The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa
Abstract
1. Introduction: Viruses Are Major Threats to Common Bean, but Are Also Useful Tools for Improved Understanding of This Vital Crop
2. The Main Viral Threats to Common Bean
2.1. Bean-Infecting Potyviruses
2.2. Bean Golden Mosaic Virus and Bean Golden Yellow Mosaic Virus
2.3. Cowpea Mild Mottle Virus and Bean Yellow Disorder Virus
2.4. Cucumoviruses
2.5. Emerging and Unassigned Viral-like Diseases in Common Bean
3. Viral Modification of Vector–Host Interactions: Implications for Epidemiology and Control
3.1. Modes of Plant Virus Transmission by Arthropod Vectors
3.2. ‘Manipulation Strategies’ in Virus–Vector–Host Interactions Involving Non-Persistently Transmitted Viruses
3.3. Manipulation Strategies’ in Other Virus–Vector–Host Interactions
3.4. Implications of Virus-Induced Extended Phenotypes for Epidemiology and Disease Control
4. Viral Modification of Common Bean Interactions with Beneficial Organisms
4.1. Effects on the Rhizobium–Legume Symbiosis
4.2. Modification of Pollinator-Plant Interactions
4.3. Influence of Virus Infection of Legumes on the Natural Enemies of Vectors
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales, F.J. Common beans. In Natural Resistance Mechanisms of Plants to Viruses; Loebenstein, G., Carr, J.P., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 367–382. ISBN 978-1-4020-3780-1. [Google Scholar]
- Dutta, A.; Trivedi, A.; Nath, C.P.; Gupta, D.S.; Hazra, K.K. A comprehensive review on grain legumes as climate-smartcrops: Challenges and prospects. Environ. Chall. 2022, 7, 100479. [Google Scholar] [CrossRef]
- Nigam, S.N.; Chaudhari, S.; Deevi, K.C.; Saxena, K.B.; Janila, P. Trends in Legume Production and Future Outlook. In Genetic Enhancement in Major Food Legumes; Saxena, K.B., Saxena, R.K., Varshney, R.K., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 7–48. ISBN 978-3-030-64499-4. [Google Scholar]
- Farrow, A.; Muthoni-Andriatsitohaina, R. Atlas of Common Bean Production in Africa, 2nd ed.; Pan-Africa Bean Research Alliance (PABRA): Nairobi, Kenya; International Center for Tropical Agriculture (CIAT): Palmira, Colombia, 2020; Available online: https://hdl.handle.net/10568/110556 (accessed on 20 April 2025).
- Broughton, W.J.; Hernández, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Huertas, R.; Karpinska, B.; Ngala, S.; Mkandawire, B.; Maling’A, J.; Wajenkeche, E.; Kimani, P.M.; Boesch, C.; Stewart, D.; Hancock, R.D.; et al. Biofortification of common bean (Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur. 2022, 12, e406. [Google Scholar] [CrossRef] [PubMed]
- De Benoist, B.; McLean, E.; Egli, I.; Cogswell, M. Worldwide Prevalence of Anaemia 1993–2005; WHO Publication: Geneva, Switzerland, 2008; Available online: https://apps.who.int/iris/handle/10665/43894 (accessed on 21 April 2025).
- United Nations Climate Action. Available online: https://www.un.org/en/climatechange/science/climate-issues/food (accessed on 18 April 2025).
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Sci. 2022, 5, e155. [Google Scholar] [CrossRef]
- Razakatiana, A.T.E.; Trap, J.; Baohanta, R.H.; Raherimandimby, M.; Le Roux, C.; Duponnois, R.; Ramanankierana, H.; Becquer, T. Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiologia 2020, 83, 150685. [Google Scholar] [CrossRef]
- Breen, C.; Ndlovu, N.; McKeown, P.C.; Spillane, C. Legume seed system performance in sub-Saharan Africa: Barriers, opportunities, and scaling options. A review. Agron. Sustain. Dev. 2024, 44, 20. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.D.; Smith, P.; Zeng, Z.H.; Olesen, J.E.; Zang, H.D. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef] [PubMed]
- The Alliance of Biodiversity International and CIAT. Importance of Bean Crop Research. Available online: https://alliancebioversityciat.org/crops/beans/importance (accessed on 20 April 2025).
- Hummel, M.; Hallahan, B.F.; Brychkova, G.; Ramirez-Villegas, J.; Guwela, V.; Chataika, B.; Curley, E.; McKeown, P.C.; Morrison, L.; Talsma, E.F.; et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep. 2018, 8, 16187. [Google Scholar] [CrossRef]
- Jones, R.A.C. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus. Res. 2016, 95, 87–147. [Google Scholar]
- Aguilar, E.; Cutrona, C.; Del Toro, F.J.; Vallarino, J.G.; Osorio, S.; Perez-Bueno, M.L.; Baron, M.; Ching, B.N.; Tenllado, F. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant Cell Environ. 2017, 40, 2909–2930. [Google Scholar] [CrossRef]
- del Toro, F.J.; Rakhshandehroo, F.; Larruy, B.; Aguilar, E.; Tenllado, F.; Canto, T. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific. Virology 2017, 511, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Delafuente, A.; Vinuela, E.; Fereres, A.; Medina, P.; Trebicki, P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 2020, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Sánchez, Á.; Cobos, A.; López-Herranz, M.; Canto, T.; Pagán, I. Environmental conditions modulate plant virus vertical transmission and survival of infected seeds. Phytopathology 2023, 113, 1773–1787. [Google Scholar] [CrossRef]
- Worrall, E.A.; Wamonje, F.O.; Mukeshimana, G.; Harvey, J.J.W.; Carr, J.P.; Mitter, N. Bean common mosaic virus and bean common mosaic necrosis virus: Relationships, biology, and prospects for control. Adv. Virus Res. 2015, 93, 1–46. [Google Scholar]
- Thompson, J.R.; Langenhan, J.L.; Fuchs, M.; Perry, K.L. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years: Characterization of an emergent plant virus population. Virus Res. 2015, 210, 169–177. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Ghanim, M.; Xu, Y.; Pinheiro, P.V. Interactions between common bean viruses and their whitefly vector. Viruses 2024, 16, 1567. [Google Scholar] [CrossRef]
