Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,674)

Search Parameters:
Keywords = effective stability condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11737 KB  
Article
Comparative Evaluation of SNO and Double Difference Calibration Methods for FY-3D MERSI TIR Bands Using MODIS/Aqua as Reference
by Shufeng An, Fuzhong Weng, Xiuzhen Han and Chengzhi Ye
Remote Sens. 2025, 17(19), 3353; https://doi.org/10.3390/rs17193353 (registering DOI) - 2 Oct 2025
Abstract
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous [...] Read more.
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous Nadir Overpass (SNO) and Double Difference (DD)—for the thermal infrared (TIR) bands of FY-3D MERSI. MODIS/Aqua serves as the reference sensor, while radiative transfer simulations driven by ERA5 inputs are generated with the Advanced Radiative Transfer Modeling System (ARMS) to support the analysis. The results show that SNO performs effectively when matchup samples are sufficiently large and globally representative but is less applicable under sparse temporal sampling or orbital drift. In contrast, the DD method consistently achieves higher calibration accuracy for MERSI Bands 24 and 25 under clear-sky conditions. It reduces mean biases from ~−0.5 K to within ±0.1 K and lowers RMSE from ~0.6 K to 0.3–0.4 K during 2021–2022. Under cloudy conditions, DD tends to overcorrect because coefficients derived from clear-sky simulations are not directly transferable to cloud-covered scenes, whereas SNO remains more stable though less precise. Overall, the results suggest that the two methods exhibit complementary strengths, with DD being preferable for high-accuracy calibration in clear-sky scenarios and SNO offering greater stability across variable atmospheric conditions. Future work will validate both methods under varied surface and atmospheric conditions and extend their use to additional sensors and spectral bands. Full article
Show Figures

Figure 1

18 pages, 2583 KB  
Article
A Numerical Study on the Seakeeping Performance and Ride Comfort of a Small MonoHull Vessel With and Without Hydrofoil in Regular Head Seas
by Jungeun Kim, Woojun Oh and Wook Kwon
J. Mar. Sci. Eng. 2025, 13(10), 1895; https://doi.org/10.3390/jmse13101895 - 2 Oct 2025
Abstract
This study numerically investigates the effect of hydrofoil installation on the motion responses and ride comfort of a 20 m monohull vessel operating at 10 knots in regular waves. Linear seakeeping analysis (Maxsurf Motions) and nonlinear computational fluid dynamics (CFD) simulations (STAR-CCM+) are [...] Read more.
This study numerically investigates the effect of hydrofoil installation on the motion responses and ride comfort of a 20 m monohull vessel operating at 10 knots in regular waves. Linear seakeeping analysis (Maxsurf Motions) and nonlinear computational fluid dynamics (CFD) simulations (STAR-CCM+) are performed to compute response-amplitude operators (RAOs); for the bare hull, the two methods agree within 5%, confirming methodological reliability. The CFD results show that hydrofoils reduce heave and pitch amplitudes by approximately 16% on average. Motion Sickness Incidence (MSI) analysis indicates negligible seasickness under Gentle Breeze conditions, even during prolonged exposure; under Moderate conditions, no seasickness is predicted within 30 min across all encounter frequencies. Although linear analysis cannot directly estimate MSI for hydrofoil-fitted cases, the observed reductions in RAOs imply improved ride comfort. Overall, these findings demonstrate that hydrofoils can enhance motion stability and passenger comfort in small, low-speed vessels, providing quantitative evidence to support design applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

