Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant
Abstract
:1. Introduction: Angiotensin II as a Vasopressor
2. Abdominal Transplantation: Implications for Kidney and Liver Transplantation
2.1. Pathophysiologic/Hemodynamic Rationale for Use in Kidney Transplant
2.2. Available Angiotensin II Data in Kidney Transplant
2.3. Pathophysiologic/Hemodynamic Rationale for Use in Liver Transplant
2.4. Available Angiotensin II Data in Liver Transplant
3. Thoracic Transplantation: Implications for Heart and Lung Transplantation
3.1. Pathophysiologic/Hemodynamic Rationale for Use in Heart Transplant
3.2. Available Angiotensin II Data in Heart Transplant
3.3. Pathophysiologic/Hemodynamic Rationale for Use in Lung Transplant
3.4. Available Angiotensin II Data in Lung Transplant
Organ | Outcomes | Citation |
---|---|---|
Kidney | A pilot study of 20 KT patients receiving AT2S first line as a vasopressor. Median duration of AT2S usage was 1 h intraoperatively and 26.5 h postoperatively. Only one patient needed additional vasopressor support. No adverse events were reported. | [12] |
A propensity-matched study of 20 patients receiving AT2S compared to 20 patients receiving catecholamine vasopressors. Similar duration of intraoperative vasopressor usage, but longer median duration of total vasopressor usage, was found with AT2S (47.5 h versus 13.8 h; p = 0.05). Lower rates of arrhythmias with AT2S (5%) compared to catecholamine vasopressors (30%; p = 0.04). Similar allograft outcomes. | [33] | |
A retrospective study comparing 56 AT2S patients to 49 phenylephrine (PE) patients with perioperative hypotension surrounding KT. Median (IQR) duration of vasopressor use was 12.8 (2.82–52.0) h in the AT2S group compared to 13.7 (2.72–32.8) h in the phenylephrine group (p = 0.646). There was a decreased need for additional vasopressors when using AT2S as the primary vasopressor compared to PE (2 [3.6%] vs. 18 [36.7%]; p < 0.001). There was an observed benefit regarding rates of DGF in patients with prolonged CIT (greater than 14 h) receiving AT2S (22.7%) versus PE (58.3%; p = 0.045). | [34] | |
Liver | A case report of a 34-year-old female with vasoplegic shock syndrome after an orthotopic heart transplant and combined deceased donor LT. AT2S initiated at 20 ng/kg/min, restoring systemic pressures within minutes, and allowing successful myectomy and tricuspid valve repair. | [63] |
A case report of a patient on three vasopressors due to intraabdominal abscess preceding LT. AT2S started at 10 ng/kg/min for refractory shock, which allowed for down-titration of background vasopressors, providing hemodynamic stability for LT. The result led to successful LT, weaning off vasopressors within 32 h, and discharge from the hospital within 2 weeks. | [53] | |
A randomized controlled study is underway evaluating AT2S as a second-line intraoperative vasopressor during deceased donor LT. The study drug infusion is initiated on reaching a norepinephrine dose of 0.05 µg/kg/min and titrated per protocol. The primary outcome is the dose of norepinephrine required to maintain a mean arterial pressure ≥65 mm Hg. Secondary outcomes include vasopressin or epinephrine requirement and duration of hypotension. Safety outcomes include incidence of thromboembolism within 48 h of the end of surgery and severe hypertension. | [54] | |