- Spence, N.J.; Walkey, D.G.A. Variation for pathogenicity among isolates of bean common mosaic virus in Africa and a reinterpretation of the genetic relationship between cultivars of Phaseolus vulgaris and pathotypes of BCMV. Plant Pathol. 1995, 44, 527–546. [Google Scholar] [CrossRef]
- Sengooba, T.N.; Spence, N.J.; Walkey, D.G.A.; Allen, D.J.; Femi Lana, A. The occurrence of bean common mosaic necrosis virus in wild and forage legumes in Uganda. Plant Pathol. 1997, 46, 95–103. [Google Scholar] [CrossRef]
- Mutuku, J.M.; Wamonje, F.O.; Mukeshimana, G.; Njuguna, J.; Wamalwa, M.; Choi, S.K.; Tungadim, T.; Djikeng, A.; Kelly, K.; Domelevo Entfellner, J.B.; et al. Metagenomic analysis of plant virus occurrence in common bean (Phaseolus vulgaris) in Central Kenya. Front. Microbiol. 2018, 9, 2939. [Google Scholar] [CrossRef]
- Mwaipopo, B.; Nchimbi-Msolla, S.; Njau, P.J.R.; Mark, D.; Mbanzibwa, D.R. Comprehensive surveys of Bean common mosaic virus and Bean common mosaic necrosis virus and molecular evidence for occurrence of other Phaseolus vulgaris viruses in Tanzania. Plant Dis. 2018, 102, 2361–2370. [Google Scholar] [CrossRef]
- Wainaina, J.M.; Kubatko, L.; Harvey, J.; Ateka, E.; Makori, T.; Karanja, D.; Boykin, L.M.; Kehoe, M.A. Evolutionary insights of bean common mosaic necrosis virus and cowpea aphid-borne mosaic virus. PeerJ 2019, 7, e6792. [Google Scholar] [CrossRef]
- Mulenga, R.M.; Miano, D.W.; Kaimoyo, E.; Akello, J.; Felister, M.; Al Rwahnih, M.; Chikoti, P.C.; Chiona, M.; Simulundu, E.; Alabi, O.J. First report of southern bean mosaic virus infecting common bean in Zambia. Dis. Notes 2020, 104, 1880. [Google Scholar] [CrossRef]
- Wamonje, F.O. Post-COVID-19 action: Guarding Africa’s crops against viral epidemics requires research capacity building that unifies a trio of transdisciplinary interventions. Viruses 2020, 12, 1276. [Google Scholar] [CrossRef] [PubMed]
- Chatzivassiliou, E.K. An annotated list of legume-infecting viruses in the light of metagenomics. Plants 2021, 10, 1413. [Google Scholar] [CrossRef]
- Valverde, R.A.; Khalifa, M.E.; Okada, R.; Fukuhara, T.; Sabanadzovic, S. ICTV Virus Taxonomy Profile: Endornaviridae. J. Gen. Virol. 2019, 100, 1204–1205. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Yong, C.K.; Valverde, R.A.; Sabanadzovic, S.; Aoki, N.; Hotate, S.; Kiyota, E.; Moriyama, H.; Fukuhara, T. Molecular characterization of two evolutionarily distinct endornaviruses co-infecting common bean (Phaseolus vulgaris). J. Gen. Virol. 2013, 94, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Nordenstedt, N.; Marcenaro, D.; Chilagane, D.; Mwaipopo, B.; Rajamäki, M.-L.; Nchimbi-Msolla, S.; Njau, P.J.R.; Mbanzibwa, D.; Valkonen, J.P.T. Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS ONE 2017, 12, e0178242. [Google Scholar]
- Brine, T.J.; Crawshaw, S.; Murphy, A.M.; Pate, A.E.; Carr, J.P.; Wamonje, F.O. Identification and Characterization of Phaseolus vulgaris Endornavirus 1, 2 and 3 in Common Bean Cultivars of East Africa. Virus Genes 2023, 59, 741–751. [Google Scholar] [CrossRef]
- Brine, T.J.; Viswanathan, S.B.; Murphy, A.M.; Pate, A.E.; Wamonje, F.O.; Carr, J.P. Investigating the interactions of endornaviruses with each other and with other viruses in common bean, Phaseolus vulgaris. Virol. J. 2023, 20, 216. [Google Scholar] [CrossRef]
- Garcia, L.R.; Janssen, D. Epidemiology and control of emerging criniviruses in bean. Virus Res. 2020, 280, 197902. [Google Scholar] [CrossRef] [PubMed]
- Segundo, E.; Martín, G.; Cuadrado, I.M.; Janssen, D. A new yellowing disease in Phaseolus vulgaris associated with a whitefly-transmitted virus. Plant Pathol. 2004, 53, 517. [Google Scholar] [CrossRef]
- Jones, R.A.C. Australian Cool-season pulse seed-borne virus research: 2. Bean yellow mosaic virus. Viruses 2025, 17, 668. [Google Scholar] [CrossRef]
- Silbernagel, M.J.; Mink, G.I.; Zhao, R.L.; Zheng, G.Y. Phenotypic recombination between bean common mosaic and bean common mosaic necrosis potyviruses in vivo. Arch. Virol. 2001, 146, 1007–1020. [Google Scholar] [CrossRef]
- Feng, X.; Poplawsky, A.R.; Nikolaeva, O.V.; Myers, J.R.; Karasev, A.V. Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. Phytopathology 2014, 104, 786–793. [Google Scholar] [CrossRef]
- Beaver, J.S.; González, A.; Mateo, B.; Lutz, G.G.; Miranda, A.; Rosas, J.C.; Porch, T.G. Release of multiple virus and bruchid resistant Mesoamerican bean germplasm lines PR1303-129 and PR1743-44. J. Plant Regist. 2024, 18, 149–156. [Google Scholar] [CrossRef]
- Asiimwe, R.; Katungi, E.; Marimo, P.; Mukankusi, C.; Rubyogo, J.C.; Anthony, V. Evaluating consumer preferences for reduced cooking time, taste and colour of beans in rural and urban communities in Uganda. Agric. Food Sec. 2024, 13, 19. [Google Scholar] [CrossRef]
- Bianchini, A. Resistance to bean golden mosaic virus in bean genotypes. Plant Dis. 1999, 83, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Rodriguez, L.M.; Pedraza, F.; Morales, F.; Beebe, S. Genetic mapping of the Bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2007, 114, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Beaver, J.S.; Porch, T.G.; Zapata, M. Registration of ‘Verano’ white bean. J. Plant Regist. 2008, 2, 187–189. [Google Scholar] [CrossRef]
- Anon. Tomato Yellow Leaf Curl Virus. Agriculture Victoria. 2024. Available online: https://agriculture.vic.gov.au/biosecurity/plant-diseases/vegetable-diseases/tomato-yellow-leaf-curl-virus (accessed on 6 July 2025).
