Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = editing vector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1647 KB  
Review
Preventive Immunology for Livestock and Zoonotic Infectious Diseases in the One Health Era: From Mechanistic Insights to Innovative Interventions
by Eman Marzouk and Ahmed I. Alajaji
Vet. Sci. 2025, 12(10), 1014; https://doi.org/10.3390/vetsci12101014 - 20 Oct 2025
Viewed by 559
Abstract
Preventive immunology is emerging as a cornerstone of animal infectious disease control within One Health, shifting emphasis from treatment to prevention. This review integrates mechanistic insights in host immunity with a comparative evaluation of next-generation interventions—mRNA/DNA and viral-vector vaccines, nanovaccines, monoclonal antibodies, cytokine [...] Read more.
Preventive immunology is emerging as a cornerstone of animal infectious disease control within One Health, shifting emphasis from treatment to prevention. This review integrates mechanistic insights in host immunity with a comparative evaluation of next-generation interventions—mRNA/DNA and viral-vector vaccines, nanovaccines, monoclonal antibodies, cytokine modulators, probiotics/postbiotics, bacteriophages, and CRISPR-based approaches—highlighting their immunogenicity, thermostability, delivery, and field readiness. Distinct from prior reviews, we appraise diagnostics as preventive tools (point-of-care assays, biosensors, MALDI-TOF MS, AI-enabled analytics) that enable early detection, risk prediction, and targeted interventions, and we map quantifiable links between successful prevention and reduced antimicrobial use. We embed translation factors—regulatory alignment, scalable manufacturing, workforce capacity, equitable access in LMICs, and public trust—alongside environmental and zoonotic interfaces that shape antimicrobial resistance dynamics. We also provide a critical analysis of limitations and failure cases: gene editing may require stacked edits and concurrent vaccination; phage programs must manage host range, resistance, stability, and regulation; and probiotic benefits remain context-specific. Finally, we present a risk–benefit–readiness framework and a time-bound research agenda to guide deployment and evaluation across animal–human–environmental systems. Coordinating scientific innovation with governance and ethics can measurably reduce disease burden, curb antimicrobial consumption, and improve health outcomes across species. Full article
Show Figures

Figure 1

18 pages, 1164 KB  
Review
Advances in β-Thalassemia Gene Therapy: CRISPR/Cas Systems and Delivery Innovations
by Hongmei Liu and Peng Zhang
Cells 2025, 14(20), 1595; https://doi.org/10.3390/cells14201595 - 14 Oct 2025
Viewed by 820
Abstract
β-thalassemia is an inherited blood disorder caused by mutations in the β-globin (HBB) gene, leading to reduced or absent β-globin production, resulting in chronic anemia. While current therapies, including blood transfusions and hematopoietic stem cell transplantation, offer symptomatic relief, they are limited by [...] Read more.
β-thalassemia is an inherited blood disorder caused by mutations in the β-globin (HBB) gene, leading to reduced or absent β-globin production, resulting in chronic anemia. While current therapies, including blood transfusions and hematopoietic stem cell transplantation, offer symptomatic relief, they are limited by complications and their limited accessibility. CRISPR-based gene editing technologies provide new therapeutic avenues by enabling the precise correction of HBB mutations or the reactivation of fetal hemoglobin (HbF) through the targeting of regulatory elements such as BCL11A. These approaches have shown promising preclinical and clinical outcomes. However, efficient and safe delivery remains a major challenge. Viral vectors offer high efficiency but raise concerns about immunogenicity and insertional mutagenesis, whereas non-viral systems such as lipid nanoparticles and engineered exosomes offer lower toxicity and modularity but face targeting limitations. This review highlights recent progress in CRISPR-based therapies for β-thalassemia and emerging delivery strategies to enhance clinical translation. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing in Translational Research—Third Edition)
Show Figures