Heart | A trial of 16 subjects in the ATHOS-3 study treated with AT2S or standard of care for vasoplegic syndrome post-cardiothoracic surgery. Mean arterial pressure response was achieved in 8 (88.9%) patients in the angiotensin II group compared with 0 (0%) patients in the placebo group (p = 0.0021). At 12 h, the median background vasopressor dose had decreased from baseline by 76.5% in the AT2S group compared with an increase of 7.8% in the standard of care group (p = 0.0013). No venous or arterial thrombotic events were reported. | [71] |
Post-marketing study, of which 28 subjects had postoperative vasoplegia treated with AT2S. Nearly 2/3 reached a MAP of 65 or greater within 3 h. Improved 30-day survival was observed in patients who responded to AT2S infusions. | [76] | |
A feasibility study of 60 subjects comparing AT2S to NE infusion in cardiac surgery and heart transplant patients reported achieving similar MAP without increased adverse outcomes. Study drug duration was median (IQR (range)) 217 min (160–270) vs. 185 min (135–301 (0–480)) (p = 0.78) intraoperatively, and 5 h (0–16 (0–48)) vs. 14.5 h (4.8–29 (0–48)) (p = 0.075) postoperatively for AT2S and NE, respectively. The mean arterial pressure target was achieved postoperatively in 25 of 28 (89%) of the AT2S group and 27 of 32 (84%) of the NE group. There was a trend toward reduced AKI and shorter hospital stay in AT2S group. | [78] | |
Lung | A case series including one patient receiving a bilateral lung transplant. Following anti-thymocyte globulin administration, a patient developed vasodilatory shock, necessitating rapid catecholamine escalation despite multiple vasopressors and adjunct agents. AT2S was cautiously initiated at 10 ng/kg/min to prevent worsening pulmonary hypertension. Despite concerns, central venous pressure remained stable. AT2S promptly restored blood pressure, allowing for down-titration of background vasopressors, suggesting potential efficacy in managing post-CPB vasoplegic shock in lung transplant recipients. | [74] |
4. Additional Considerations and Future Directions
4.1. Cost Considerations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giapreza [Package Insert]. La Jolla Pharmaceuticals. Revised November 2023. Available online: https://www.giapreza.com (accessed on 16 July 2024).
- Brunton, L.L.; Knollmann, B.r.C. Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 4th ed.; McGraw Hill: New York, NY, USA, 2023; p. xviii. 1645p. [Google Scholar]
- Rodriguez, R.; Cucci, M.; Kane, S.; Fernandez, E.; Benken, S. Novel Vasopressors in the Treatment of Vasodilatory Shock: A Systematic Review of Angiotensin II, Selepressin, and Terlipressin. J. Intensive Care Med. 2020, 35, 327–337. [Google Scholar] [CrossRef]
- Romero, C.A.; Carretero, O.A. A Novel Mechanism of Renal Microcirculation Regulation: Connecting Tubule-Glomerular Feedback. Curr. Hypertens. Rep. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Sacha, G.L.; Bauer, S.R.; Lat, I. Vasoactive Agent Use in Septic Shock: Beyond First-Line Recommendations. Pharmacotherapy 2019, 39, 369–381. [Google Scholar] [CrossRef]
- Alenina, N.; Bader, M. ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochem. Res. 2019, 44, 1323–1329. [Google Scholar] [CrossRef]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef]
- Bellomo, R.; Forni, L.G.; Busse, L.W.; McCurdy, M.T.; Ham, K.R.; Boldt, D.W.; Hastbacka, J.; Khanna, A.K.; Albertson, T.E.; Tumlin, J.; et al. Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock. A Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Tumlin, J.A.; Murugan, R.; Deane, A.M.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.R.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef]