- Papayiannis, L.C.; Paraskevopoulos, A.; Katis, N.I. First report of tomato yellow leaf curl virus infecting common bean (Phaseolus vulgaris) in Greece. Plant Dis. 2007, 91, 465. [Google Scholar] [CrossRef] [PubMed]
- Navas-Castillo, J.; Sánchez-Campos, S.; Díaz, J.A.; Sáez-Alonso, E.; Moriones, E. Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 1999, 83, 29–32. [Google Scholar] [CrossRef]
- Naidu, R.A.; Gowda, S.; Satyanarayana, T.; Boyko, V.; Reddy, A.S.; Dawson, W.O.; Reddy, D.V. Evidence that whitefly-transmitted cowpea mild mottle virus belongs to the genus Carlavirus Arch. Virol. 1998, 143, 769–780. [Google Scholar]
- Lamas, N.S.; Matos, V.O.R.L.; Alves-Freitas, D.M.T.; Melo, F.L.; Costa, A.F.; Faria, J.C.; Ribeiro, S.G. Occurrence of Cowpea mild mottle virus in common bean and associated weeds in Northeastern Brazil. Plant Dis. 2017, 101, 1828. [Google Scholar] [CrossRef]
- Brown, J.K. Cowpea Mild Mottle Virus (Angular Mosaic of Beans). CABI Compendium Datasheet 15735. 2020. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.15735 (accessed on 27 July 2025).
- Osogo, A.K.; Muyekho, F.; Okoth, P.; Were, H.; Ayaaga, G. Occurrence, distribution, incidence, and severity of common bean viral diseases in resource-limited smallholder farms of western Kenya. Crop Prot. 2025, 194, 107231. [Google Scholar] [CrossRef]
- Ogunsola, K.E.; Fatokun, C.A.; Boukar, O.; Kumar, P.L. Inheritance of resistance to three endemic viral diseases of cowpea in Nigeria. J. Crop Improv. 2023, 37, 291–308. [Google Scholar] [CrossRef]
- Duffus, J.E.; Liu, H.-Y.; Wisler, G.C.; Li, R. Lettuce chlorosis virus—A new whitefly-transmitted Closterovirus. Eur. J. Plant Pathol. 1996, 102, 591–596. [Google Scholar] [CrossRef]
- Fuchs, M.; Bar-Joseph, M.; Candresse, T.; Maree, H.J.; Martelli, G.P.; Melzer, M.J.; Menzel, W.; Minafra, A.; Sabanadzovic, S.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Closteroviridae. J. Gen. Virol. 2020, 101, 364–365. [Google Scholar] [CrossRef]
- Martín, G.; Cuadrado, I.M.; Janssen, D. Bean yellow disorder virus: Parameters of transmission by Bemisia tabaci and host plant range. Insect Sci. 2011, 1, 50–56. [Google Scholar] [CrossRef]
- Thompson, J.R.; Canto, T.; Carr, J.P.; Pallás, V.; Šafářová, D. ICTV Virus Taxonomy Profile: Bromoviridae 2025. J. Gen. Virol. 2025, 106, 002069. [Google Scholar] [CrossRef]
- Pasev, G.; Radeva-Ivanova, V.; Manoussopoulos, Y.; Turina, M.; Kostova, D. First report of Peanut stunt virus on beans in Bulgaria. New Dis. Rep. 2018, 38, 9. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Palukaitis, P.; Choi, S.K. Chapter 1: Host Range. In Cucumber Mosaic Virus; Palukaitis, P., García-Arenal, F., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2019; pp. 15–18. [Google Scholar]
- Kim, C.H.; Palukaitis, P. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 1997, 16, 4060–4068. [Google Scholar] [CrossRef]
- Hampton, R.O.; Francki, R.I.B. RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 1992, 82, 127–130. [Google Scholar] [CrossRef]
- Pagán, I. Chapter 16: Movement Between Plants: Vertical Transmission. In Cucumber Mosaic Virus; Palukaitis, P., García-Arenal, F., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2019; pp. 185–198. [Google Scholar]
- Fereres, A.; Perry, K.L. Chapter 15: Movement between plants: Horizontal transmission. In Cucumber Mosaic Virus; Palukaitis, P., García-Arenal, F., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2019; pp. 173–184. [Google Scholar]
- Nault, B.A.; Shah, D.A.; Straight, K.E.; Bachmann, A.C.; Sackett, W.M.; Dillard, H.R.; Fleischer, S.J.; Gildow, F.E. Modeling temporal trends in aphid vector dispersal and cucumber mosaic virus epidemics in snap bean. Environ. Entomol. 2009, 38, 1347–1359. [Google Scholar] [CrossRef]
- Palukaitis, P. Satellite RNAs and satellite viruses. Mol. Plant-Microbe Interact. 2016, 29, 181–186. [Google Scholar] [CrossRef]
- Obrępalska-Stęplowska, A.; Renaut, J.; Planchon, S.; Przybylska, A.; Wieczorek, P.; Barylski, J.; Palukaitis, P. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. Front. Plant Sci. 2015, 6, 903. [Google Scholar] [CrossRef]
- Tarquini, G.; Martini, M.; Maestri, S.; Firrao, G.; Ermacora, P. The virome of ‘Lamon Bean’: Application of MinION sequencing to investigate the virus population associated with symptomatic beans in the Lamon Area, Italy. Plants 2022, 11, 779. [Google Scholar] [CrossRef]
- Giakountis, A.; Tsarmpopoulos, I.; Chatzivassiliou, E.K. Cucumber mosaic virus isolates from Greek legumes are associated with satellite RNAs that are necrogenic for tomato. Plant Dis. 2018, 102, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Tepfer, M.; García-Arenal, F. Chapter 3: Epidemiology and Ecology. In Cucumber Mosaic Virus; Palukaitis, P., García-Arenal, F., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2019; pp. 37–45. [Google Scholar]
- Wainaina, J.M.; Ateka, E.; Makori, T.; Kehoe, M.A.; Boykin, L.M. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019, 7, e6465. [Google Scholar] [CrossRef] [PubMed]
- Wangai, A.W.; Redinbaugh, M.G.; Kinyua, Z.M.; Miano, D.W.; Leley, P.K.; Kasina, M.; Mahuku, G.; Scheets, K.; Jeffers, D. First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis in Kenya. Plant Dis. 2012, 96, 1582. [Google Scholar] [CrossRef]