16 pages, 3568 KB  
Article
Delineation and Application of Gas Geological Units for Optimized Large-Scale Gas Drainage in the Baode Mine
by Shuaiyin He, Xinjiang Luo, Jinbo Zhang, Zenghui Zhang, Peng Li and Huazhou Huang
Energies 2025, 18(19), 5237; https://doi.org/10.3390/en18195237 - 2 Oct 2025
Abstract
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units [...] Read more.
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units (GGUs), aiming to identify regions suitable for large-scale gas extraction. The results indicate that the overall structure of the No. 8 coal seam is a simple monocline. Both gas content (ranging from 2.0 to 7.0 m3/t) and gas pressure (ranging from 0.2 to 0.65 MPa) generally increase with burial depth. However, local anomalies in these parameters, caused by geological structures and hydrogeological conditions, significantly limit the effectiveness of large-scale drainage using ultra-long boreholes. Based on key criteria, the seam was classified into three Grade I and ten Grade II GGUs, distinguishing anomalous zones from homogeneous units. Among the Grade II units, eight (II-i to II-viii) were identified as anomalous zones with distinct geological constraints, while two (II-ix and II-x) exhibited homogeneous gas geological parameters. Practical implementation of large-scale gas extraction strategies—including underground ultra-long boreholes and a U-shaped surface well—within the homogeneous Unit II-x demonstrated significantly improved gas drainage performance, characterized by higher methane concentration, greater flow rate, enhanced temporal stability, and more favorable decay characteristics compared to conventional boreholes. These findings confirm the critical role of GGU delineation in guiding efficient regional gas control and ensuring safe production in similar high-gas coal mines. Full article
Show Figures

Figure 1

13 pages, 2731 KB  
Article
Suitability of Polyacrylamide-Based Dosimetric Gel for Proton and Carbon Ion Beam Geometric Characterization
by Riccardo Brambilla, Luca Trombetta, Gabriele Magugliani, Stefania Russo, Alessia Bazani, Eleonora Rossi, Eros Mossini, Elena Macerata, Francesco Galluccio, Mario Mariani and Mario Ciocca
Gels 2025, 11(10), 794; https://doi.org/10.3390/gels11100794 - 2 Oct 2025
Abstract
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in [...] Read more.
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in performing geometric beam characterizations for hadron therapy under high-quenching conditions. Different extraction energies of proton and carbon ion beams were considered. Gel dose–response linearity and long-term stability were confirmed through optical measurements. Gel phantoms were irradiated with pencil beams and analyzed via magnetic resonance imaging. A multi-echo T2-weighted sequence was used to reconstruct depth–dose profiles and transversal distributions acquired by the gels, which were benchmarked against reference data. As expected, a response-quenching effect in the Bragg peak region was noted. Nonetheless, the studied gel formulation proved reliable in acquiring the geometric characteristics of the beams, even without correcting for the quenching effect. Indeed, depth–dose distributions acquired by the gels showed an excellent agreement with measured particle range with respect to reference values, with mean discrepancies of 0.5 ± 0.2 mm. Single-spot transverse FWHM values at increasing depths also presented an average agreement within 1 mm with values determined with radiochromic films, thus supporting the excellent spatial resolving capabilities of the dosimetric gel. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

24 pages, 4277 KB  
Article
Effect of Gellan Gum on the Properties of Collagen-HPMC Freeze-Dried Hydrogels for Mucosal Administration
by Ioana Luca, Mădălina Georgiana Albu Kaya, Raluca Țuțuianu, Cristina Elena Dinu-Pîrvu, Maria Minodora Marin, Lăcrămioara Popa, Irina Titorencu, Valentina Anuța and Mihaela Violeta Ghica
Gels 2025, 11(10), 793; https://doi.org/10.3390/gels11100793 - 2 Oct 2025
Abstract
Mucosal drug delivery is gaining attention for its ability to provide localized treatment with reduced systemic side effects. The vaginal route has been proven effective for managing gynecological conditions, though it poses certain limitations. Biopolymers can help overcome these challenges by enhancing therapeutic [...] Read more.
Mucosal drug delivery is gaining attention for its ability to provide localized treatment with reduced systemic side effects. The vaginal route has been proven effective for managing gynecological conditions, though it poses certain limitations. Biopolymers can help overcome these challenges by enhancing therapeutic efficiency and offering beneficial properties. This study aimed to develop and evaluate hydrogels and their freeze-dried forms (wafers) based on collagen, hydroxypropyl methylcellulose, and gellan gum. Initially, a collagen gel was obtained by extraction from calfskin, which was brought to a concentration of 1% and a physiological pH with 1 M sodium hydroxide solution. This gel was combined with either 2% hydroxypropyl methylcellulose gel, 1.2% gellan gum gel, or both, in different proportions. Thus, five mixed hydrogels were obtained, which, along with the three individual gels (controls), were lyophilized to obtain wafers. Furthermore, the hydrogels were assessed for rheological behavior, while the collagen structural integrity in the presence of the other biopolymers was evaluated using circular dichroism and FT-IR spectroscopy. The wafers were characterized for morphology, wettability, swelling capacity, enzymatic degradation resistance, and in vitro biocompatibility. All hydrogels exhibited non-Newtonian, pseudoplastic behavior and showed collagen structure preservation. The wafers’ characterization showed that gellan gum enhanced the hydrophilicity and enzymatic stability of the samples. In addition, the extracts from the tested samples maintained cell viability and did not affect actin cytoskeleton morphology, indicating a lack of cytotoxic effects. This study emphasizes the importance of evaluating both the physicochemical properties and biocompatibility of biopolymeric supports as a key preliminary step in the development of vaginal drug delivery platforms with biomedical applications in the management of gynecological conditions. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