- Bezinover, D.; Mukhtar, A.; Wagener, G.; Wray, C.; Blasi, A.; Kronish, K.; Zerillo, J.; Tomescu, D.; Pustavoitau, A.; Gitman, M.; et al. Hemodynamic Instability During Liver Transplantation in Patients With End-stage Liver Disease: A Consensus Document from ILTS, LICAGE, and SATA. Transplantation 2021, 105, 2184–2200. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Andrews, L.; Benken, J.; Benedetti, E.; Nishioka, H.; Pierce, D.; Dalton, K.; Han, J.; Shin, B.; Benken, S. Effects of angiotensin II in the management of perioperative hypotension in kidney transplant recipients. Clin. Transplant. 2022, 36, e14754. [Google Scholar] [CrossRef]
- Choi, J.M.; Jo, J.Y.; Baik, J.W.; Kim, S.; Kim, C.S.; Jeong, S.M. Risk factors and outcomes associated with a higher use of inotropes in kidney transplant recipients. Medicine 2017, 96, e5820. [Google Scholar] [CrossRef]
- Ciapetti, M.; di Valvasone, S.; di Filippo, A.; Cecchi, A.; Bonizzoli, M.; Peris, A. Low-dose dopamine in kidney transplantation. Transplant. Proc. 2009, 41, 4165–4168. [Google Scholar] [CrossRef]
- Robert, R.; Guilhot, J.; Pinsard, M.; Longeard, P.L.; Jacob, J.P.; Gissot, V.; Hauet, T.; Seguin, F. A pair analysis of the delayed graft function in kidney recipient: The critical role of the donor. J. Crit. Care 2010, 25, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, N.K.; Garg, K.; Bose, A.; Aulakh, B.S.; Chahal, H.S.; Aulakh, G.S. Influence of hemodynamics and intra-operative hydration on biochemical outcome of renal transplant recipients. J. Anaesthesiol. Clin. Pharmacol. 2015, 31, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Pinsky, M.R. Personalizing blood pressure management in septic shock. Ann. Intensive Care 2015, 5, 41. [Google Scholar] [CrossRef]
- Busse, L.W.; Ostermann, M. Vasopressor Therapy and Blood Pressure Management in the Setting of Acute Kidney Injury. Semin. Nephrol. 2019, 39, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Pratschke, J.; Tullius, S.G.; Neuhaus, P. Brain death associated ischemia/reperfusion injury. Ann. Transplant. 2004, 9, 78–80. [Google Scholar] [CrossRef]
- Pratschke, J.; Wilhelm, M.J.; Kusaka, M.; Beato, F.; Milford, E.L.; Hancock, W.W.; Tilney, N.L. Accelerated rejection of renal allografts from brain-dead donors. Ann. Surg. 2000, 232, 263–271. [Google Scholar] [CrossRef]
- Smith, S.F.; Hosgood, S.A.; Nicholson, M.L. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells. Kidney Int. 2019, 95, 50–56. [Google Scholar] [CrossRef]
- Benken, J.; Lichvar, A.; Benedetti, E.; Behnam, J.; Kaur, A.; Rahman, S.; Nishioka, H.; Hubbard, C.; Benken, S.T. Perioperative Vasopressors are Associated with Delayed Graft Function in Kidney Transplant Recipients in a Primarily Black and Hispanic Cohort. Prog. Transplant. 2022, 32, 167–173. [Google Scholar] [CrossRef]
- Day, K.M.; Beckman, R.M.; Machan, J.T.; Morrissey, P.E. Efficacy and safety of phenylephrine in the management of low systolic blood pressure after renal transplantation. J. Am. Coll. Surg. 2014, 218, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, A6–A7. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.C. The Angiotensin-(1-7) Axis: Formation and Metabolism Pathways. In Angiotensin-(1-7); Springer: Cham, Switzerland, 2019; pp. 1–26. [Google Scholar] [CrossRef]
- Chou, Y.; Chu, T.; Lin, S. Role of renin-angiotensin system in acute kidney injury-chronic kidney disease transition. Nephrology 2018, 23, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Csohany, R.; Prokai, A.; Sziksz, E.; Balicza-Himer, L.; Pap, D.; Kosik, A.; Sugar, D.; Vannay, A.; Kis-Petik, K.; Fekete, A.; et al. Sex differences in renin response and changes of capillary diameters after renal ischemia/reperfusion injury. Pediatr. Transplant. 2016, 20, 619–626. [Google Scholar] [CrossRef]
