Research Progress on Diseases and Pests of Chrysanthemum (2015–2025)
Abstract
1. Introduction
2. Fungal Diseases
2.1. Major Fungal Diseases of Chrysanthemum and Their Diagnostic Identification
2.2. Physiological Defense Mechanisms and Resistance Research of Chrysanthemum Against Fungal Diseases
Pathogen | Factor/Gene/Approach | Mechanism and Effect | References |
---|---|---|---|
A. alternata (black spot) | Anatomical traits | Resistant cultivars had thicker cuticle and tissues | [16] |
ABA/SA/EDS1, ET, Ca2+, MATE genes | Stage-specific signaling (early ABA/SA, lesion ET/Ca2+, late detoxification); hub genes identified for breeding | [17] | |
Alta1–CmWD40–JA–MYC2 | Activates JA signaling; overexpression enhanced resistance, silencing reduced resistance | [18] | |
CmNAC083 | NAC transcription factor activating JA and ROS pathways; overexpression enhanced resistance, silencing reduced resistance | [19] | |
CmWRKY6-1—CmWRKY15-like | Negative regulator suppressing ROS and SA signaling | [25] | |
CmMLO17–CmKIC | Promotes susceptibility via ABA/Ca2+ signaling; silencing reduced susceptibility | [20] | |
MeJA priming | Activates JA defense pathways; reduced susceptibility | [21] | |
Grafting with A. vulgaris | Increased JA, trichomes, and terpenoids; CmJAZ1-like identified as negative regulator | [22] | |
CmNPR1 | Activates SA pathway; overexpression enhanced resistance in ‘Huaiju 2’ | [23] | |
F. oxysporum (wilt) | DEGs (MAPK, phenolics, sugars) | Early phenolic biosynthesis, sugar reduction, transcription factor regulation of resistance | [24] |
CmWRKY6-1—CmWRKY15-like | Negative SA/ROS regulator; suppressed wilt resistance | [25] | |
TPS genes | Infection induced sesquiterpenes and monoterpenes; SA signaling involved | [26] | |
CmWRKY48 | Negative regulator via SA/auxin/ABA pathways; silencing enhanced resistance | [27] | |
CmWRKY8-1–VP64 | Downregulated SA biosynthetic genes; overexpression reduced resistance | [28] | |
P. horiana (white rust) | GWAS/QTL | 21 SNPs identified; DNA marker linked to resistance breeding | [29] |
Histological changes | Severe tissue deformation in susceptible cultivars | [30] | |
CmTGA1–CmRbohD | ROS and lignin cascade; overexpression enhanced resistance, knockout reduced resistance | [31] | |
CmWRKY15-1–CmNPR1 | Activated SA pathway and PR genes; positive regulator of resistance | [32] | |
CmCC-NB-ARC | NBS-LRR variants; overexpression enhanced resistance | [33] | |
Botrytis cinerea (gray mold) | VOC emission | Shared antifungal signals with wounding; induced broad-spectrum defense | [34] |
Phenylalanine priming | Promoted antifungal metabolites, stabilized metabolism, reduced ROS and ethylene | [6] |
2.3. Biocontrol Strategies Against Fungal Diseases in Chrysanthemum
3. Bacterial Diseases
3.1. Major Bacterial Diseases of Chrysanthemum and Their Diagnostic Identification
3.2. Management Strategies for Bacterial Diseases of Chrysanthemum
4. Viral and Viroid Diseases
4.1. Major Viral and Viroid Diseases of Chrysanthemum and Their Diagnostic Identification
4.2. Pathogenic Mechanisms and Resistance Research on Major Viral and Viroid Diseases of Chrysanthemum
5. Insect Pests
5.1. Major Insect Pests of Chrysanthemum
5.2. Physiological Defense Mechanisms and Resistance Research of Chrysanthemum Against Insect Pests
5.3. Biocontrol Strategies Against Insect Pests in Chrysanthemum
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mekapogu, M.; Jung, J.-A.; Kwon, O.-K.; Ahn, M.-S.; Song, H.-Y.; Jang, S. Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. Int. J. Mol. Sci. 2021, 22, 7956. [Google Scholar] [CrossRef]
- Sha, H.; Liu, X.; Xiao, X.; Zhang, H.; Gu, X.; Chen, W.; Mao, B. Nigrospora oryzae Causing Leaf Spot Disease on Chrysanthemum × morifolium Ramat and Screening of Its Potential Antagonistic Bacteria. Microorganisms 2023, 11, 2224. [Google Scholar] [CrossRef]
- Balamurugan, A.; Ashajyothi, M.; Shanu, K.; Charishma, K.; Varun, H.; Gunjeet, K.; Kumar, A. Chrysanthemum wilt caused by Fusarium incarnatum: Etiology unveiled through polyphasic taxonomic methods. Physiol. Mol. Plant Pathol. 2024, 129, 102214. [Google Scholar] [CrossRef]