Figure 1

15 pages, 262 KB  
Review
How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B?
by Patrycja Sosnowska-Sienkiewicz and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(10), 1200; https://doi.org/10.3390/genes16101200 - 14 Oct 2025
Viewed by 563
Abstract
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising [...] Read more.
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising alternative, offering the potential for sustained endogenous factor production after a single administration. This review provides an in-depth analysis of recent advances in gene therapy for both hemophilia A and B, with a focus on AAV-mediated liver-directed approaches and other approved modalities. Key limitations—such as vector immunogenicity, hepatic toxicity, waning transgene expression, and limited re-dosing capacity—are discussed. Additional gene delivery platforms, including lentiviral and retroviral vectors, genome editing techniques (e.g., CRISPR/Cas9), and non-viral systems like transposons and lipid nanoparticles, are also examined. Although gene therapy for hemophilia B demonstrates greater clinical durability, hemophilia A presents unique challenges due to factor VIII’s size, poor expression efficiency, and the need for higher vector doses. Future efforts will focus on overcoming immune barriers, improving delivery technologies, and developing approaches suitable for pediatric patients and individuals with pre-existing immunity. This review provides not only a descriptive overview but also a critical comparison of gene therapy approaches for hemophilia A and B. We emphasize that the durability of response is currently superior in hemophilia B, whereas hemophilia A still faces unique barriers, including declining FVIII expression and higher immunogenicity. By analyzing cross-platform challenges (AAV, lentiviral, CRISPR, and emerging LNPs), we highlight the most promising strategies for overcoming these limitations and provide a forward-looking perspective on the future of gene therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
18 pages, 346 KB  
Review
Research Progress on Diseases and Pests of Chrysanthemum (2015–2025)
by Yuan Chen, Lihui Han, Tengqing Ye and Chengjian Xie
Int. J. Mol. Sci. 2025, 26(19), 9767; https://doi.org/10.3390/ijms26199767 - 7 Oct 2025
Viewed by 529
Abstract
Chrysanthemum morifolium Ramat. is a major ornamental crop that suffers from diverse fungal, bacterial, viral, and insect pests, causing significant yield and quality losses. Between 2015 and 2025, rapid progress in molecular biology, genomics, and ecological regulation has advanced both fundamental research and [...] Read more.
Chrysanthemum morifolium Ramat. is a major ornamental crop that suffers from diverse fungal, bacterial, viral, and insect pests, causing significant yield and quality losses. Between 2015 and 2025, rapid progress in molecular biology, genomics, and ecological regulation has advanced both fundamental research and applied control strategies. Multi-locus sequencing, multiplex PCR, and next-generation sequencing refined the identification of fungal and bacterial pathogens, while functional studies of WRKY, MYB, and NAC transcription factors revealed key resistance modules. Hormone-mediated signaling pathways, particularly those of salicylic acid, jasmonic acid, and abscisic acid, were shown to play central roles in host defense. Despite these advances, durable genetic resistance against bacterial pathogens and broad-spectrum defense against viruses remains limited. Novel technologies, including virus-free propagation, RNA interference, and spray-induced gene silencing, have shown promising outcomes. For insect pests, studies clarified the damage and virus-vectoring roles of aphids and thrips, and resistance traits linked to trichomes, terpenoids, and lignin have been identified. Biocontrol agents such as Trichoderma spp., Bacillus spp., predatory mites, and entomopathogenic fungi have also demonstrated efficacy. Future efforts should integrate molecular breeding, genome editing, RNA-based tools, and microbiome management to achieve sustainable chrysanthemum protection. Full article