- Stangl, M.; Zerkaulen, T.; Theodorakis, J.; Illner, W.; Schneeberger, H.; Land, W.; Faist, E. Influence of brain death on cytokine release in organ donors and renal transplants. Transplant. Proc. 2001, 33, 1284–1285. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.V.; Lunsford, K.E.; Kuo, P.C. Innate pathways of immune activation in transplantation. J. Transplant. 2010, 2010, 826240. [Google Scholar] [CrossRef]
- Pratschke, J.; Wilhelm, M.J.; Kusaka, M.; Basker, M.; Cooper, D.K.; Hancock, W.W.; Tilney, N.L. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 1999, 67, 343–348. [Google Scholar] [CrossRef]
- Chow, J.H.; Galvagno, S.M., Jr.; Tanaka, K.A.; Mazzeffi, M.A.; Chancer, Z.; Henderson, R.; McCurdy, M.T. When All Else Fails: Novel Use of Angiotensin II for Vasodilatory Shock: A Case Report. A&A Pract. 2018, 11, 175–180. [Google Scholar] [CrossRef]
- Irish, W.D.; Ilsley, J.N.; Schnitzler, M.A.; Feng, S.; Brennan, D.C. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am. J. Transplant. 2010, 10, 2279–2286. [Google Scholar] [CrossRef]
- Urias, G.; Benken, J.; Lichvar, A.; Pierce, D.; Andrews, L.; Dalton, K.; Datta, A.; Nishioka, H.; Benedetti, E.; Benken, S. Efficacy and Safety of Angiotensin II Compared to Catecholamine Vasopressors as a First-Line Vasopressor for Perioperative Hypotension in Kidney Transplant Recipients. Am. J. Transplant. 2022, 22, 681–682. [Google Scholar]
- Beltran, L.; Benken, J.; Jou, J.; Benedetti, E.; Nishioka, H.; Alamreia, E.; Belcher, R.; Benken, S. Efficacy and safety of perioperative angiotensin II versus phenylephrine as a first-line continuous infusion vasopressor in kidney transplant recipients. Clin. Transplant. 2024. accepted, in production. [Google Scholar]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B.; On behalf of the American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing; Cardiovascular, C.O.; Nursing, S. Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E214–E233. [Google Scholar] [CrossRef] [PubMed]
- Abbott, K.C.; Reynolds, J.C.; Taylor, A.J.; Agodoa, L.Y. Hospitalized atrial fibrillation after renal transplantation in the United States. Am. J. Transplant. 2003, 3, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Schnitzler, M.A.; Abbott, K.C.; Li, L.; Xiao, H.; Burroughs, T.E.; Takemoto, S.K.; Willoughby, L.M.; Gavard, J.A.; Brennan, D.C. Incidence, predictors, and associated outcomes of atrial fibrillation after kidney transplantation. Clin. J. Am. Soc. Nephrol. 2006, 1, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Sébille, V.; Duboc, D.; Le Heuzey, J.-Y.; Sadoul, N.; Bouvier, E.; Bellissant, E. Incidence and Prognosis of Sustained Arrhythmias in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2008, 178, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Kanji, S.; Williamson, D.R.; Yaghchi, B.M.; Albert, M.; McIntyre, L.; Canadian Critical Care Trials Group. Epidemiology and management of atrial fibrillation in medical and noncardiac surgical adult intensive care unit patients. J. Crit. Care 2012, 27, 326.e1–326.e8. [Google Scholar] [CrossRef]
- Shaver, C.M.; Chen, W.; Janz, D.R.; May, A.K.; Darbar, D.; Bernard, G.R.; Bastarache, J.A.; Ware, L.B. Atrial Fibrillation Is an Independent Predictor of Mortality in Critically Ill Patients. Crit. Care Med. 2015, 43, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Adelmann, D.; Kronish, K.; Ramsay, M.A. Anesthesia for Liver Transplantation. Anesthesiol. Clin. 2017, 35, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.H.; Abuelkasem, E.; Sankova, S.; Henderson, R.A.; Mazzeffi, M.A.; Tanaka, K.A. Reversal of Vasodilatory Shock: Current Perspectives on Conventional, Rescue, and Emerging Vasoactive Agents for the Treatment of Shock. Anesth. Analg. 2020, 130, 15–30. [Google Scholar] [CrossRef]