- Le, D.; Ta, T.T.T.; Nguyen, P.V.; Mai, H.T.T. Natural Occurrence, Morpho-Molecular Characteristics, and Pathogenicity of Fusarium spp. Associated with Chrysanthemum Wilt in Vietnam. J. Phytopathol. 2024, 172, e13387. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Sriram, S.; Aswath, C.; Rao, T.; Nair, S. Screening of chrysanthemum (Dendranthema grandiflora) genotypes for resistance to white rust (Puccinia horiana Henn.). J. Pharmacogn. Phytochem. 2021, 10, 293–297. [Google Scholar] [CrossRef]
- Kumar, V.; Hatan, E.; Bar, E.; Davidovich-Rikanati, R.; Doron-Faigenboim, A.; Spitzer-Rimon, B.; Elad, Y.; Alkan, N.; Lewinsohn, E.; Oren-Shamir, M. Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack. Plant J. 2020, 104, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xi, Y.; Shen, C.; Wang, M.; Wang, H. Occurrence of Nigrospora sphaerica causing leaf blight on Chrysanthemum morifolium in China. Crop Prot. 2022, 157, 105982. [Google Scholar] [CrossRef]
- Bradshaw, M.; Braun, U.; Götz, M.; Meeboon, J.; Takamatsu, S. Powdery mildew of Chrysanthemum × morifolium: Phylogeny and taxonomy in the context of Golovinomyces species on Asteraceae hosts. Mycologia 2017, 109, 508–519. [Google Scholar] [CrossRef]
- Gupta, N.; Prabha, K.; Saha, T.N.; Kadam, G.B.; Prasad, K.V. First report of Colletotrichum siamense causing leaf spot on chrysanthemum in India. Indian Phytopathol. 2023, 76, 663–664. [Google Scholar] [CrossRef]
- Qiu, P.L.; Liu, S.Y.; Bradshaw, M.; Rooney-Latham, S.; Takamatsu, S.; Bulgakov, T.S.; Tang, S.R.; Feng, J.; Jin, D.N.; Aroge, T.; et al. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiol. 2020, 20, 51. [Google Scholar] [CrossRef]
- Kopacki, M.; Wagner, A.; Michalek, W. Pathogenicity of Fusarium oxysporum, Fusarium avenaceum, and Sclerotinia sclerotiorum and Their Effect on the Photosynthetic Activity of Chrysanthemum Plants. Acta Sci. Pol.-Hortorum Cultus 2016, 15, 59–70. [Google Scholar]
- Pecchia, S.; Franceschini, A.; Santori, A.; Vannacci, G.; Myrta, A. Efficacy of dimethyl disulfide (DMDS) for the control of chrysanthemum Verticillium wilt in Italy. Crop Prot. 2017, 93, 28–32. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Miao, Y.; Wang, H.; Chen, L.; Liu, D. First Report of Southern Blight on Chrysanthemum morifolium Caused by Sclerotium rolfsii in China. Plant Dis. 2020, 104, 585–586. [Google Scholar] [CrossRef]
- Ellison, M.A.; McMahon, M.B.; Bonde, M.R.; Palmer, C.L.; Luster, D.G. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections. Plant Methods 2016, 12, 37. [Google Scholar] [CrossRef]
- Demers, J.E.; Crouch, J.A.; Castlebury, L.A. A Multiplex Real-Time PCR Assay for the Detection of Puccinia horiana and P. chrysanthemi on Chrysanthemum. Plant Dis. 2015, 99, 195–200. [Google Scholar] [CrossRef]
- Seliem, M.K.; Taha, N.A.; El-Feky, N.I.; Abdelaal, K.; El-Ramady, H.; El-Mahrouk, M.E.; Bayoumi, Y.A. Evaluation of Five Chrysanthemum morifolium Cultivars against Leaf Blight Disease Caused by Alternaria alternata at Rooting and Seedling Growth Stages. Plants 2024, 13, 252. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, J.; Liu, L.; Song, A.; Guan, Z.; Fang, W.; Chen, F. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Hortic. Res. 2020, 7, 23. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Li, W.; Yin, M.; Hu, Q.; Chen, S.; Chen, F.; Liu, Y.; Guan, Z.; Jiang, J. Alternaria alternata effector AaAlta1 targets CmWD40 and participates in regulating disease resistance in Chrysanthemum morifolium. PLoS Pathog. 2025, 21, e1012942. [Google Scholar] [CrossRef]
- Huang, G.; Dong, B.; Jiang, J.; Chen, S.; Fang, W.; Liu, Y. CmNAC083 regulates resistance to Alternaria alternata via reactive oxygen species and jasmonic acid signaling pathways in Chrysanthemum morifolium. Ornam. Plant Res. 2023, 3, 16. [Google Scholar] [CrossRef]
- Xin, J.; Liu, Y.; Li, H.; Chen, S.; Jiang, J.; Song, A.; Fang, W.; Chen, F. CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. Hortic. Res. 2021, 8, 101. [Google Scholar] [CrossRef]