22 pages, 3800 KB  
Article
Study on Carboxymethylation Modification of Konjac Gum and Its Effect in Drilling Fluid and Fracturing Fluid
by Yongfei Li, Pengli Guo, Kun Qu, Weichao Du, Yanling Wang and Gang Chen
Gels 2025, 11(10), 792; https://doi.org/10.3390/gels11100792 - 2 Oct 2025
Abstract
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum [...] Read more.
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum easily forms a weak gel network in water, but its water solubility and thermal stability are poor, and it is easily degraded at high temperatures. Therefore, its application in drilling fluid and fracturing fluid is limited. In this paper, a method of carboxymethyl modification of KGM was developed, and a carboxymethyl group was introduced to adjust KGM’s hydrogel forming ability and stability. Carboxymethylated Konjac glucomannan (CMKG) is a water-soluble anionic polysaccharide derived from natural Konjac glucomannan. By introducing carboxymethyl groups, CMKG overcomes the limitations of the native polymer, such as poor solubility and instability, while retaining its safe and biocompatible nature, making it an effective natural polymer additive for oilfield applications. The results show that when used as a drilling fluid additive, CMKG can form a stable three-dimensional gel network through molecular chain cross-linking, significantly improving the rheological properties of the mud. Its unique gel structure can enhance the encapsulation of clay particles and inhibit clay hydration expansion. When used as a fracturing fluid thickener, the viscosity of the gel system formed by CMKG at 0.6% (w/v) is superior to that of the weak gel system of KGM. The heat resistance/shear resistance tests confirm that the gel structure remains intact under high-temperature and high-shear conditions, meeting the sand-carrying capacity requirements for fracturing operations. The gel-breaking experiment shows that the system can achieve controlled degradation within 300 min, in line with on-site gel-breaking specifications. This modification process not only improves the rheological properties and water solubility of the CMKG gel but also optimizes the gel stability and controlled degradation through molecular structure adjustment. Full article
Show Figures

Graphical abstract

20 pages, 4923 KB  
Article
Evolution Law and Stability Control of Energy–Plastic Zone of Surrounding Rock After Secondary Mining in Narrow Pillar Roadway in Thick Seam
by Kun Lv, Zhigang Deng, Jicheng Feng, Mingqi Jia, Xiangye Wu, Aoran Ma and Zhihai Ji
Processes 2025, 13(10), 3152; https://doi.org/10.3390/pr13103152 - 2 Oct 2025
Abstract
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on [...] Read more.
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on stress evolution and energy distribution characteristics during secondary mining extraction. Key findings include the following: (1) Under the superimposed influence of goaf-side abutment pressure and secondary mining front abutment pressure, roadway surrounding rock exhibits regional asymmetric characteristics in energy dissipation. (2) Within 10 m ahead of the secondary mining face, the coal pillar experiences intense energy dissipation and plastic zone penetration, leading to bearing structure failure. (3) The energy mechanism reveals that asymmetric dissipative energy distribution drives plastic zone expansion. Accordingly, an integrated control strategy combining differentiated support (bolts/cables + tension-type opposite anchor cables + hydraulic props) with coal pillar grouting modification was developed. Field implementation demonstrated effective control of surrounding rock deformation within 200 mm. This study provides theoretical foundations and technical references for roadway stability control under similar mining conditions. Full article
Show Figures

