic segmentation of terrain in complex environments. Full article
(This article belongs to the Topic Intelligent Systems and Robotics)
Show Figures

Figure 1

18 pages, 2930 KiB  
Article
Auricular Vagus Nerve Stimulation Improves Visceral Hypersensitivity and Gastric Motility and Depression-like Behaviors via Vago-Vagal Pathway in a Rat Model of Functional Dyspepsia
by Liwei Hou, Peijing Rong, Yang Yang, Jiliang Fang, Junying Wang, Yu Wang, Jinling Zhang, Shuai Zhang, Zixuan Zhang, Jiande D. Z. Chen and Wei Wei
Brain Sci. 2023, 13(2), 253; https://doi.org/10.3390/brainsci13020253 - 1 Feb 2023
Cited by 15 | Viewed by 4717
Abstract
Transcutaneous auricular vagus nerve stimulation was recently reported to have a therapeutic potential for functional dyspepsia (FD). This study aimed to explore the integrative effects and mechanisms of auricular vagus nerve stimulation (aVNS) in a rodent model of FD. Methods: We evaluated the [...] Read more.
Transcutaneous auricular vagus nerve stimulation was recently reported to have a therapeutic potential for functional dyspepsia (FD). This study aimed to explore the integrative effects and mechanisms of auricular vagus nerve stimulation (aVNS) in a rodent model of FD. Methods: We evaluated the effects of aVNS on visceral hypersensitivity, gastric motility and open field test (OFT) activity in iodoacetamide (IA)-treated rats. The autonomic function was assessed; blood samples and tissues were collected and analyzed by an enzyme-linked immunosorbent assay and western blot. Vagotomy was performed to investigate the role of vagal efferent nerve. Results: aVNS reduced the electromyography response to gastric distension, improved gastric emptying and increased the horizontal and vertical motion scores of the OFT in IA-treated rats. The sympathovagal ratio was increased in IA-treated rats but normalized with aVNS. The serum cytokines TNF-α, IL-6, IL-1β and NF-κBp65 were increased in IA-treated rats and decreased with aVNS. The hypothalamus–pituitary–adrenal axis was hyperactive in IA-treated rats but inhibited by aVNS. The expression of duodenal desmoglein 2 and occludin were all decreased in IA-treated rats and increased with aVNS but not sham-aVNS. Vagotomy abolished the ameliorating effects of aVNS on gastric emptying, horizontal motions, serum TNF-α and duodenal NF-κBp65. Conclusion: aVNS improves gastric motility and gastric hypersensitivity probably by anti-inflammatory mechanisms via the vago-vagal pathways. A better understanding on the mechanisms of action involved with aVNS would lead to the optimization of the taVNS methodology and promote taVNS as a non-pharmacological alternative therapy for FD. Full article
(This article belongs to the Section Clinical Neuroscience)
Show Figures

Graphical abstract

18 pages, 5401 KiB  
Article
Oxaliplatin-Induced Damage to the Gastric Innervation: Role in Nausea and Vomiting
by Ahmed A. Rahman, Philenkosini Masango, Rhian Stavely, Paul Bertrand, Amanda Page and Kulmira Nurgali
Biomolecules 2023, 13(2), 276; https://doi.org/10.3390/biom13020276 - 1 Feb 2023
Cited by 9 | Viewed by 2939
Abstract
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of [...] Read more.
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of oxaliplatin treatment on the stomach. In this study, the in vivo effects of oxaliplatin treatment on eating behaviour, stomach content, intrinsic gastric neuronal population, extrinsic innervation to the stomach, levels of mucosal serotonin (5-hydroxytryptamine, 5-HT), and parasympathetic vagal efferent nerve activity were analysed. Chronic systemic oxaliplatin treatment in mice resulted in pica, indicated by increased kaolin consumption and a reduction in body weight. Oxaliplatin treatment significantly increased the stomach weight and content. The total number of myenteric and nitric oxide synthase-immunoreactive neurons as well as the density of sympathetic, parasympathetic, and sensory fibres in the stomach were decreased significantly with oxaliplatin treatment. Oxaliplatin treatment significantly increased the levels in mucosal 5-HT and the number of enterochromaffin-like cells. Chronic oxaliplatin treatment also caused a significant increase in the vagal efferent nerve activity. The findings of this study indicate that oxaliplatin exposure has adverse effects on multiple components of gastric innervation, which could be responsible for pica and gastric dysmotility. Full article
(This article belongs to the Special Issue Enteric Nervous System: Normal Functions and Enteric Neuropathies)
Show Figures

Figure 1

13 pages, 1058 KiB  
Article
Identification of Neural Mechanisms in First Single-Sweep Analysis in oVEMPs and Novel Normative Data
by Dietmar J. Hecker, Hans Scherer, Uwe Schönfeld, Laura Jerono, Armand Koch, Anna-Katharina Rink, Lisa Schulte-Goebel, Maximilian Linxweiler, Mathias Fousse, Alessandro Bozzato and Bernhard Schick
J. Clin. Med. 2022, 11(23), 7124; https://doi.org/10.3390/jcm11237124 - 30 Nov 2022
Cited by 2 | Viewed by 1540
Abstract
Background: Bone-conducted (BC) VEMPs provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice—small n10 amplitude and averaging technique. In this study, we present the results of a new VEMP setup measuring technique combined [...] Read more.
Background: Bone-conducted (BC) VEMPs provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice—small n10 amplitude and averaging technique. In this study, we present the results of a new VEMP setup measuring technique combined with a novel single-sweep analysis. Methods: The study included BC oVEMP data from 92 participants for the evaluation of normative data using a novel analysis technique. For evaluating test-retest reliability, the intraclass correlation coefficient (ICC) was used. Results: We found significant n10 amplitude differences in single-sweep analyses after the first and second measurements. Thereby, mathematical analyses of the head movement did not show any differences in the first or second measurements. The normative n10 amplitude was 20.66 µV with an asymmetric ratio (AR) of 7%. The new value of late shift difference (LSD) was 0.01 ms. The test retest-reliability showed good to excellent ICC results in 9 out of 10 measurements. Conclusions: Our results support a phenomenon in single-sweep analysis of the first stimuli independent of head movement and signal morphology. Furthermore, the values obtained with the new measurement method appear to be more sensitive and may allow an extended diagnostic range due to the new parameter LSD. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

Back to TopTop