- Zhang, S.; Miao, W.; Liu, Y.; Jiang, J.; Chen, S.; Chen, F.; Guan, Z. Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum. Bmc Genomics 2023, 24, 553. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhan, Q.; Guan, Y.; Wang, L.; Li, S.; Zheng, S.; Ma, H.; Liu, Y.; Ding, L.; Zhao, S.; et al. Heterografting enhances chrysanthemum resistance to Alternaria alternata via jasmonate-mediated increases in trichomes and terpenoids. J. Exp. Bot. 2024, 75, 6523–6541. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Song, L.; Jiang, L.; Zhu, Y.; Gao, Q.; Wang, D.; Xie, J.; Lv, M.; Liu, P.; Li, M. The integration of transcriptomic and transgenic analyses reveals the involvement of the SA response pathway in the defense of chrysanthemum against the necrotrophic fungus Alternaria sp. Hortic. Res. 2020, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Yang, Y.; Wu, M.; Huang, G.; Ge, L.; Liu, Y.; Guan, Z.; Chen, S.; Fang, W.; Chen, F.; et al. Potential pathways and genes expressed in Chrysanthemum in response to early fusarium oxysporum infection. BMC Plant Biol. 2023, 23, 312. [Google Scholar] [CrossRef]
- Miao, W.; Xiao, X.; Wang, Y.; Ge, L.; Yang, Y.; Liu, Y.; Liao, Y.; Guan, Z.; Chen, S.; Fang, W.; et al. CmWRKY6-1-CmWRKY15-like transcriptional cascade negatively regulates the resistance to Fusarium oxysporum infection in Chrysanthemum morifolium. Hortic. Res. 2023, 10, uhad101. [Google Scholar] [CrossRef]
- Guan, Y.; He, X.; Wen, D.; Chen, S.; Chen, F.; Chen, F.; Jiang, Y. Fusarium oxysporum infection on root elicit aboveground terpene production and salicylic acid accumulation in Chrysanthemum morifolium. Plant Physiol. Biochem. 2022, 190, 11–23. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Liu, Y.; Zhan, Q.; Jing, R.; Song, A.; Zhao, S.; Wang, L.; Jiang, J.; Chen, S.; et al. A pattern for the early, middle, and late phase of tea chrysanthemum response to Fusarium oxysporum. Physiol. Plant. 2024, 176, e14373. [Google Scholar] [CrossRef]
- Miao, W.; Ge, L.; Wang, Y.; Li, S.; Sun, D.; Liu, Y.; Guan, Z.; Chen, S.; Fang, W.; Chen, F.; et al. Overexpression of CmWRKY8-1-VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium. Int. J. Mol. Sci. 2023, 24, 3499. [Google Scholar] [CrossRef]
- Sumitomo, K.; Shirasawa, K.; Isobe, S.N.; Hirakawa, H.; Harata, A.; Kawabe, M.; Yagi, M.; Osaka, M.; Kunihisa, M.; Taniguchi, F. DNA marker for resistance to Puccinia horiana in chrysanthemum (Chrysanthemum morifolium Ramat.) “Southern Pegasus”. Breed. Sci. 2021, 71, 261–267. [Google Scholar] [CrossRef]
- Meriem, S.; Sukmawaty, E.; Cahyani, N.; Masriany, M. Reduction in the anatomical structure of infected Chrysanthemum morifolium by Puccinia horiana. Arch. Phytopathol. Plant Prot. 2024, 57, 912–922. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, R.; Liu, D.; Wang, S.; Chen, C.; Mao, H. The CmTGA1-CmRbohD Cascade Confers Resistance Against Chrysanthemum White Rust by Promoting Reactive Oxygen Species Generation. Plant Cell Environ. 2025, 48, 3459–3470. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Jin, R.; Liu, D.; Zhang, X.; Sun, X.; Zhu, P.; Mao, H. CmWRKY15-1 Promotes Resistance to Chrysanthemum White Rust by Regulating CmNPR1 Expression. Front. Plant Sci. 2022, 13, 865607. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Feng, X.; Chen, X.; Yu, Y.; Mao, H.; Zhu, P. Cloning and identification of CmCC-NB-ARC, a chrysanthemum white rust resistance gene. Ornam. Plant Res. 2023, 3, 7. [Google Scholar] [CrossRef]
- Piesik, D.; Miler, N.; Lemanczyk, G.; Bocianowski, J.; Buszewski, B. Botrytis cinerea infection in three cultivars of chrysanthemum in ‘Alchimist’ and its mutants: Volatile induction of pathogen-infected plants. Sci. Hortic. 2015, 193, 127–135. [Google Scholar] [CrossRef]
- Zhan, Q.; Li, W.; Liu, Y.; Zhao, S.; Chen, S.; Fang, W.; Chen, F.; Guan, Z. Genetic resources resistant to black spot (Alternaria alternate) identified from Chrysanthemum-related genera and potential underlying mechanisms. Ornam. Plant Res. 2024, 4, e001. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Muhammad, M.; Jiao, Y.; Chen, X.; Wang, H.-L.; Lu, C.-M.; Wang, X.-M.; Zhu, G.-X.; Liu, K.-Q.; Zhang, Y.; et al. Trichoderma harzianum promoting chrysanthemum cutting rooting and reshaping microbial communities in endophytic and rhizosphere environments. Appl. Soil Ecol. 2024, 203, 105636. [Google Scholar] [CrossRef]