Figure 1

23 pages, 5503 KB  
Article
Additive-Enhanced SnO2 FBG Sensor with Optimized Annealing Time, Temperature, and Multilayer Coating for High-Performance Humidity Sensing
by Soo Ping Kok, Yun Ii Go, Siti Barirah Ahmad Anas, M. L. Dennis Wong and Kah Yoong Chan
Nanomaterials 2025, 15(19), 1508; https://doi.org/10.3390/nano15191508 - 1 Oct 2025
Abstract
Coating plays an important role in advancing sensing technology by significantly enhancing sensitivity, stability, and response time. The unique properties of nanostructures, including high surface-to-volume ratio and tunable porosity, make them suitable candidates for improving sensor performance. By optimizing nanostructure coatings, advancements in [...] Read more.
Coating plays an important role in advancing sensing technology by significantly enhancing sensitivity, stability, and response time. The unique properties of nanostructures, including high surface-to-volume ratio and tunable porosity, make them suitable candidates for improving sensor performance. By optimizing nanostructure coatings, advancements in high-precision humidity sensing devices are achievable, enabling a wide range of industrial applications, especially in humidity-controlled industries. In this study, the effects of annealing time, annealing temperature, and the number of coating layers on the properties of additive-enhanced SnO2 nanostructure were investigated. The experiment was carried out by subjecting the additive-enhanced SnO2 nanostructure to different annealing times and annealing temperatures to analyze its impact on crystallinity, porosity, and moisture adsorption properties. Upon optimizing the annealing parameters, multilayer coatings were carried out to assess the effect of the total number of coating layers on hygroscopic behavior. A hygroscopicity test was carried out on each sample to evaluate its moisture adsorption and desorption capabilities. The results demonstrated that controlled annealing conditions significantly improve the nanostructure’s hygroscopic properties, and the optimized coating layers further enhanced the moisture retention, making the developed SnO2 nanostructure a promising candidate for advanced sensing applications. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Graphical abstract

21 pages, 2132 KB  
Article
Optimized Ion-Sensitive Hydrogels Based on Gellan Gum and Arabinogalactan for the Treatment of Dry Eye Disease
by Valentina Paganini, Silvia Tampucci, Sofia Gisella Brignone, Mariacristina Di Gangi, Daniela Monti, Susi Burgalassi and Patrizia Chetoni
Gels 2025, 11(10), 787; https://doi.org/10.3390/gels11100787 - 1 Oct 2025
Abstract
Dry eye disease (DED) is a multifactorial condition characterized by insufficient tear film stability and ocular discomfort. Conventional artificial tears offer limited efficacy due to short precorneal residence time. This study aimed to develop and optimize ion-sensitive in situ gelling formulations based on [...] Read more.
Dry eye disease (DED) is a multifactorial condition characterized by insufficient tear film stability and ocular discomfort. Conventional artificial tears offer limited efficacy due to short precorneal residence time. This study aimed to develop and optimize ion-sensitive in situ gelling formulations based on low-acyl gellan gum (GG) and arabinogalactan (AG) to enhance retention and therapeutic efficacy in DED. Various buffer systems were screened to identify optimal gelation conditions upon interaction with artificial tear fluid (ATF). Formulations were characterized by pH, osmolality, wettability, thermal behavior, viscosity, and viscoelastic properties. A Design of Experiments (DoE) approach was employed to understand the influence of GG and AG concentrations on rheological behavior. The selected formulation, GG(0.1%)/AG(0.2%), demonstrated a significant viscosity increase upon ATF dilution, suitable viscoelastic properties, enhanced mucoadhesion compared to hyaluronic acid, improved ferning patterns, no cytotoxic effects, and stability over time. In vivo studies in rabbits confirmed prolonged precorneal retention of the fluorescently labeled formulation. These results suggest that the GG/AG-based hydrogel is a promising strategy for improving the performance of artificial tears in DED treatment. Full article
(This article belongs to the Special Issue Novel Gels for Topical Applications)
Show Figures