- Wamaitha, M.J.; Nigam, D.; Maina, S.; Stomeo, F.; Wangai, A.; Njuguna, J.N.; Holton, T.A.; Wanjala, B.W.; Wamalwa, M.; Lucas, T.; et al. Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virol. J. 2018, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Braidwood, L.; Quito-Avila, D.F.; Cabanas, D.; Bressan, A.; Wangai, A.; Baulcombe, D.C. Maize chlorotic mottle virus exhibits low divergence between differentiated regional sub-populations. Sci. Rep. 2018, 8, 1173. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Collar, J.L.; Tjallingii, W.F.; Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 1997, 78, 2701–2705. [Google Scholar] [CrossRef]
- Powell, G. Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J. Gen. Virol. 2005, 86, 469–472. [Google Scholar] [CrossRef]
- Tjallingii, W.F.; Garzo, E.; Fereres, A. New structure in cell puncture activities by aphid stylets: A dual-mode EPG study. Entomol. Exp. Appl. 2010, 135, 193–207. [Google Scholar] [CrossRef]
- Krenz, B.; Bronikowski, A.; Lu, X.; Ziebell, H.; Thompson, J.R.; Perry, K.L. Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. J. Gen. Virol. 2015, 96, 2904–2912. [Google Scholar] [CrossRef]
- Hull, R. Chapter 12. Plant to plant movement. In Plant Virology, 5th ed.; Academic Press: New York, NY, USA, 2014; pp. 669–751. [Google Scholar]
- Liang, Y.; Gao, X.W. The cuticle protein gene MPCP4 of Myzus persicae (Homoptera: Aphididae) plays a critical role in cucumber mosaic virus acquisition. J. Econ. Entomol. 2017, 110, 848–853. [Google Scholar] [CrossRef]
- Webster, C.G.; Pichon, E.; van Munster, M.; Monsion, B.; Deshoux, M.; Gargani, D.; Calevro, F.; Jimenez, J.; Moreno, A.; Krenz, B.; et al. Identification of plant virus receptor candidates in the stylets of their aphid vectors. J. Virol. 2018, 92, e00432-18. [Google Scholar] [CrossRef]
- Musser, R.O.; Hum-Musser, S.M.; Felton, G.W.; Gergerich, R.C. Increased larval growth and preference for virus-infected leaves by the Mexican bean beetle, Epilachna varivestis Mulsant, a plant virus vector. J. Insect Behav. 2003, 16, 247–256. [Google Scholar] [CrossRef]
- Wielkopolan, B.; Jakubowska, M.; Obrępalska-Stęplowska, A. Beetles as plant pathogen vectors. Front. Plant Sci. 2021, 12, 748093. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Sieve element acceptance by aphids. Eur. J. Entomol. 1994, 91, 47–52. [Google Scholar]
- Pinheiro-Lima, B.; Pereira-Carvalho, R.C.; Alves-Freitas, D.M.T.; Kitajima, E.W.; Vidal, A.H.; Lacorte, C.; Godinho, M.T.; Fontenele, R.S.; Faria, J.C.; Abreu, E.F.M.; et al. Transmission of the bean-associated cytorhabdovirus by the whitefly Bemisia tabaci MEAM1. Viruses 2020, 12, 1028. [Google Scholar] [CrossRef]
- de Oliveira, A.S.; Bertran, A.G.; Inoue-Nagata, A.K.; Nagata, T.; Kitajima, E.W.; Oliveira Resende, R. An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes 2011, 43, 385–389. [Google Scholar] [CrossRef]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. Aphids as transport devices for plant viruses. Comptes Rendus Biol. 2010, 333, 524–538. [Google Scholar] [CrossRef]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479–480, 278–289. [Google Scholar] [CrossRef]
- Hunter, W.B.; Hiebert, E.; Webb, S.E.; Tsai, J.H.; Polston, J.E. Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Plant. Dis. 1998, 82, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Cilia, M.; Ghanim, M. Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv. Virus Res. 2014, 89, 141–199. [Google Scholar] [PubMed]
- Dawkins, R. The Extended Phenotype: The Long Reach of the Gene; Oxford University Press: Oxford, UK, 1982; 496p. [Google Scholar]
- Carr, J.P.; Murphy, A.M.; Tungadi, T.; Yoon, J.Y. Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci. 2019, 279, 87–95. [Google Scholar] [CrossRef] [PubMed]
- He, M.-J.; Wang, Y.; Zhao, M.; Zuo, D.-P.; Wang, Y.; Zhang, Z.-Y.; Wang, Y.; Han, C.-G. Molecular characterization of miRNAs in Myzus persicae carrying brassica yellows virus. Biology 2024, 13, 941. [Google Scholar] [CrossRef]
- Jayasinghe, W.H.; Kim, H.; Nakada, Y.; Masuta, C. A plant virus satellite RNA directly accelerates wing formation in its insect vector for spread. Nat. Commun. 2021, 12, 7087. [Google Scholar] [CrossRef]
- Donnelly, R.; Cunniffe, N.J.; Carr, J.P.; Gilligan, C.A. Pathogenic modification of plants enhances long-distance dispersal of nonpersistently transmitted viruses to new hosts. Ecology 2019, 100, e02725. [Google Scholar] [CrossRef]
- Groen, S.C.; Wamonje, F.O.; Murphy, A.M.; Carr, J.P. Engineering resistance to virus transmission. Curr. Opin. Virol. 2017, 26, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.; Bruce, T.; Pickett, J.; Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 2010, 79, 451–457. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 2011, 72, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Wamonje, F.O.; Michuki, G.N.; Braidwood, L.A.; Njuguna, J.N.; Musembi Mutuku, J.; Djikeng, A.; Harvey, J.J.W.; Carr, J.P. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol. J. 2017, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Wamonje, F.O.; Tungadi, T.D.; Murphy, A.M.; Pate, A.E.; Woodcock, C.; Caulfield, J.C.; Mutuku, J.M.; Cunniffe, N.J.; Bruce, T.J.A.; Gilligan, C.A.; et al. Three aphid-transmitted viruses encourage vector migration from infected common bean (Phaseolus vulgaris) plants through a combination of volatile and surface cues. Front. Plant Sci. 2020, 11, 613772. [Google Scholar] [CrossRef]
- Wamonje, F.O.; Donnelly, R.; Tungadi, T.D.; Murphy, A.M.; Pate, A.E.; Woodcock, C.; Caulfield, J.; Mutuku, J.M.; Bruce, T.J.A.; Gilligan, C.A.; et al. Different plant viruses induce changes in feeding behavior of specialist and generalist aphids on common bean that are likely to enhance virus transmission. Front. Plant Sci. 2020, 10, 1811. [Google Scholar] [CrossRef]
- Mauck, K.E.; De Moraes, C.M.; Mescher, M.C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 2010, 107, 3600–3605. [Google Scholar] [CrossRef]