(This article belongs to the Section Molecular Biology)
20 pages, 929 KB  
Review
Genome Editing by Grafting
by Samuel Simoni, Marco Fambrini, Claudio Pugliesi and Ugo Rogo
Int. J. Mol. Sci. 2025, 26(19), 9294; https://doi.org/10.3390/ijms26199294 - 23 Sep 2025
Viewed by 695
Abstract
Grafting is the process of joining parts of two plants, allowing the exchange of molecules such as small RNAs (including microRNAs and small interfering RNAs), messenger RNAs, and proteins between the rootstock and the scion. Genome editing by grafting exploits RNAs, such as [...] Read more.
Grafting is the process of joining parts of two plants, allowing the exchange of molecules such as small RNAs (including microRNAs and small interfering RNAs), messenger RNAs, and proteins between the rootstock and the scion. Genome editing by grafting exploits RNAs, such as tRNA-like sequences (TLS motifs), to deliver the components (RNA) of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system from transgenic rootstock to wild-type scion. The complex Cas9 protein and sgRNA-TLS produced in the scion perform the desired modification without the integration of foreign DNA in the plant genome, resulting in heritable transgene-free genome editing. In this review, we examine the current state of the art of this innovation and how it helps address regulatory problems, improves crop recovery and selection, exceeds the usage of viral vectors, and may reduce potential off-target effects. We also discuss the promise of genome editing by grafting for plants recalcitrant to in vitro culture and for agamic-propagated species that must maintain heterozygosity for plant productivity, fruit quality, and adaptation. Furthermore, we explore the limitations of this technique, including variable efficiency, graft incompatibility among genotypes, and challenges in large-scale application, while highlighting its considerable potential for further improvement and future broader applications for crop breeding. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 751 KB  
Review
Tomato Bushy Stunt Virus (TBSV): From a Plant Pathogen to a Multifunctional Biotechnology Platform
by Almas Madirov, Nurgul Iksat and Zhaksylyk Masalimov
Viruses 2025, 17(9), 1268; https://doi.org/10.3390/v17091268 - 19 Sep 2025
Viewed by 601
Abstract
Plant viruses have evolved from being viewed exclusively as pathogens into versatile and powerful tools for modern biotechnology. Among them, Tomato bushy stunt virus (TBSV) holds a special place due to its well-studied molecular biology and unique structural properties. This review systematizes the [...] Read more.
Plant viruses have evolved from being viewed exclusively as pathogens into versatile and powerful tools for modern biotechnology. Among them, Tomato bushy stunt virus (TBSV) holds a special place due to its well-studied molecular biology and unique structural properties. This review systematizes the knowledge on TBSV’s dual role as a multifunctional platform. On one hand, we cover its application as a viral vector for the highly efficient expression of recombinant proteins in plants, as well as a tool for functional genomics, including Virus-Induced Gene Silencing (VIGS) and the delivery of CRISPR/Cas9 gene-editing components. On the other hand, we provide a detailed analysis of the use of the stable and monodisperse TBSV virion in nanobiotechnology. Its capsid serves as an ideal scaffold for creating next-generation vaccine candidates, platforms for targeted drug delivery to tumor cells, and as a building block for the programmable self-assembly of complex nanoarchitectures. In conclusion, key challenges limiting the widespread adoption of the platform are discussed, including the genetic instability of vectors and difficulties in scalable purification, along with promising strategies to overcome them. Full article
(This article belongs to the Special Issue Application of Plant Viruses in Biotechnology)
Show Figures