Figure 1

28 pages, 1200 KB  
Article
Regulating Green Finance and Managing Environmental Risks in the Conditions of Global Uncertainty
by Elena G. Popkova, Tatiana N. Litvinova, Elena Petrenko and Aleksei V. Bogoviz
J. Risk Financial Manag. 2025, 18(10), 552; https://doi.org/10.3390/jrfm18100552 - 1 Oct 2025
Abstract
This paper’s goal was to determine the state of green financing and reveal the main aspects of its regulation and influence on environmental risk management in the conditions of the growth of global uncertainty. Based on the sample that contains the top 10 [...] Read more.
This paper’s goal was to determine the state of green financing and reveal the main aspects of its regulation and influence on environmental risk management in the conditions of the growth of global uncertainty. Based on the sample that contains the top 10 countries of the world with a higher level of green economic capabilities in 2024, by the assessment for developed and developing countries in isolation, we performed regression analysis of the following: (1) Dependence of environmental costs of GDP on the volume of green investments; (2) Dependence of the volume of green investments on the application of the measures of state regulation of green finance. As a result, we proved that in developed countries, the growth of the activity of green investing in the economy leads to a reduction in the environmental costs of GDP, and in developing countries, an increase in the environmental costs of GDP. Unlike developed countries, in which green investments are not determined by the influence of the factors of state regulation, the implementation of the measures of state regulation of green finance in developing countries ensures the inflow of green investments into the economy. This paper’s novelty, compared to the existing literature, is that it discloses previously unknown differences in the character of the influence of the factors of state regulation of green finance on green investments in the economy and differences in the consequences of the activity of investing for environmental risks in different categories of countries (in particular, differences between developed and developing countries) and at different phases of the economic cycle (in the conditions of relative stability and in the conditions of global instability). The established regularities of the development of green finance under the influence of state regulation measures in developed and developing countries will raise the precision of forecasting and planning of this development in support of green economic growth and decarbonization. The revealed differences between developed and developing countries will allow forming a strategy of development of green finance in each category of countries, given their specifics, and thus, achieving the growth of these strategies’ effectiveness. The proposed policy implications for the reduction in environmental risks through the improvement of state regulation of green finance in developed and developing countries, given their revealed specifics, have practical significance. Full article
Show Figures

Figure 1

29 pages, 10675 KB  
Article
Stack Coupling Machine Learning Model Could Enhance the Accuracy in Short-Term Water Quality Prediction
by Kai Zhang, Rui Xia, Yao Wang, Yan Chen, Xiao Wang and Jinghui Dou
Water 2025, 17(19), 2868; https://doi.org/10.3390/w17192868 - 1 Oct 2025
Abstract
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and [...] Read more.
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and a long short-term memory network (LSTM). The method leverages Light GBM for spatial data characteristics and LSTM for temporal sequence dependencies. Model outputs are reciprocally recalculated as inputs and coupled via linear regression, specifically tackling the lag effects of rainfall runoff and upstream pollutant transport. Applied to predict the concentrations of chemical oxygen demand digested by potassium permanganate index (COD) in South China’s Jiuzhoujiang River basin (characterized by rainfall-driven non-point pollution from agriculture/livestock), the coupled model outperformed individual models, increasing prediction accuracy by 8–12% and stability by 15–40% than conventional models, which means it is a more accurate and broadly applicable method for water quality prediction. Analysis confirmed basin rainfall and upstream water quality as the primary drivers of 5-day water quality variation at the SHJ station, influenced by antecedent conditions within 10–15 days. This highly accurate and stable stack coupling method provides valuable scientific support for regional water management. Full article
Show Figures