- Carmo-Sousa, M.; Moreno, A.; Garzo, E.; Fereres, A. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimise transmission and spread. Virus Res. 2014, 186, 38–46. [Google Scholar] [CrossRef]
- Westwood, J.H.; Groen, S.C.; Du, Z.; Murphy, A.M.; Anggoro, D.T.; Tungadi, T.; Luang-In, V.; Lewsey, M.G.; Rossiter, J.T.; Powell, G.; et al. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE 2013, 8, e83066. [Google Scholar] [CrossRef]
- Westwood, J.H.; Lewsey, M.G.; Murphy, A.M.; Tungadi, T.; Bates, A.; Gilligan, C.A.; Carr, J.P. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions. J. Gen. Virol. 2014, 95, 733. [Google Scholar] [CrossRef] [PubMed]
- Casteel, C.L.; Yang, C.; Nanduri, A.C.; De Jong, H.N.; Whitham, S.A.; Jander, G. The NIa-Pro protein of turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant. J. 2014, 77, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Casteel, C.L.; De Alwis, M.; Bak, A.; Dong, H.; Whitham, S.A.; Jander, G. Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant. Physiol. 2015, 169, 209–218. [Google Scholar] [CrossRef]
- Rhee, S.J.; Watt, L.G.; Bravo-Cazar, A.; Murphy, A.M.; Carr, J.P. Effects of the cucumber mosaic virus 2a protein on aphid–plant interactions in Arabidopsis thaliana. Mol. Plant Pathol. 2020, 21, 1248–1254. [Google Scholar] [CrossRef]
- Ray, S.; Murad, T.; Arena, G.D.; Arshad, K.; Arendsee, Z.; Herath, V.; Whitham, S.A.; Casteel, C.L. Turnip mosaic virus infection cleaves MEDIATOR SUBUNIT16 in plants increasing plant susceptibility to the virus and its aphid vector Myzus persicae. BMC Plant Biol. 2025, 25, 411. [Google Scholar] [CrossRef]
- Herath, V.; Casteel, C.L.; Verchot, J. Comprehensive transcriptomic analysis reveals turnip mosaic virus infection and its aphid vector Myzus persicae cause large changes in gene regulatory networks and co-transcription of alternative spliced mRNAs in Arabidopsis thaliana. BMC Plant Biol. 2025, 25, 128. [Google Scholar] [CrossRef]
- Nihranz, C.T.; Garg, P.; Shin, J.; Dumas, M.; McCalla, S.G.; Roy, S.; Casteel, C.L. Transcriptomic analysis reveals vector attraction to potato virus Y is mediated through temporal regulation of TERPENE SYNTHASE 1 (TPS1). Plant Stress 2025, 16, 100862. [Google Scholar] [CrossRef]
- Watt, L.G.; Crawshaw, S.; Rhee, S.-J.; Murphy, A.M.; Canto, T.; Carr, J.P. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog. 2020, 16, e1009125. [Google Scholar] [CrossRef]
- Crawshaw, S.; Murphy, A.M.; Rowling, P.J.E.; Nietlispach, D.; Itzhaki, L.S.; Carr, J.P. Investigating the interactions of the cucumber mosaic virus 2b protein with the viral 1a replicase component and the cellular RNA silencing factor Argonaute 1. Viruses 2024, 16, 676. [Google Scholar] [CrossRef]
- Crawshaw, S.; Watt, L.G.; Murphy, A.M.; Carr, J.P. Strain-specific differences in the interactions of the cucumber mosaic virus 2b protein with the viral 1a and host Argonaute 1 proteins. J. Virol. 2024, 98, e00993-24. [Google Scholar] [CrossRef]
- Ziebell, H.; Murphy, A.M.; Groen, S.C.; Tungadi, T.; Westwood, J.H.; Lewsey, M.G.; Moulin, M.; Kleczkowski, A.; Smith, A.G.; Stevens, M.; et al. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 2011, 1, 187. [Google Scholar] [CrossRef]
- Tungadi, T.; Groen, S.C.; Murphy, A.M.; Pate, A.E.; Iqbal, J.; Bruce, T.J.; Cunniffe, N.J.; Carr, J.P. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virol. J. 2017, 14, 91. [Google Scholar] [CrossRef]
- Tungadi, T.; Donnelly, R.; Qing, L.; Iqbal, J.; Murphy, A.M.; Pate, A.E.; Cunniffe, N.J.; Carr, J.P. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Mol. Plant Pathol. 2020, 21, 250–257. [Google Scholar] [CrossRef]
- Tungadi, T.; Watt, L.G.; Groen, S.C.; Murphy, A.M.; Du, Z.; Pate, A.E.; Westwood, J.H.; Fennell, T.G.; Powell, G.; Carr, J.P. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. Mol. Plant Pathol. 2021, 22, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Arinaitwe, W.; Guyon, A.; Tungadi, T.D.; Cunniffe, N.J.; Rhee, S.-J.; Khalaf, A.; Mhlanga, N.M.; Pate, A.E.; Murphy, A.M.; Carr, J.P. The effects of cucumber mosaic virus and its 2a and 2b proteins on interactions of tomato plants with the aphid vectors Myzus persicae and Macrosiphum euphorbiae. Viruses 2022, 14, 1703. [Google Scholar] [CrossRef] [PubMed]
- Van Griethuysen, P.A.; Redeker, K.R.; MacFarlane, S.A.; Neilson, R.; Hartley, S.E. Virus-induced changes in root volatiles attract soil nematode vectors to infected plants. New Phytol. 2024, 241, 2275–2286. [Google Scholar] [CrossRef]
- Bello, V.H.; Barreto da Silva, F.; Watanabe, L.F.M.; Vicentin, E.; Muller, C.; de Freitas Bueno, R.C.O.; Santos, J.C.; De Marchi, B.R.; Nogueira, A.M.; Yuki, V.A.; et al. Detection of Bemisia tabaci Mediterranean cryptic species on soybean in São Paulo and Paraná States (Brazil) and interaction of cowpea mild mottle virus with whiteflies. Plant Pathol. 2021, 70, 1508–1520. [Google Scholar] [CrossRef]
- Rajabaskar, D.; Bosque-Pérez, N.A.; Eigenbrode, S.D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 2014, 186, 32–37. [Google Scholar] [CrossRef]
- Chesnais, Q.; Caballero Vidal, G.; Coquelle, R.; Yvon, M.; Mauck, K.; Brault, V.; Ameline, A. Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2020, 194, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Verdier, M.; Boissinot, S.; Baltenweck, R.; Negrel, L.; Brault, V.; Ziegler-Graff, V.; Hugueney, P.; Scheidecker, D.; Krieger, C.; Chesnais, Q.; et al. The turnip yellows virus capsid protein promotes access of its main aphid vector Myzus persicae to phloem tissues. Plant Cell Environ. 2025, 48, 2434–2444. [Google Scholar] [CrossRef]