- Tao, R.; Ding, W.; Zhang, K.; Wu, S.; Li, J.; Chu, G.; Hu, B. Biochar and Bacillus subtilis boost cut chrysanthemum growth via intensified microbial interkingdom interactions. Biochar 2025, 7, 75. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Jiang, J.; Chen, S.; Guan, Z.; Chen, F.; Fang, W.; Zhao, S. Assessing the Influence of Fumigation and Bacillus Subtilis-Based Biofungicide on the Microbiome of Chrysanthemum Rhizosphere. Agriculture 2019, 9, 255. [Google Scholar] [CrossRef]
- Eduardo Torres, D.; Isabel Rojas-Martinez, R.; Zavaleta-Mejia, E.; Guevara-Fefer, P.; Judith Marquez-Guzman, G.; Perez-Martinez, C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE 2017, 12, e0170782. [Google Scholar] [CrossRef]
- Yang, M.; Li, M.; Chen, F.; Chen, S. Bioactive components and antimicrobial potential of extracts from Artemisia species and their repellent activities against Aphid (Macrosiphoniella sanborni). Ornam. Plant Res. 2024, 4, e025. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, W.; Wang, J.; Guo, J.; Zhou, C. Root exudate-mediated assemblage of rhizo-microbiome enhances Fusarium wilt suppression in chrysanthemum. Microbiol. Res. 2025, 292, 128031. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiao, J.; Zhao, G.; Zhang, H.; Shen, Y.; Cheng, W. Rice-Straw Biochar Regulating Effect on Chrysanthemum morifolium Ramat. cv. ‘Hangbaiju’. Agron. J. 2018, 110, 1996–2003. [Google Scholar] [CrossRef]
- Trinh, P.; Tung, T.; Danh, L.; Thi, N.; Nga, N.; Tam, H.; Ngọc. Isolation and Virulent Evaluation of Ralstonia solanacearum cause the Bacterial Wilt in Chrysanthemum (Chrysanthemum Sp.) from Mekong Delta and Lam Dong Province. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1173–1190. [Google Scholar] [CrossRef]
- Hanudin, H.; Sanjaya, L.; Marwoto, B. Bacterial Leaf Blight Disease (Pseudomonas cichorii (Swingle 1925) (STAPP 1928) in Chrysanthemum (Dendranthema grandiflora Tzvelev) and Its Control) in Indonesia. J. Penelit. Pengemb. Pertan. 2020, 39, 105–116. [Google Scholar] [CrossRef]
- Shamala, G.; Janardhana, G.R. Isolation and identification of Pseudomonas putida from bacterial leaf blight disease of chrysanthemum and its management using bactericides and bio-agents in vitro and in vivo in Karnataka (India). Int. J. Pharm. Chem. Biol. Sci. 2018, 8, 125–133. [Google Scholar]
- Végh, A.; Némethy, Z.; Salamon, P.; Mándoki, Z.; Palkovics, L. First Report of Bacterial Wilt on Chrysanthemum Caused by Dickeya chrysanthemi (syn. Erwinia chrysanthemi) in Hungary. Plant Dis. 2014, 98, 988. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Park, K.; Hwang, H.-K.; Hwang, T.-H.; Kim, J.-Y.; Lee, J.-K.; Cha, J.-S. Crown Gall of Chrosanthemum Caused by Agrobacterium rubi and A. tumefaciens. Res. Plant Dis. 2006, 12, 197–204. [Google Scholar] [CrossRef]
- Gordon, M.I.; Thomas, W.J.; Putnam, M.L. Transmission and Management of Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians in Select Ornamentals. Plant Dis. 2024, 108, 50–61. [Google Scholar] [CrossRef]
- Elsisi, A. Bacterial blight disease caused by Pseudomonas cichorii on chrysanthemum in Egypt. J. Phytopathol. Dis. Manag. 2019, 6, 11–23. [Google Scholar]
- Huong, D.D.T.; Rajalingam, N.; Lee, Y.H. Characterization of Virulence Function of Pseudomonas cichorii Avirulence Protein E1 (AvrE1) during Host Plant Infection. Plant Pathol. J. 2021, 37, 494–501. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Cai, T.; Deng, Y.; Zhuang, R.; Zhang, N.; Zeng, Y.; Zheng, Y.; Tang, R.; Pan, R.; et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol. J. 2017, 15, 39–55. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Bo, G.; Zhang, Y.; Chen, Y.; Shen, M.; Zhang, P.; Li, G.; Zhou, J.; Li, Z.; et al. Ralstonia solanacearum Infection Disturbed the Microbiome Structure Throughout the Whole Tobacco Crop Niche as Well as the Nitrogen Metabolism in Soil. Front. Bioeng. Biotechnol. 2022, 10, 903555. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, N.; Shen, Z.; Zhu, C.; Li, R.; Salles, J.F.; Shen, Q. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 2020, 147, 103364. [Google Scholar] [CrossRef]