Figure 1

16 pages, 3190 KB  
Article
Effects of Seat Vibration on Biometric Signals and Postural Stability in a Simulated Autonomous Driving Environment
by Emi Yuda, Yutaka Yoshida, Kunio Sato, Hideki Sakamoto and Makoto Takahashi
Sensors 2025, 25(19), 6039; https://doi.org/10.3390/s25196039 - 1 Oct 2025
Abstract
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking [...] Read more.
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking natural respiration) and no vibration. Physiological and behavioral metrics—including Psychomotor Vigilance Task (PVT), seat pressure distribution, heart rate variability (HRV), body acceleration, and skin temperature—were assessed across three phases. Results demonstrated that seat vibration significantly enhanced parasympathetic activity, as evidenced by increased HF power and decreased LF/HF ratio (p < 0.05), suggesting reduced autonomic stress. Additionally, seated posture remained more stable under vibration, with reduced asymmetry and sway, while the no-vibration condition showed time-dependent postural degradation. Interestingly, skin surface temperature was lower in the vibration condition (p < 0.001), indicating a possible thermoregulatory mechanism. In contrast, PVT performance revealed more false starts in the vibration condition, particularly among older adults, suggesting that vibration may not enhance—and could slightly impair—cognitive alertness. These findings suggest that low-frequency seat vibration can support physiological stability and postural control during prolonged sedentary conditions, such as in autonomous vehicles. However, its effects on vigilance appear limited and age-dependent. Overall, rhythmic vibration may contribute to enhancing passenger comfort and reducing fatigue-related risks, particularly in older individuals. Future work should explore adaptive vibration strategies to balance physiological relaxation and cognitive alertness in mobility environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 4453 KB  
Article
Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis
by Tomasz Tuzimski and Mateusz Sugajski
Molecules 2025, 30(19), 3941; https://doi.org/10.3390/molecules30193941 - 1 Oct 2025
Abstract
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced [...] Read more.
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced into the market. The goal of this research was to demonstrate the applicability of kinetic analysis, in particular, Lineweaver-Burk plots, in assessing the impact of bisphenol Z on enzymatic activity. This study aimed to characterize the inhibitory effects of BPZ on 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity in the transformation of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). During the determination of the enzymatic reaction product, chromatographic analysis conditions were optimized using gradient elution and an Acquity UPLC BEH C18 chromatographic column. The retention time of the assayed corticosterone was approximately 2 min. Also described and compared were graphical methods of analysis and data interpretation, such as Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots. The experiments demonstrated that bisphenol Z is a mixed 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, responsible for catalyzing the conversion of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). This relationship was confirmed by analyzing Lineweaver-Burk plots, which showed an increase in apparent KM with a decrease in the constant Vmax, suggesting a mixed inhibition mechanism. Molecular docking and detailed analysis of the interaction profiles revealed that BPZ consistently occupies the active site cavities of all examined enzymes (rat and human 11β-HSD1 and Arabidopsis 11β-HSD2), forming a stabilizing network of non-covalent interactions. Our research has significant biological significance considering the role of the 11β-HSD1 enzyme in the conversion of DHC to CORT and the importance of this process and its functions in adipose tissue, the liver, and the brain. Full article
(This article belongs to the Special Issue Modern Trends and Solutions in Analytical Chemistry in Poland)
Show Figures

Figure 1

29 pages, 13345 KB  
Article
Fault Diagnosis and Fault-Tolerant Control of Permanent Magnet Synchronous Motor Position Sensors Based on the Cubature Kalman Filter
by Jukui Chen, Bo Wang, Shixiao Li, Yi Cheng, Jingbo Chen and Haiying Dong
Sensors 2025, 25(19), 6030; https://doi.org/10.3390/s25196030 - 1 Oct 2025
Abstract
To address the issue of output anomalies that frequently occur in position sensors of permanent magnet synchronous motors within electromechanical actuation systems operating in harsh environments and can lead to degradation in system performance or operational interruptions, this paper proposes an integrated method [...] Read more.
To address the issue of output anomalies that frequently occur in position sensors of permanent magnet synchronous motors within electromechanical actuation systems operating in harsh environments and can lead to degradation in system performance or operational interruptions, this paper proposes an integrated method for fault diagnosis and fault-tolerant control based on the Cubature Kalman Filter (CKF). This approach effectively combines state reconstruction, fault diagnosis, and fault-tolerant control functions. It employs a CKF observer that utilizes innovation and residual sequences to achieve high-precision reconstruction of rotor position and speed, with convergence assured through Lyapunov stability analysis. Furthermore, a diagnostic mechanism that employs dual-parameter thresholds for position residuals and abnormal duration is introduced, facilitating accurate identification of various fault modes, including signal disconnection, stalling, drift, intermittent disconnection, and their coupled complex faults, while autonomously triggering fault-tolerant strategies. Simulation results indicate that the proposed method maintains excellent accuracy in state reconstruction and fault tolerance under disturbances such as parameter perturbations, sudden load changes, and noise interference, significantly enhancing the system’s operational reliability and robustness in challenging conditions. Full article
(This article belongs to the Topic Industrial Control Systems)
Show Figures

Figure 1

Back to TopTop