Figure 1

30 pages, 1009 KB  
Review
Advances in Genetic Transformation of Lactic Acid Bacteria: Overcoming Barriers and Enhancing Plasmid Tools
by Aleksei S. Rozanov, Leonid A. Shaposhnikov, Kseniya D. Bondarenko and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(18), 9146; https://doi.org/10.3390/ijms26189146 - 19 Sep 2025
Viewed by 1074
Abstract
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and [...] Read more.
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and biolistics—and outlines vector systems for expression and chromosomal editing, including food-grade strategies. We highlight recent advances that broaden strain tractability while noting strain-to-strain variability and host-specific barriers that still require tailored solutions. These advances directly enable applications in food and probiotic biotechnology, including improving starter robustness, tailoring flavor and texture pathways, and installing food-grade traits without residual selection markers. We close with near-term priorities for standardizing protocols, widening replicon compatibility, and leveraging modern genome-editing platforms to accelerate safe, marker-free engineering of industrial and probiotic LAB. Full article
Show Figures

Figure 1

22 pages, 5853 KB  
Article
Generating a Cell Model to Study ER Stress in iPSC-Derived Medium Spiny Neurons from a Patient with Huntington’s Disease
by Vladlena S. Makeeva, Anton Yu. Sivkov, Suren M. Zakian and Anastasia A. Malakhova
Int. J. Mol. Sci. 2025, 26(18), 8930; https://doi.org/10.3390/ijms26188930 - 13 Sep 2025
Viewed by 593
Abstract
iPSCs and their derivatives are used to investigate the molecular genetic mechanisms of human diseases, to identify therapeutic targets, and to screen for small molecules. Combining technologies for generating patient-specific iPSC lines and genome editing allows us to create cell models with unique [...] Read more.
iPSCs and their derivatives are used to investigate the molecular genetic mechanisms of human diseases, to identify therapeutic targets, and to screen for small molecules. Combining technologies for generating patient-specific iPSC lines and genome editing allows us to create cell models with unique characteristics. We obtained and characterized three iPSC lines by reprogramming peripheral blood mononuclear cells of a patient with Huntington’s disease (HD) using episomal vectors encoding Yamanaka factors. iPSC lines expressed pluripotency marker genes, had normal karyotypes and were capable of differentiating into all three germ layers. The obtained iPSC lines are useful for modeling disease progression in vitro and studying pathological mechanisms of HD, such as ER stress. A transgene of genetically encoded biosensor XBP1-TagRFP was introduced into the iPSCs to visualize ER stress state of cells. The study demonstrated that iPSC-derived medium spiny neurons develop ER stress, though the IRE1-mediated pathway does not seem to be involved in the process. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 2041 KB  
Review
Genetic Basis of Non-Syndromic Childhood Glaucoma Associated with Anterior Segment Dysgenesis: A Narrative Review
by Nicola Cronbach, Cécile Méjécase and Mariya Moosajee
Pharmaceuticals 2025, 18(9), 1352; https://doi.org/10.3390/ph18091352 - 9 Sep 2025
Viewed by 834
Abstract
Twenty causative genes have been reported that cause non-syndromic childhood glaucoma associated with anterior segment dysgenesis. FOXC1, PAX6 and PITX2 are the most well-known, but cases linked to SLC4A11, PITX3 and SOX11 have also been reported. As genetic testing becomes increasingly [...] Read more.
Twenty causative genes have been reported that cause non-syndromic childhood glaucoma associated with anterior segment dysgenesis. FOXC1, PAX6 and PITX2 are the most well-known, but cases linked to SLC4A11, PITX3 and SOX11 have also been reported. As genetic testing becomes increasingly widespread and rates of molecular diagnosis rise, the extent of phenotypic overlap between the different genetic causes of non-syndromic glaucoma associated with anterior segment dysgenesis is becoming more evident. Taking aniridia as an example, whilst PAX6 mutations remain the predominant cause, variants in CYP1B1, FOXC1, PXDN and SOX11 have also been reported in patients with childhood glaucoma and aniridia. Developments in molecular-based therapies for retinal and corneal disease are advancing rapidly, and pre-clinical studies of gene-based treatments for glaucoma and aniridia are showing promising results. Use of adeno-associated viral vectors for gene delivery is most common, with improvements in intraocular pressure and retinal ganglion cell survival in Tg-MYOCY437H mouse models of glaucoma, and successful correction of a germline PAX6G194X nonsense variant in mice using CRISPR-Cas9 gene editing. This review will explore the actions and interactions of the genetic causes of non-syndromic glaucoma associated with anterior segment dysgenesis and discuss the current developments in molecular therapies for these patients. Full article
Show Figures

Figure 1

21 pages, 3384 KB  
Article
Disruption of Human Papillomavirus 16 E6/E7 Genes Using All-in-One Adenovirus Vectors Expressing Eight Double-Nicking Guide RNAs
by Megumi Yamaji, Tomomi Nakahara, Tomoko Nakanishi, Satomi Aoyama-Kikawa, Kiyoshi Yamaguchi, Yoichi Furukawa, Mariko Nakamura, Tadashi Okada, Hirotaka Tabata, Ryoko Fuse, Eigo Shimizu, Rika Kasajima, Seiya Imoto, Iwao Kukimoto, Izumu Saito and Tohru Kiyono
Int. J. Mol. Sci. 2025, 26(17), 8685; https://doi.org/10.3390/ijms26178685 - 5 Sep 2025
Viewed by 1580
Abstract
Human papillomavirus (HPV) is a prime target for genome-editing therapy as its E6 and E7 oncogenes are crucial for cancer development and maintenance. A key challenge in CRISPR/Cas9 therapy is the off-target effects. This study utilized a double-nicking technique to introduce DNA breaks [...] Read more.
Human papillomavirus (HPV) is a prime target for genome-editing therapy as its E6 and E7 oncogenes are crucial for cancer development and maintenance. A key challenge in CRISPR/Cas9 therapy is the off-target effects. This study utilized a double-nicking technique to introduce DNA breaks in the E6 and E7 regions of HPV16. From 146 gRNA candidates, 16 double-nicking pairs were selected. Multiple combinations of double-nicking (DN)-gRNA pairs were delivered to HPV16-positive cells via lentiviruses, followed by Cas9 nickase (Cas9n) expression. Combinations of 3–4 DN-gRNA pairs effectively killed HPV16-positive cells while sparing HPV-negative cells. Off-target effects were reduced by nearly three orders of magnitude. An “all-in-one” adenovirus (AdV) system expressing four gRNA pairs and Cas9n showed promise in inhibiting tumor growth in HPV16-positive cancer models, demonstrating its potential as a safe and effective treatment for HPV-induced tumors. Full article
(This article belongs to the Special Issue Viral Vector-Mediated Genome Editing Therapy)
Show Figures