- Li, T.; Ou, Y.; Ling, S.; Gao, M.; Deng, X.; Liu, H.; Li, R.; Shen, Z.; Shen, Q. Suppressing Ralstonia solanacearum and Bacterial Antibiotic Resistance Genes in Tomato Rhizosphere Soil through Companion Planting with Basil or Cilantro. Agronomy 2024, 14, 1129. [Google Scholar] [CrossRef]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Colman, M.V.; Gao, X. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2. Front. Microbiol. 2017, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Hase, S.; Shimizu, A.; Nakaho, K.; Takenaka, S.; Takahashi, H. Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol. 2006, 55, 537–543. [Google Scholar] [CrossRef]
- Im, S.M.; Yu, N.H.; Joen, H.W.; Kim, S.O.; Park, H.W.; Park, A.R.; Kim, J.-C. Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pestic. Biochem. Physiol. 2020, 163, 130–137. [Google Scholar] [CrossRef]
- Alvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- Islam, T.M.D.; Toyota, K. Effect of Moisture Conditions and Pre-Incubation at Low Temperature on Bacterial Wilt of Tomato Caused by Ralstonia solanacearum. Microbes Environ. 2004, 19, 244–247. [Google Scholar] [CrossRef]
- Ooshiro, A.; Kaji, M.; Katoh, Y.; Kawaide, H.; Natsume, M. Antibacterial activity of alkyl gallates and related compounds against Ralstonia solanacearum. J. Pestic. Sci. 2011, 36, 240–242. [Google Scholar] [CrossRef]
- Supakitthanakorn, S.; Vichittragoontavorn, K.; Sunpapao, A.; Kunasakdakul, K.; Thapanapongworakul, P.; Ruangwong, O.-U. Tobacco Mosaic Virus Infection of Chrysanthemums in Thailand: Development of Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification (RT–LAMP) Technique for Sensitive and Rapid Detection. Plants 2022, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, S.N.; Sheveleva, A.; Snezhkina, A.; Kudryavtseva, A.; Krasnov, G.; Zakubanskiy, A.; Mitrofanova, I. Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. PeerJ 2022, 10, e12607. [Google Scholar] [CrossRef] [PubMed]
- Dullemans, A.M.; Verhoeven, J.T.J.; Kormelink, R.; van der Vlugt, R.A.A. The complete nucleotide sequence of chrysanthemum stem necrosis virus. Arch. Virol. 2015, 160, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Chen, Q.; Pan, B.; Sun, Y.; Xu, Y.; Chen, D.; Liu, H.; Luo, C.; Chen, X.; Li, H.; et al. Current Achievements and Future Prospects in Virus Elimination Technology for Functional Chrysanthemum. Viruses 2023, 15, 1770. [Google Scholar] [CrossRef]
- Cho, W.K.; Jo, Y.; Jo, K.M.; Kim, K.H. A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses 2013, 5, 1099–1113. [Google Scholar] [CrossRef]
- Igori, D.; Kim, S.E.; Kwon, J.A.; Park, Y.C.; Moon, J.S. Complete nucleotide sequence of chrysanthemum virus D, a polero-like virus. Arch. Virol. 2024, 169, 28. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, J.; Yang, L.; Zhang, S.; Cao, M. Molecular characterization of a novel cytorhabdovirus associated with chrysanthemum yellow dwarf disease. Arch. Virol. 2021, 166, 1253–1257. [Google Scholar] [CrossRef]
- Kubota, K.; Yanagisawa, H.; Chiaki, Y.; Yamasaki, J.; Horikawa, H.; Tsunekawa, K.; Morita, Y.; Kadono, F. Complete nucleotide sequence of chrysanthemum mosaic-associated virus, a novel emaravirus infecting chrysanthemum. Arch. Virol. 2021, 166, 1241–1245. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Y.; Wang, H.; Zhang, J.; Ma, C.; Cao, L.; Shen, L.; Cao, K.; Fan, X. Identification and complete genome sequence of a novel sadwavirus discovered in chrysanthemum (Chrysanthemum morifolium Ramat.). Arch. Virol. 2023, 168, 295. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Ge, B.; Li, M.; Hong, B. A multiplex RT-PCR for simultaneous detection and identification of five viruses and two viroids infecting chrysanthemum. Arch. Virol. 2015, 160, 1145–1152. [Google Scholar] [CrossRef]
- Asano, S.; Matsushita, Y.; Hirayama, Y.; Naka, T. Simultaneous detection of Tomato spotted wilt virus, Dahlia mosaic virus and Chrysanthemum stunt viroid by multiplex RT-PCR in dahlias and their distribution in Japanese dahlias. Lett. Appl. Microbiol. 2015, 61, 113–120. [Google Scholar] [CrossRef]