- Pan, L.-L.; Miao, H.; Wang, Q.; Walling, L.L.; Liu, S.-S. Virus-induced phytohormone dynamics and their effects on plant-insect interactions. New Phytol. 2021, 230, 1305–1320. [Google Scholar] [CrossRef]
- Allen-Perkins, A.; Estrada, E. Mathematical modelling for sustainable aphid control in agriculture via intercropping. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2019, 475, 20190136. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.; Wanyama, J.M.; Amudavi, D.M.; Hassanali, A.; Pittchar, J.; Pickett, J.A. Integration of edible beans (Phaseolus vulgaris L.) into the push–pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Prot. 2009, 28, 997–1006. [Google Scholar] [CrossRef]
- Hailu, G.; Niassy, S.; Zeyaur, K.R.; Ochatum, N.; Subramanian, S. Maize–legume intercropping and push–pull for management of Fall Armyworm, stemborers, and Striga in Uganda. Agron. J. 2018, 110, 2513–2522. [Google Scholar] [CrossRef]
- Cunniffe, N.J.; Taylor, N.P.; Hamelin, F.M.; Jeger, M.J. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput. Biol. 2021, 17, e1009759. [Google Scholar] [CrossRef]
- Falla, E.K.; Cunniffe, N.J. Why aphid virus retention needs more attention: Modelling aphid behaviour and virus manipulation in non-persistent plant virus transmission. PLoS Comput. Biol. 2024, 20, e1012479. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Ding, H.; Shiel, P.; Berger, P.H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. Roy. Soc. B 2002, 269, 455–460. [Google Scholar] [CrossRef]
- Donnelly, R.; Gilligan, C.A. What is pathogen-mediated insect superabundance? J. Roy. Soc. Interface 2020, 17, 20200229. [Google Scholar] [CrossRef] [PubMed]
- Braendle, C.; Davis, G.K.; Brisson, J.A.; Stern, D.L. Wing dimorphism in aphids. Heredity 2006, 97, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Zaffaroni, M.; Rimbaud, L.; Mailleret, L.; Cunniffe, N.J.; Bevacqua, D. Modelling interference between vectors of non-persistently transmitted plant viruses to identify effective control strategies. PLoS Comput. Biol. 2021, 17, e1009727. [Google Scholar] [CrossRef] [PubMed]
- Seeger, J.N.; Ziebell, H.; Saucke, H. Impact of Pea necrotic yellow dwarf virus (PNYDV) on nodulation, N2 fixation and yield in faba bean (Vicia faba, L.). J. Plant Dis. Prot. 2022, 129, 1437–1450. [Google Scholar] [CrossRef]
- López, M.; Muñoz, N.; Lascano, H.R.; Izaguirre-Mayoral, M.L. The seed-borne Southern bean mosaic virus hinders the early events of nodulation and growth in Rhizobium-inoculated Phaseolus vulgaris L. Funct. Plant Biol. 2017, 44, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, K.M.; Power, A.G. Viral infection can reduce the net nitrogen inputs of legume break crops and cover crops. Ecol. Appl. 2021, 31, e02241. [Google Scholar] [CrossRef]
- van Spronsen, P.C.; Tak, T.; Rood, A.M.; van Brussel, A.A.; Kijne, J.W.; Boot, K.J. Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Molec. Plant-Microbe Interact. 2003, 16, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Basu, S.; Lee, B.W.; Oeller, L.; Crowder, D.W. Effects of soil rhizobia abundance on interactions between a vector, pathogen, and legume plant host. Genes 2024, 15, 273. [Google Scholar] [CrossRef]
- Nenadić, M.; Grandi, L.; Mescher, M.C.; De Moraes, C.M.; Mauck, K.E. Transmission-enhancing effects of a plant virus depend on host association with beneficial bacteria. Arthropod-Plant Interact. 2022, 16, 15–31. [Google Scholar] [CrossRef]
- Demler, S.A.; Rucker, D.G.; Nooruddin, L.; de Zoeten, G.A. Replication of the satellite RNA of pea enation mosaic virus is controlled by RNA 2-encoded functions. J. Gen. Virol. 1994, 75, 1399–1406. [Google Scholar] [CrossRef]
- Pulido, H.; Mauck, K.E.; De Moraes, C.M.; Mescher, M.C. Combined effects of mutualistic rhizobacteria counteract virus-induced suppression of indirect plant defences in soya bean. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190211. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Burrows, L.; Sadeque, A.; Chung, C.; Cullis, B.; Trethowan, R. Frequency of outcrossing and isolation distance in faba beans (Vicia faba L.). Agronomy 2023, 13, 1893. [Google Scholar] [CrossRef]
- Elisante, F.; Ndakidemi, P.; Arnold, S.E.J.; Belmain, S.R.; Gurr, G.M.; Darbyshire, I.; Xie, G.; Stevenson, P.C. Insect pollination is important in a smallholder bean farming system. PeerJ 2020, 8, e10102. [Google Scholar] [CrossRef]
- Franceschinelli, E.V.; Ribeiro, P.L.M.; Mesquita-Neto, J.N.; Bergamini, L.L.; Madureira de Assis, I.; Elias, M.A.S.; Fernandes, P.M.; Carvalheiro, L.G. Importance of biotic pollination varies across common bean cultivars. J. Appl. Entomol. 2022, 146, 32–43. [Google Scholar] [CrossRef]
- Bailes, E.J.; Pattrick, J.G.; Glover, B.J. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force. Ecol. Evol. 2018, 8, 3161–3171. [Google Scholar] [CrossRef]
- Mhlanga, N.M.; Pate, A.E.; Arinaitwe, W.; Carr, J.P.; Murphy, A.M. Reduction in vertical transmission rate of bean common mosaic virus in bee-pollinated common bean plants. Virol. J. 2024, 21, 147. [Google Scholar] [CrossRef]
- Kingha, B.M.T.; Fohouo, F.-N.T.; Ngakou, A.; Brückner, D. Foraging and pollination activities of Xylocopa olivacea (Hymenoptera, Apidae) on Phaseolus vulgaris (Fabaceae) flowers at Dang (Ngaoundere-Cameroon). J. Agric. Ext. Rural Dev. 2012, 4, 330–339. [Google Scholar]
- Anon. The Buff-Tailed Bumblebee. Nature Spot: Wildlife and Wild Places of Leicestershire and Rutland. Available online: https://www.naturespot.org/species/buff-tailed-bumblebee (accessed on 15 August 2025).