Graphical abstract

30 pages, 1136 KB  
Review
Lentiviral Vectors: From Wild-Type Viruses to Efficient Multi-Functional Delivery Vectors
by Ane Arrasate, Carlos Lopez-Robles, Miren Zuazo, Soledad Banos-Mateos, Cesar Martin, Andrés Lamsfus-Calle and Marie J. Fertin
Int. J. Mol. Sci. 2025, 26(17), 8497; https://doi.org/10.3390/ijms26178497 - 1 Sep 2025
Viewed by 2188
Abstract
Extensive studies about the human immunodeficiency virus type 1 (HIV-1) have allowed the generation of lentiviral vectors as gene delivery vehicles with enhanced safety and efficacy features. In this review, several strategies for controlling the molecular mechanisms occurring during the lentiviral vector manufacturing [...] Read more.
Extensive studies about the human immunodeficiency virus type 1 (HIV-1) have allowed the generation of lentiviral vectors as gene delivery vehicles with enhanced safety and efficacy features. In this review, several strategies for controlling the molecular mechanisms occurring during the lentiviral vector manufacturing process are presented. Specifically, modifications focused on LVV manufacturing components, such as plasmids or the producer cell line, that enable increased safety, integrity, and potency of the produced LVV, as well as manufacturing efficiency. Considering the stochasticity of the LVV manufacturing process from plasmid transfection until the budding of the virus from the target cell, minimal modifications might have a huge impact on the final LVV yield. Indeed, the extent of a potential impact may vary depending on the specificities of each LVV regarding the particular genetic payload or the envelope protein. Thus, the feasibility of each of the optimizations described herein requires thorough evaluation. The second part of the review examines the potential multi-purpose nature of the LVV. Growing research in the field has enabled the development of new engineered modalities of LVV, expanding their application scope beyond the traditional ex vivo DNA delivery approach. LVVs are becoming a versatile tool for the packaging or delivery of cargo in the form of DNA, RNA, or protein, allowing their use for in vivo approaches, vaccinology, or gene editing, among others. Full article
(This article belongs to the Special Issue Virus Engineering and Applications: 3rd Edition)
Show Figures

Figure 1

27 pages, 5349 KB  
Article
Proportional Symbol Maps: Value-Scale Types, Online Value-Scale Generator and User Perspectives
by Radek Barvir, Martin Holub and Alena Vondrakova
ISPRS Int. J. Geo-Inf. 2025, 14(9), 340; https://doi.org/10.3390/ijgi14090340 - 1 Sep 2025
Viewed by 1265
Abstract
Proportional symbol maps are a frequently used method of thematic cartography. Using an intuitive principle—the larger, the more—provides a simple and precise way of visualizing quantity in maps using geographic information systems (GIS). However, none of the current GIS software provides a proper [...] Read more.
Proportional symbol maps are a frequently used method of thematic cartography. Using an intuitive principle—the larger, the more—provides a simple and precise way of visualizing quantity in maps using geographic information systems (GIS). However, none of the current GIS software provides a proper map legend that could be used to interpret exact phenomenon quantity values from the map in reverse. Cartographers have been designing value scales manually for such a possibility of interpretation. Eventually, they preferred to resign to the accuracy of the interpretation and use the legend offered by the software. The paper describes the development of an easy-to-use online value scale generator for static maps, aiming to eliminate the time-consuming process to make map design more efficient while preserving the precision of cartographic visualization and its subsequent interpretation. The tool consists of a free web platform performing all necessary calculations and rendering an appropriate value scale based on user-defined input parameters. This functionality is performed for most typically used symbol shapes as well as for custom-design shapes provided by the user in SVG vector graphics. The output is then returned in a vector SVG and PDF file format to be used directly in a map legend or possibly edited in graphic software before such a step. The presented tool is therefore independent of which software was used for map design. Within the research, two user experiments were performed to compare generated value scales with simple legends generated in GIS and to gather insights from cartography experts. Full article
Show Figures