- Shaefi, S.; Mittel, A.; Klick, J.; Evans, A.; Ivascu, N.S.; Gutsche, J.; Augoustides, J.G.T. Vasoplegia After Cardiovascular Procedures-Pathophysiology and Targeted Therapy. J. Cardiothorac. Vasc. Anesth. 2018, 32, 1013–1022. [Google Scholar] [CrossRef]
- Deng, J.; Li, L.; Feng, Y.; Yang, J. Comprehensive Management of Blood Pressure in Patients with Septic AKI. J. Clin. Med. 2023, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.-L. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, W.F.; Um, K.J.; Alhazzani, W.; Lengyel, A.P.; Hajjar, L.; Gordon, A.C.; Lamontagne, F.; Healey, J.S.; Whitlock, R.P.; Belley-Côté, E.P. Association of Vasopressin Plus Catecholamine Vasopressors vs Catecholamines Alone With Atrial Fibrillation in Patients With Distributive Shock. JAMA 2018, 319, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Myburgh, J.A.; Higgins, A.; Jovanovska, A.; Lipman, J.; Ramakrishnan, N.; Santamaria, J.; the CAT Study investigators. A comparison of epinephrine and norepinephrine in critically ill patients. Intensiv. Care Med. 2008, 34, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.M.; Trizna, W.; Kinter, L.B. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 1989, 256, F274–F278. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef]
- Russell, J.A. Bench-to-bedside review: Vasopressin in the management of septic shock. Crit. Care 2009, 15, 226. [Google Scholar] [CrossRef]
- An, S.S.; Henson, C.P.; Freundlich, R.E.; McEvoy, M.D. Case report of high-dose hydroxocobalamin in the treatment of vasoplegic syndrome during liver transplantation. Am. J. Transplant. 2018, 18, 1552–1555. [Google Scholar] [CrossRef]
- Ibarra-Estrada, M.; Kattan, E.; Aguilera-Gonzalez, P.; Sandoval-Plascencia, L.; Rico-Jauregui, U.; Gomez-Partida, C.A.; Ortiz-Macias, I.X.; Lopez-Pulgarin, J.A.; Chavez-Pena, Q.; Mijangos-Mendez, J.C.; et al. Early adjunctive methylene blue in patients with septic shock: A randomized controlled trial. Crit. Care 2023, 27, 110. [Google Scholar] [CrossRef]
- Patel, J.J.; Willoughby, R.; Peterson, J.; Carver, T.; Zelten, J.; Markiewicz, A.; Spiegelhoff, K.; Hipp, L.A.; Canales, B.; Szabo, A.; et al. High-Dose IV Hydroxocobalamin (Vitamin B12) in Septic Shock. Chest 2022, 163, 303–312. [Google Scholar] [CrossRef]
- Bokoch, M.P.; Tran, A.T.; Brinson, E.L.; Marcus, S.G.; Reddy, M.; Sun, E.; Roll, G.R.; Pardo, M.; Fields, S.; Adelmann, D.; et al. Angiotensin II in liver transplantation (AngLT-1): Protocol of a randomised, double-blind, placebo-controlled trial. BMJ Open 2023, 13, e078713. [Google Scholar] [CrossRef]
- Hannon, V.; Kothari, R.P.; Zhang, L.; Bokoch, M.P.; Hill, R.; Roll, G.R.; Mello, A.; Feiner, J.R.; Liu, K.D.; Niemann, C.U.; et al. The Association Between Vena Cava Implantation Technique and Acute Kidney Injury After Liver Transplantation. Transplantation 2020, 104, e308–e316. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, I.A.; Damian, D.; Al-Khafaji, A.; Planinsic, R.; Boucek, C.; Sakai, T.; Chang, C.C.; Kellum, J.A. Acute kidney injury following orthotopic liver transplantation: Incidence, risk factors, and effects on patient and graft outcomes. Br. J. Anaesth. 2015, 114, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Karapanagiotou, A.; Dimitriadis, C.; Papadopoulos, S.; Kydona, C.; Kefsenidis, S.; Papanikolaou, V.; Gritsi-Gerogianni, N. Comparison of RIFLE and AKIN criteria in the evaluation of the frequency of acute kidney injury in post-liver transplantation patients. Transplant. Proc. 2014, 46, 3222–3227. [Google Scholar] [CrossRef]