- Ruiz, C.; Suárez, D.; Naranjo, M.; De la Rúa, P. First record of the carpenter bee Xylocopa pubescens (Hymenoptera, Apidae) in the Canary Islands confirmed by DNA barcoding. J. Hymenoptera Res. 2020, 80, 169–175. [Google Scholar] [CrossRef]
- Groen, S.C.; Jiang, S.; Murphy, A.M.; Cunniffe, N.J.; Westwood, J.H.; Davey, M.P.; Bruce, T.J.A.; Caulfield, J.C.; Furzer, O.J.; Reed, A.; et al. Virus infection of plants alters pollinator preference: A payback for susceptible hosts? PLoS Pathog. 2016, 12, e1005790. [Google Scholar] [CrossRef]
- Murphy, A.M.; Jiang, S.; Elderfield, J.A.D.; Pate, A.E.; Halliwell, C.; Glover, B.J.; Cunniffe, N.J.; Carr, J.P. Biased pollen transfer between virus-infected and non-infected plants by bumblebees favors the paternity of infected plants in cross-pollination. iScience 2023, 26, 106116. [Google Scholar] [CrossRef]
- Mhlanga, N.M. Effects of Plant Viral Pathogens on Plant-Pollinator Relationships. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2020. [Google Scholar]
- Mhlanga, N.M.; Murphy, A.M.; Wamonje, F.O.; Cunniffe, N.J.; Caulfield, J.C.; Glover, B.J.; Carr, J.P. An innate preference of bumblebees for volatile organic compounds emitted by Phaseolus vulgaris plants infected with three different viruses. Front. Ecol. Evol. 2021, 9, 626851. [Google Scholar] [CrossRef]
- Medina, A.C.; Grogan, R.G. Seed transmission of bean common mosaic viruses. Phytopathology 1961, 51, 452–456. [Google Scholar]
- Schippers, B. Transmission of bean common mosaic virus by seed of Phaseolus vulgaris L. cultivar Beka. Acta Bot. Neerlandica. 1963, 12, 433–497. [Google Scholar] [CrossRef]
- Fetters, A.M.; Ashman, T.L. The pollen virome: A review of pollen-associated viruses and consequences for plants and their interactions with pollinators. Am. J. Bot. 2023, 110, e16144. [Google Scholar] [CrossRef]
- Liu, X.; Chen, G.; Zhang, Y.J.; Xie, W.; Wu, Q.J.; Wang, S.L. Virus-infected plants altered the host selection of Encarsia formosa, a parasite of whiteflies. Front. Physiol. 2017, 8, 937. [Google Scholar] [CrossRef]
- Liu, B.; Preisser, E.L.; Chu, D.; Pan, H.; Xie, W.; Wang, S.; Wu, Q.; Zhou, X. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow leaf curl virus. J. Virol. 2013, 87, 4929–4937. [Google Scholar] [CrossRef]
- Ning, W.; Shi, X.; Liu, B.; Pan, H.; Wei, W.; Zeng, Y.; Sun, X.; Xie, W.; Wang, S.; Wu, Q.; et al. Transmission of tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype open. Sci. Rep. 2015, 5, 10744. [Google Scholar] [CrossRef]
- Milonas, P.G.; Anastasaki, E.; Psoma, A.; Partsinevelos, G.; Fragkopoulos, G.N.; Kektsidou, O.; Vassilakos, N.; Kapranas, A. Plant viruses induce plant volatiles that are detected by aphid parasitoids. Sci. Rep. 2023, 13, 8721. [Google Scholar] [CrossRef]
- Mauck, K.E.; De Moraes, C.M.; Mescher, M.C. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani. Sci. Rep. 2015, 5, 10963. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.; Hardie, J.; Powell, G. Parasitoids aid dispersal of a nonpersistently transmitted plant virus by disturbing the aphid vector. Agric. For. Entomol. 2011, 13, 83–88. [Google Scholar] [CrossRef]
- Christiansen-Weniger, P.; Powell, G.; Hardie, J. Plant virus and parasitoid interactions in a shared insect vector ⁄ host. Entomol. Exp. Appl. 1998, 86, 205–213. [Google Scholar] [CrossRef]
- Hodge, S.; Powell, G. Complex interactions between a plant pathogen and insect parasitoid via the shared vector-host: Consequences for host plant infection. Oecologia 2008, 157, 387–397. [Google Scholar] [CrossRef]
- Sloggett, J.J.; Weisser, W.W. Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos 2002, 98, 323–333. [Google Scholar] [CrossRef]
- Norris, R.H.; Silva-Torres, C.S.; Lujan, M.; Wilson-Rankin, E.E.; Mauck, K.E. Footprints of predatory lady beetles stimulate increased dispersal of aphid prey, but do not alter feeding behavior or spread of a non-persistently transmitted plant virus. Food Webs 2023, 37, e00325. [Google Scholar] [CrossRef]
- Belliure, B.; Amorós-Jiménez, R.; Fereres, A.; Marcos-García, M.Á. Antipredator behaviour of Myzus persicae affects transmission efficiency of broad bean wilt virus 1. Virus Res. 2011, 159, 206–214. [Google Scholar] [CrossRef]
- Bonfim, K.; Faria, J.C.; Nogueira, E.O.P.L.; Mendes, É.A.; Aragão, F.J.L. RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant-Microbe Interact. 2007, 20, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef]
- Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 2016, 17, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Zhao, D.; Zhao, C.; Yu, H.; Zeng, J.; Tong, Z.; Yuan, C.; Li, Z.; Huang, C. Simultaneous knockout of multiple eukaryotic translation initiation factor 4E genes confers durable and broad-spectrum resistance to potyviruses in tobacco. aBIOTECH 2025, 6, 232–248. [Google Scholar] [CrossRef]
- Li, M.; Qiu, Y.; Zhu, D.; Xu, X.; Tian, S.; Wang, J.; Yu, Y.; Ren, Y.; Gong, G.; Zhang, H.; et al. Editing eIF4E in the watermelon genome using CRISPR/Cas9 technology confers resistance to ZYMV. Int. J. Mol. Sci. 2024, 25, 11468. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, F.; Jung, M.; Humbert, S.; Marshall, L.; Hastings, C.; Wu, E.; Jones, T.; Pacheco, M.; Martinez, I.; et al. Edited eukaryotic translation initiation factors confer resistance against maize lethal necrosis. Plant Biotechnol. J. 2024, 22, 3523–3535. [Google Scholar] [CrossRef]