- Alvarez-Díaz, J.C.; Ortiz-Echeverry, B.A.; Velásquez, N. Duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemum. J. Virol. Methods 2019, 266, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Fukuta, S.; Matsumoto, Y.; Hasegawa, T.; Kojima, H.; Hotta, M.; Miyake, N. Development of reverse transcription loop-mediated isothermal amplification assay as a simple detection method of Chrysanthemum stem necrosis virus in chrysanthemum and tomato. J. Virol. Methods 2016, 236, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Supakitthanakorn, S.; Vichittragoontavorn, K.; Kunasakdakul, K.; Ruangwong, O.U. Development of the colorimetric loop-mediated isothermal amplification technique for rapid and sensitive detection of chrysanthemum stunt viroid in chrysanthemum. J. Plant Prot. Res. 2022, 62, 272–280. [Google Scholar] [CrossRef]
- Vetukuri, R.R.; Kalyandurg, P.B.; Saripella, G.V.; Sen, D.; Gil, J.F.; Lukhovitskaya, N.I.; Grenville-Briggs, L.J.; Savenkov, E.I. Effect of RNA silencing suppression activity of chrysanthemum virus B p12 protein on small RNA species. Arch. Virol. 2020, 165, 2953–2959. [Google Scholar] [CrossRef]
- Maddahian, M.; Massumi, H.; Heydarnejad, J.; Pour, A.H.; Varsani, A. Characterization of Iranian Tomato aspermy virus isolates with a variant 2b gene sequence. Trop. Plant Pathol. 2017, 42, 475–484. [Google Scholar] [CrossRef]
- Serra, P.; Navarro, B.; Forment, J.; Gisel, A.; Gago-Zachert, S.; Di Serio, F.; Flores, R. Expression of symptoms elicited by a hammerhead viroid through RNA silencing is related to population bottlenecks in the infected host. New Phytol. 2023, 239, 240–254. [Google Scholar] [CrossRef]
- Ebata, M.; Matsushita, Y.; Morimoto, M.; Mochizuki, T. Distribution of chrysanthemum chlorotic mottle viroid in shoot meristem and flower buds of chrysanthemum. Eur. J. Plant Pathol. 2019, 154, 555–563. [Google Scholar] [CrossRef]
- Leastro, M.O.; Pallás, V.; Resende, R.O.; Sánchez-Navarro, J.A. The functional analysis of distinct tospovirus movement proteins (NSM) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Res. 2017, 227, 57–68. [Google Scholar] [CrossRef]
- Leastro, M.O.; De Oliveira, A.S.; Pallás, V.; Sánchez-Navarro, J.A.; Kormelink, R.; Resende, R.O. The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b-mediated resistance dissociated of their cell-to-cell movement function. Virus Res. 2017, 240, 25–34. [Google Scholar] [CrossRef]
- Choi, H.; Jo, Y.; Lian, S.; Jo, K.M.; Chu, H.; Yoon, J.Y.; Choi, S.K.; Kim, K.H.; Cho, W.K. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol. Biol. 2015, 88, 233–248. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, L.; Li, J.; Tang, Z.; Wu, C.; Zhang, L.; Zhou, X.; Wang, Y.; Wang, Z. Integrated next-generation sequencing and comparative transcriptomic analysis of leaves provides novel insights into the ethylene pathway of Chrysanthemum morifolium in response to a Chinese isolate of chrysanthemum virus B. Virol. J. 2022, 19, 182. [Google Scholar] [CrossRef]
- Du, X.; Zhan, X.; Gu, X.; Liu, X.; Mao, B. Evaluation of Virus-Free Chrysanthemum ‘Hangju’ Productivity and Response to Virus Reinfection in the Field: Molecular Insights into Virus–Host Interactions. Plants 2024, 13, 732. [Google Scholar] [CrossRef]
- Wang, T.; Wei, Q.; Wang, Z.; Liu, W.; Zhao, X.; Ma, C.; Gao, J.; Xu, Y.; Hong, B. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. J. Integr. Plant Biol. 2022, 64, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Du, X.; Mao, B. Production of Virus-Free Chrysanthemum (Chrysanthemum morifolium Ramat) by Tissue Culture Techniques. Methods Mol. Biol. 2022, 2400, 171–186. [Google Scholar] [CrossRef]
- Previati, A.; Benelli, C.; Re, F.; Giannini, M. In vitro production of virus-free Chrysanthemum stock plants for cut flowers. Propag. Ornam. Plants 2008, 8, 167–169. [Google Scholar]
- Matsushita, Y.; Shima, Y. Effect of low temperature on the distribution of Chrysanthemum stunt viroid in Chrysanthemum morifolium. Phytoparasitica 2015, 43, 609–614. [Google Scholar] [CrossRef]