- Casey, S.; Schierwagen, R.; Mak, K.Y.; Klein, S.; Uschner, F.; Jansen, C.; Praktiknjo, M.; Meyer, C.; Thomas, D.; Herath, C.; et al. Activation of the Alternate Renin-Angiotensin System Correlates with the Clinical Status in Human Cirrhosis and Corrects Post Liver Transplantation. J. Clin. Med. 2019, 8, 419. [Google Scholar] [CrossRef]
- Shim, K.Y.; Eom, Y.W.; Kim, M.Y.; Kang, S.H.; Baik, S.K. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J. Intern. Med. 2018, 33, 453–461. [Google Scholar] [CrossRef]
- Grace, J.A.; Klein, S.; Herath, C.B.; Granzow, M.; Schierwagen, R.; Masing, N.; Walther, T.; Sauerbruch, T.; Burrell, L.M.; Angus, P.W.; et al. Activation of the MAS receptor by angiotensin-(1-7) in the renin-angiotensin system mediates mesenteric vasodilatation in cirrhosis. Gastroenterology 2013, 145, 874–884.e5. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, M.; Sacerdoti, D.; Bombonato, G.; Merkel, C.; Sartori, G.; Merenda, R.; Nava, V.; Angeli, P.; Feltracco, P.; Gatta, A. Change in portal flow after liver transplantation: Effect on hepatic arterial resistance indices and role of spleen size. Hepatology 2002, 35, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Running, K.; Weinberg, D.; Trudo, W.; Sullivan, C.L.; Patel, G.P. Intraoperative Use of Angiotensin II for Severe Vasodilatory Shock During Liver Transplantation: A Case Report. A&A Pract. 2021, 15, e01402. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Sims, C.R.; Daly, R.C.; Taner, T.; Wittwer, E.D. Use of Angiotensin II for Vasoplegic Shock in a Combined Heart and Liver Transplant Recipient with Systolic Anterior Motion Physiology. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2366–2367. [Google Scholar] [CrossRef]
- Derrick, J.R.; Anderson, J.R.; Roland, B.J. Adjunctive use of a biologic pressor agent, angiotensin, in management of shock. Circulation 1962, 25, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Metsarinne, K.; Forslund, T.; Teppo, A.M.; Simonsen, S.; Fyhrquist, F. Increased plasma angiotensinogen in cardiac transplantation patients. Eur. J. Med. 1993, 2, 333–338. [Google Scholar]
- Thaker, U.; Geary, V.; Chalmers, P.; Sheikh, F. Low systemic vascular resistance during cardiac surgery: Case reports, brief review, and management with angiotensin II. J. Cardiothorac. Anesth. 1990, 4, 360–363. [Google Scholar] [CrossRef] [PubMed]
- van Vessem, M.E.; Palmen, M.; Couperus, L.E.; Mertens, B.; Berendsen, R.R.; Tops, L.F.; Verwey, H.F.; de Jonge, E.; Klautz, R.J.; Schalij, M.J.; et al. Incidence and predictors of vasoplegia after heart failure surgery. Eur. J. Cardiothorac. Surg. 2017, 51, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Busse, L.W.; Barker, N.; Petersen, C. Vasoplegic syndrome following cardiothoracic surgery-review of pathophysiology and update of treatment options. Crit. Care 2020, 24, 36. [Google Scholar] [CrossRef] [PubMed]