- Rollwage, L.; Van Houtte, H.; Hossain, R.; Wynant, N.; Willems, G.; Varrelmann, M. Recessive resistance against beet chlorosis virus is conferred by the eukaryotic translation initiation factor (iso)4E in Beta vulgaris. Plant Biotechnol. J. 2024, 22, 2129–2141. [Google Scholar] [CrossRef]
- Gomez, M.A.; Lin, Z.D.; Moll, T.; Chauhan, R.D.; Hayden, L.; Renninger, K.; Beyene, G.; Taylor, N.J.; Carrington, J.C.; Staskawicz, B.J.; et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol. J. 2019, 17, 421–434. [Google Scholar] [CrossRef]
- Le, N.T.; Tran, H.T.; Bui, T.P.; Nguyen, G.T.; Van Nguyen, D.; Ta, D.T.; Trinh, D.D.; Molnar, A.; Pham, N.B.; Chu, H.H.; et al. Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco. Sci. Rep. 2022, 12, 14627. [Google Scholar] [CrossRef]
- Feng, X.; Orellana, G.E.; Myers, J.R.; Karasev, A.V. Recessive resistance to Bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris) affects long-distance movement of the virus. Phytopathology 2018, 108, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, C.; Liu, Y.; Zeng, J.; Yu, H.; Tong, Z.; Yuan, X.; Sui, X.; Fang, D.; Xiao, B.; et al. CRISPR/Cas9-mediated seamless gene replacement in protoplasts expands the resistance spectrum to TMV-U1 strain in regenerated Nicotiana tabacum. Plant Biotechnol. J. 2023, 21, 2641–2653. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Ali, S.; Tashkandi, M.; Zaidi, S.S.; Mahfouz, M.M. CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion. Sci. Rep. 2016, 6, 26912. [Google Scholar] [CrossRef]
- Mukeshimana, G.; Ma, Y.; Walworth, A.E.; Song, G.; Kelly, J.D. Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnol. Rep. 2013, 7, 59–70. [Google Scholar] [CrossRef]
- Moura, M.d.C.; Pinheiro, P.V.; Vianello, R.P.; Sousa, N.L.d.; Faria, J.C.d.; Aragão, F.J.L. Genetic transformation of common beans (Phaseolus vulgaris): Achievements and challenges. Agriculture 2024, 14, 2060. [Google Scholar] [CrossRef]
- Quintela, E.D.; de Souza, T.L.; Faria, J.C.; Aragão, F.J.; e Silva, J.F.; Del Peloso, M.J.; Arthurs, S.P. Comparison of Bemisia tabaci infestation, virus infection, and yield in conventional and transgenic Bean golden mosaic virus-resistant common bean elite lines. Fla. Entomol. 2023, 106, 29–37. [Google Scholar] [CrossRef]
- Hoang, B.T.L.; Fletcher, S.J.; Brosnan, C.A.; Ghodke, A.B.; Manzie, N.; Mitter, N. RNAi as a foliar spray: Efficiency and challenges to field applications. Int. J. Mol. Sci. 2022, 23, 6639. [Google Scholar] [CrossRef]
- Mitter, N.; Worrall, E.; Robinson, K.; Li, P.; Jain, R.; Taochy, C. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef]
- Worrall, E.; Bravo-Cazar, A.; Nilon, A.; Fletcher, S.; Robinson, K.; Carr, J.P.; Mitter, N. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant Sci. 2019, 10, 265. [Google Scholar] [CrossRef]
- Jain, R.G.; Fletcher, S.J.; Manzie, N.; Robinson, K.E.; Li, P.; Lu, E.; Brosnan, C.A.; Xu, Z.P.; Mitter, N. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 2022, 8, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, K.; Peng, J.; Liu, B.; Kong, F.; Sang, Q.; Du, H. Strategies for balancing growth and defence against biotic stress in legumes. Plant Cell Environ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. Lifestyles of plant viruses. Philos. Trans. R. Soc. B 2010, 365, 1899–1905. [Google Scholar] [CrossRef]
- Khankhum, S.; Valverde, R.A. Physiological traits of endornavirus-infected and endornavirus-free common bean (Phaseolus vulgaris) cv Black Turtle Soup. Arch. Virol. 2018, 163, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
Transmission Pathway Characteristics | Transmission Pathway | |||
---|---|---|---|---|
Circulative/Persistent | Non-Circulative | |||
Propagative | Non-Propagative | Non-Persistent | Semi-Persistent | |
Virions Internalised 2 | Yes | Yes | No | No |
Acquisition Period 3 | Hours–Days | Hours–Days | Seconds | Minutes–Hours |
Latent Period 4 | Weeks | Hours–Days | No | No |
Retention Period 5 | Lifetime | Days–Weeks | Minutes–Hours | Hours–Days |
Virions Lost During Moulting 6 | No | No | Yes | Yes |
Virions in Vector Haemolymph | Yes | Yes | No | No |
Virus Replicates in Vector | Yes | No | No | No |
Transovarial Transmission | Possible | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tungadi, T.D.; Wamonje, F.O.; Mhlanga, N.M.; Murphy, A.M.; Arinaitwe, W.; Carr, J.P. The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa. Agriculture 2025, 15, 1808. https://doi.org/10.3390/agriculture15171808
Tungadi TD, Wamonje FO, Mhlanga NM, Murphy AM, Arinaitwe W, Carr JP. The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa. Agriculture. 2025; 15(17):1808. https://doi.org/10.3390/agriculture15171808
Chicago/Turabian StyleTungadi, Trisna D., Francis O. Wamonje, Netsai M. Mhlanga, Alex M. Murphy, Warren Arinaitwe, and John P. Carr. 2025. "The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa" Agriculture 15, no. 17: 1808. https://doi.org/10.3390/agriculture15171808
APA StyleTungadi, T. D., Wamonje, F. O., Mhlanga, N. M., Murphy, A. M., Arinaitwe, W., & Carr, J. P. (2025). The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa. Agriculture, 15(17), 1808. https://doi.org/10.3390/agriculture15171808