- Zhang, Z.; Lee, Y.; Sivertsen, A.; Skjeseth, G.; Haugslien, S.; Clarke, J.L.; Wang, Q.C.; Blystad, D.R. Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemurn. Front. Microbiol. 2016, 7, 224. [Google Scholar] [CrossRef]
- Wei, J.; Gan, H.; Tian, Y.; Zhou, Y.; Xie, D.; Zhao, X. Development of an elite tomato aspermy virus-free medicinal chrysanthemum crop and evaluation of its performance in the field. Ind. Crops Prod. 2025, 232, 121311. [Google Scholar] [CrossRef]
- Mitiouchkina, T.; Firsov, A.; Titova, S.; Shulga, O.; Dolgov, S. Efficiency assessment of genetic designs with coat protein in transgene-mediated resistance against Chrysanthemum virus B. Acta Hortic. 2018, 1193, 89–94. [Google Scholar] [CrossRef]
- Chen, C.; Imran, M.; Feng, X.; Shen, X.; Sun, Z. Spray-induced gene silencing for crop protection: Recent advances and emerging trends. Frontiers in Plant Science 2025, 16, 1527944. [Google Scholar] [CrossRef]
- Costa, H.S.; Robb, K.L.; Wilen, C.A. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J. Econ. Entomol. 2002, 95, 113–120. [Google Scholar] [CrossRef]
- Yoon, J.B.; Choi, S.K.; Cho, I.S.; Kwon, T.R.; Yang, C.Y.; Seo, M.H.; Yoon, J.Y. Epidemiology of tomato spotted wilt virus in Chrysanthemum morifolium in South Korea and its management using a soil-dwelling predatory mite (Stratiolaelaps scimitus) and essential oils. Virus Res. 2020, 289, 198128. [Google Scholar] [CrossRef] [PubMed]
- Nakkeeran, S.; Saranya, N.; Senthilraja, C.; Renukadevi, P.; Krishnamoorthy, A.S.; El Enshasy, H.A.; El-Adawi, H.; Malathi, V.G.; Salmen, S.H.; Ansari, M.J.; et al. Mining the Genome of Bacillus velezensis VB7 (CP047587) for MAMP Genes and Non-Ribosomal Peptide Synthetase Gene Clusters Conferring Antiviral and Antifungal Activity. Microorganisms 2021, 9, 2511. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Takehara, Y.; Sakurai, T. Use of prohydrojasmon to suppress Frankliniella occidentalis and tomato spotted wilt virus in chrysanthemums. Phytoparasitica 2023, 51, 829–839. [Google Scholar] [CrossRef]
- Munpally, S.; Anitha, V.; Gajula, S.; Kameshwari, L. A Brief Review on Chrysanthemum aphid: Macrosiphoniella sanbornii (Gillette) and its Management. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 278–283. [Google Scholar] [CrossRef]
- Rogge, S.; Meyhöfer, R. The role of plant physiology and cultivar of chrysanthemum in the resistance against Western flower thrips. Entomol. Exp. Appl. 2021, 169, 275–289. [Google Scholar] [CrossRef]
- Hutapea, D.; Rahardjo, I.; Yanda, R.; Diningsih, E. Distribution and population abundance of greenhouse whitefly Bemisia tabaci Genn (Hemiptera: Aleyrodidae) on Chrysanthemum. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012065. [Google Scholar] [CrossRef]
- Sousa, V.R.; Dias-Pini, N.S.; Couri, M.S.; Takiya, D.M. Investigating Liriomyza (Diptera: Agromyzidae) Populations From Northeastern Brazil: MtDNA Analyses of the Global Pests L. sativae and L. huidobrensis. Ann. Entomol. Soc. Am. 2022, 115, 285–303. [Google Scholar] [CrossRef]
- Hernández-Valencia, V.; Santillán-Galicia, M.T.; Guzmán-Franco, A.W.; Rodríguez-Leyva, E.; Santillán-Ortega, C. Combined application of entomopathogenic fungi and predatory mites for biological control of Tetranychus urticae on chrysanthemum. Pest Manag. Sci. 2024, 80, 4199–4206. [Google Scholar] [CrossRef]
- Dhok, A.; Gosalwad, S.; Ingale, A.; Kapure, V. Seasonal incidence of major insect pests of chrysanthemum. Int. J. Adv. Biochem. Res. 2025, 9, 111–114. [Google Scholar] [CrossRef]
- Hutapea, D.; Rahardjo, I.B.; Rachmawati, F.; Yulia, N.D.; Budiarto, K. Efficacy of some botanical insecticides against Aphis gossypii Glover (Hemiptera: Aphididae) on chrysanthemum. J. Entomol. Acarol. Res. 2024, 56, 12173. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, Y.; Lu, Y.; Ma, X.O.; Zhang, Q.; Wang, X.; Zhang, Q.; Sun, M. Identification and Expression Analysis of Chemosensory Genes in the Antennal Transcriptome of Chrysanthemum Aphid Macrosiphoniella sanborni. Insects 2022, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Hutapea, D.; Sartiami, D.; Dadang, D.; Hidayat, P. Comparative Study of Integrated Pest Management and Farmer’s Standard Practices for Controlling Chrysanthemum Thrips under Plastic House. AGRIVITA J. Agric. Sci. 2024, 46, 78–95. [Google Scholar] [CrossRef]