- Dayan, V.; Cal, R.; Giangrossi, F. Risk factors for vasoplegia after cardiac surgery: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Argenziano, M.; Chen, J.M.; Choudhri, A.F.; Cullinane, S.; Garfein, E.; Weinberg, A.D.; Smith, C.R., Jr.; Rose, E.A.; Landry, D.W.; Oz, M.C. Management of vasodilatory shock after cardiac surgery: Identification of predisposing factors and use of a novel pressor agent. J. Thorac. Cardiovasc. Surg. 1998, 116, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Klijian, A.; Khanna, A.K.; Reddy, V.S.; Friedman, B.; Ortoleva, J.; Evans, A.S.; Panwar, R.; Kroll, S.; Greenfeld, C.R.; Chatterjee, S. Treatment With Angiotensin II Is Associated With Rapid Blood Pressure Response and Vasopressor Sparing in Patients With Vasoplegia After Cardiac Surgery: A Post-Hoc Analysis of Angiotensin II for the Treatment of High-Output Shock (ATHOS-3) Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Cutler, N.S.; Rasmussen, B.M.; Bredeck, J.F.; Lata, A.L.; Khanna, A.K. Angiotensin II for Critically Ill Patients With Shock After Heart Transplant. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2756–2762. [Google Scholar] [CrossRef]
- Evans, A.; McCurdy, M.T.; Weiner, M.; Zaku, B.; Chow, J.H. Use of Angiotensin II for Post Cardiopulmonary Bypass Vasoplegic Syndrome. Ann. Thorac. Surg. 2019, 108, e5–e7. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Radosevich, M.A.; Kashani, K.B.; Daly, R.C.; Wittwer, E.D. Synthetic Human Angiotensin II for Postcardiopulmonary Bypass Vasoplegic Shock. J. Cardiothorac. Vasc. Anesth. 2019, 33, 3080–3084. [Google Scholar] [CrossRef] [PubMed]
- Sovic, W.; Mathew, C.; Blough, B.; Monday, K.A.; Sam, T.; Zafar, H.; Guerrero-Miranda, C.; Sherwood, M.; Hebert, C.; Hall, S.; et al. Angiotensin II: A Multimodal Approach to Vasoplegia in a Cardiac Setting. Methodist Debakey Cardiovasc. J. 2021, 17, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Wieruszewski, P.M.; Wittwer, E.D.; Kashani, K.B.; Brown, D.R.; Butler, S.O.; Clark, A.M.; Cooper, C.J.; Davison, D.L.; Gajic, O.; Gunnerson, K.J.; et al. Angiotensin II Infusion for Shock. Chest 2020, 159, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Tidwell, W.; McRae, A.; Henson, C.P.; Hernandez, A. Angiotensin-II for vasoplegia following cardiac surgery. Perfusion 2023, 02676591231215920. [Google Scholar] [CrossRef] [PubMed]
- Coulson, T.G.; Miles, L.F.; Serpa Neto, A.; Pilcher, D.; Weinberg, L.; Landoni, G.; Zarbock, A.; Bellomo, R. A double-blind randomised feasibility trial of angiotensin-2 in cardiac surgery. Anaesthesia 2022, 77, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Brink, M.; Chrast, J.; Price, S.R.; Mitch, W.E.; Delafontaine, P. Angiotensin II stimulates gene expression of cardiac insulin-like growth factor I and its receptor through effects on blood pressure and food intake. Hypertension 1999, 34, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Geenen, D.L.; Malhotra, A.; Scheuer, J. Angiotensin II increases cardiac protein synthesis in adult rat heart. Am. J. Physiol. 1993, 265, H238–H243. [Google Scholar] [CrossRef]
- Verma, K.; Pant, M.; Paliwal, S.; Dwivedi, J.; Sharma, S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front. Pharmacol. 2021, 12, 734917. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, J.M.; Singh, S.K.; Reitz, B.A.; Zamanian, R.T.; Mallidi, H.R. Single- vs double-lung transplantation in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis since the implementation of lung allocation based on medical need. JAMA 2015, 313, 936–948. [Google Scholar] [CrossRef]
- Valapour, M.; Lehr, C.J.; Schladt, D.P.; Smith, J.M.; Swanner, K.; Weibel, C.J.; Weiss, S.; Snyder, J.J. OPTN/SRTR 2022 Annual Data Report: Lung. Am. J. Transplant. 2024, 24, S394–S456. [Google Scholar] [CrossRef]
- Murphy, A.M.; Wong, A.L.; Bezuhly, M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenesis Tissue Repair. 2015, 8, 7. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Chen, B.; Meliton, A.; Liu, S.Q.; Shi, Y.; Liu, T.; Deb, D.K.; Solway, J.; Li, Y.C. Chronic Activation of the Renin-Angiotensin System Induces Lung Fibrosis. Sci. Rep. 2015, 5, 15561. [Google Scholar] [CrossRef] [PubMed]