Figure 1

29 pages, 453 KB  
Review
Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application
by Elaine Meade and Mary Garvey
Int. J. Mol. Sci. 2025, 26(17), 8307; https://doi.org/10.3390/ijms26178307 - 27 Aug 2025
Viewed by 1597
Abstract
Despite improved diagnostic and treatment protocols, cancer remains a leading cause of morbidity and mortality globally. There are increasing rates of certain cancer types, including the highly drug-resistant colorectal cancer, in younger population cohorts. Therapeutic advances in oncology have led to the application [...] Read more.
Despite improved diagnostic and treatment protocols, cancer remains a leading cause of morbidity and mortality globally. There are increasing rates of certain cancer types, including the highly drug-resistant colorectal cancer, in younger population cohorts. Therapeutic advances in oncology have led to the application of immunotherapy-based agents, including checkpoint inhibitors, antibodies, and adoptive cell therapies. Such immunotherapy approaches are greatly hindered by the tumour microenvironment and lack of specificity. Therapeutic vaccines are an innovative and rapidly advancing area of oncology, having potential for application as mono- and combined therapy in clinical settings, offering long term efficacy against disease recurrence. Advances in vaccine production using gene editing and bioprocessing techniques allows for novel vaccine types, including protein-based subunit vaccines, virus-like particle vaccines, and viral vector- and nucleic acid-based (RNA and DNA) vaccines. Cancer vaccines are designed to deliver specific tumour antigens, which activate anti-cancer cytotoxic T cells and helper T cells to produce immune memory, providing long term anti-cancer action. When coupled with advances in machine learning and artificial intelligence, anti-cancer vaccines may revolutionise oncology protocols and improve patient prognosis. This review aims to discuss current immunotherapy options in cancer treatment and recent advances in anti-cancer vaccine modalities. Full article
(This article belongs to the Special Issue Hallmarks of Cancer: Emerging Insights and Innovations)
25 pages, 1452 KB  
Review
The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa
by Trisna D. Tungadi, Francis O. Wamonje, Netsai M. Mhlanga, Alex M. Murphy, Warren Arinaitwe and John P. Carr
Agriculture 2025, 15(17), 1808; https://doi.org/10.3390/agriculture15171808 - 25 Aug 2025
Viewed by 1177
Abstract
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their [...] Read more.
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their dietary protein and micronutrients. However, productivity is constrained by viruses, particularly those vectored by aphids and whiteflies, and problems are further compounded by seed-borne transmission. We describe common bean’s major viral threats including the aphid-transmitted RNA viruses bean common mosaic virus and bean common mosaic necrosis virus, and the whitefly-transmitted begomoviruses bean golden mosaic virus and bean golden yellow mosaic virus and discuss how high-throughput sequencing is revealing emerging threats. We discuss how recent work on indirect and direct viral ‘manipulation’ of vector behaviour is influencing modelling of viral epidemics. Viral extended phenotypes also modify legume interactions with beneficial organisms including root-associated microbes, pollinators and the natural enemies of vectors. While problems with common bean tissue culture have constrained transgenic and gene editing approaches to crop protection, topical application of double-stranded RNA molecules could provide a practical protection system compatible with the wide diversity of common bean lines grown in sub-Saharan Africa. Full article
(This article belongs to the Special Issue Advances in the Cultivation and Production of Leguminous Plants)
Show Figures

Figure 1

27 pages, 1466 KB  
Review
Curative Therapies for Hemophilias and Hemoglobinopathies in Adults: Immune, Gene, and Stem Cell Approaches in a Global Context
by Ayrton Bangolo, Behzad Amoozgar, Lili Zhang, Sarvarinder Gill, Daniel Lushimba Milolo, Justin Ngindu Kankonde, Claude Mbuyi Batakamuna, Robert Tassan, Christina Cho, John Bukasa-Kakamba and Kelley Mowatt-Pesce
Biomedicines 2025, 13(8), 2022; https://doi.org/10.3390/biomedicines13082022 - 19 Aug 2025
Viewed by 1345
Abstract
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many [...] Read more.
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many regions. Recent advances in immune-based therapeutics (e.g., emicizumab, concizumab, crizanlizumab), viral vector-mediated gene addition (e.g., Roctavian, Hemgenix), and gene-modified autologous stem cell therapies (e.g., Zynteglo, Casgevy) have ushered in a new era of disease-modifying and potentially curative interventions. These therapies offer durable efficacy and improved quality of life, particularly in adult populations. However, implementation remains uneven across global health systems due to high costs, limited infrastructure, and regulatory heterogeneity. Additionally, ethical considerations such as long-term surveillance, informed consent in vulnerable populations, and social perceptions of genetic modification present ongoing challenges. Innovations such as multiplex genome editing, immune-evasive donor platforms, synthetic biology, and AI-driven treatment modeling are poised to expand therapeutic horizons. Equitable access, particularly in regions bearing the highest disease burden, will require collaborative funding strategies, regional capacity building, and inclusive regulatory frameworks. This review summarizes the current landscape of curative therapy, outlines implementation barriers, and calls for coordinated international action to ensure that transformative care reaches all affected individuals worldwide. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

Back to TopTop