- Berra, G.; Farkona, S.; Mohammed-Ali, Z.; Kotlyar, M.; Levy, L.; Clotet-Freixas, S.; Ly, P.; Renaud-Picard, B.; Zehong, G.; Daigneault, T.; et al. Association between the renin–angiotensin system and chronic lung allograft dysfunction. Eur. Respir. J. 2021, 58, 2002975. [Google Scholar] [CrossRef]
- Nataatmadja, M.; Passmore, M.; Russell, F.D.; Prabowo, S.; Corley, A.; Fraser, J.F. Angiotensin receptors as sensitive markers of acute bronchiole injury after lung transplantation. Lung 2014, 192, 563–569. [Google Scholar] [CrossRef]
- Kim, D.W.; Tsapepas, D.; King, K.L.; Husain, S.A.; Corvino, F.A.; Dillon, A.; Wang, W.; Mayne, T.J.; Mohan, S. Financial impact of delayed graft function in kidney transplantation. Clin. Transplant. 2020, 34, e14022. [Google Scholar] [CrossRef] [PubMed]
- Almassi, G.H.; Wagner, T.H.; Carr, B.; Hattler, B.; Collins, J.F.; Quin, J.A.; Ebrahimi, R.; Grover, F.L.; Bishawi, M.; Shroyer, A.L.; et al. Postoperative atrial fibrillation impacts on costs and one-year clinical outcomes: The Veterans Affairs Randomized On/Off Bypass Trial. Ann. Thorac. Surg. 2015, 99, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Van Matre, E.T.; Rice, P.J.; Wempe, M.F.; Lyda, C.; McAlwee, T.; Larkin, M.; Kiser, T.H. Extended Stability of Vasopressin Injection in Polyvinyl Chloride Bags and Polypropylene Syringes and Its Impact on Critically Ill Patient Care and Medication Waste. Hosp. Pharm. 2023, 58, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Belcher, R.; Mashhad, S.; Dahlquist, A.; Johnson, J.J.; Dangi, B.; Benedetti, E.; Benken, J.; Benken, S.T. Characterizing the Stability of Angiotensin II in 0.9% Sodium Chloride Using High Performance Liquid Chromatography and Liquid Chromatography Tandem Mass Spectrometry. Hosp. Pharm. 2024, 59, 198–201. [Google Scholar] [CrossRef]
- Chow, J.H.; Wallis, M.; Lankford, A.S.; Chancer, Z.; Barth, R.N.; Scalea, J.R.; LaMattina, J.C.; Mazzeffi, M.A.; McCurdy, M.T. Treatment of Renin-Angiotensin-Aldosterone System Dysfunction With Angiotensin II in High-Renin Septic Shock. Semin. Cardiothorac. Vasc. Anesth. 2021, 25, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Meersch, M.; Weiss, R.; Massoth, C.; Kullmar, M.; Saadat-Gilani, K.; Busen, M.; Chawla, L.; Landoni, G.; Bellomo, R.; Gerss, J.; et al. The Association Between Angiotensin II and Renin Kinetics in Patients After Cardiac Surgery. Anesth. Analg. 2022, 134, 1002–1009. [Google Scholar] [CrossRef]
Vasopressor | Cost * |
---|---|
Norepinephrine | USD 0.21 |
Epinephrine | USD 3.39 |
Dopamine | USD 0.37 |
Phenylephrine | USD 0.49 |
Vasopressin | USD 115.92 |
Angiotensin II | USD 90.72 |
Terlipressin | USD 27.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benken, S.T.; Thomas, R.; Fraidenburg, D.R.; Benken, J.J. Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant. Biomedicines 2024, 12, 1817. https://doi.org/10.3390/biomedicines12081817
Benken ST, Thomas R, Fraidenburg DR, Benken JJ. Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant. Biomedicines. 2024; 12(8):1817. https://doi.org/10.3390/biomedicines12081817
Chicago/Turabian StyleBenken, Scott T., Riya Thomas, Dustin R. Fraidenburg, and Jamie J. Benken. 2024. "Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant" Biomedicines 12, no. 8: 1817. https://doi.org/10.3390/biomedicines12081817
APA StyleBenken, S. T., Thomas, R., Fraidenburg, D. R., & Benken, J. J. (2024). Angiotensin II as a Vasopressor for Perioperative Hypotension in Solid Organ Transplant. Biomedicines, 12(8), 1817. https://doi.org/10.3390/biomedicines12081817