- Islam, M.; Amin, M.; Rahman, H.; Yeasmin, F.; Haque, M. Status of arthropod pests infesting different ornamental plants of Bangladesh. Bangladesh J. Ecol. 2019, 1, 11–15. [Google Scholar]
- Xia, C.; Xue, W.; Li, Z.; Shi, J.; Yu, G.; Zhang, Y. Presenting the Secrets: Exploring Endogenous Defense Mechanisms in Chrysanthemums against Aphids. Horticulturae 2023, 9, 937. [Google Scholar] [CrossRef]
- Sun, H.N.; Zhang, F.; Chen, S.M.; Guan, Z.Y.; Jiang, J.F.; Fang, W.M.; Chen, F.D. Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochem. Syst. Ecol. 2015, 60, 225–233. [Google Scholar] [CrossRef]
- An, C.; Sheng, L.; Du, X.; Wang, Y.; Zhang, Y.; Song, A.; Jiang, J.; Guan, Z.; Fang, W.; Chen, F.; et al. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Hortic. Res. 2019, 6, 84. [Google Scholar] [CrossRef]
- Li, P.; Song, A.; Gao, C.; Jiang, J.; Chen, S.; Fang, W.; Zhang, F.; Chen, F. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol. Biochem. 2015, 95, 26–34. [Google Scholar] [CrossRef]
- Wang, Y.J.; Sheng, L.P.; Zhang, H.R.; Du, X.P.; An, C.; Xia, X.L.; Chen, F.D.; Jiang, J.F.; Chen, S.M. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis. Int. J. Mol. Sci. 2017, 18, 619. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, T.; Li, P.; Tian, C.; Song, A.; Jiang, J.; Guan, Z.; Fang, W.; Chen, F.; Chen, S. Chrysanthemum CmWRKY53 negatively regulates the resistance of chrysanthemum to the aphid Macrosiphoniella sanborni. Hortic. Res. 2020, 7, 109. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Hong, C.; Zhai, L.; Wang, X.; Zhou, L.; Song, A.; Jiang, J.; Wang, L.; Chen, F.; et al. Chrysanthemum (Chrysanthemum morifolium) CmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni). BMC Plant Biol. 2024, 24, 76. [Google Scholar] [CrossRef]
- Shinoyama, H.; Mitsuhara, I.; Ichikawa, H.; Kato, K.; Mochizuki, A. Transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic. 2015, 1087, 485–497. [Google Scholar] [CrossRef]
- Shinoyama, H.; Mochizuki, A.; Komano, M.; Nomura, Y.; Nagai, T. Insect Resistance in Transgenic Chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] by the Introduction of a Modified δ-endotoxin Gene of Bacillus thuringiensis. Breed. Sci. 2003, 53, 359–367. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Ren, S.; Yu, L.; Luo, Y.; Li, J.; Zeng, T.; Wang, M.; Wang, C. Aphid alarm pheromone mimicry in transgenic Chrysanthemum morifolium: Insights into the potential of (E)-β-farnesene for aphid resistance. Front. Plant Sci. 2024, 15, 1373669. [Google Scholar] [CrossRef]
- Pak, S.; Han, M.; Li, H.; Pak, H.; Li, J. Breeding of the transgenic chrysanthemum (Chrysanthemum morifolium Ramat.) carrying aphid-resistance gene, Pinellia ternata agglutinin (PTA). Plant Biotechnol. Rep. 2020, 14, 255–262. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.; Delatte, T.; Vervoort, J.; Gao, L.; Verstappen, F.; Xiong, W.; Gan, J.; Jongsma, M.A.; Wang, C. Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids. Plant Biotechnol. J. 2018, 16, 1434–1445. [Google Scholar] [CrossRef]
- Bally, J.; McIntyre, G.J.; Doran, R.L.; Lee, K.; Perez, A.; Jung, H.; Naim, F.; Larrinua, I.M.; Narva, K.E.; Waterhouse, P.M. In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts. Front. Plant Sci. 2016, 7, 1453. [Google Scholar] [CrossRef]
- Mendoza-Alatorre, M.; Julian-Chávez, B.; Solano-Ornelas, S.; Siqueiros-Cendón, T.S.; Torres-Castillo, J.A.; Sinagawa-García, S.R.; Abraham-Juárez, M.J.; González-Barriga, C.D.; Rascón-Cruz, Q.; Siañez-Estrada, L.I.; et al. RNAi in Pest Control: Critical Factors Affecting dsRNA Efficacy. Insects 2025, 16, 737. [Google Scholar] [CrossRef]
- Van Driesche, R.G.; Lyon, S.; Stanek, E.J.; Xu, B.; Nunn, C. Evaluation of efficacy of Neoseiulus cucumeris for control of western flower thrips in spring bedding crops. Biol. Control 2006, 36, 203–215. [Google Scholar] [CrossRef]
- Salman, S.Y.; Keskin, C. The effects of milbemectin and spirodiclofen resistance on Phytoseiulus persimilis A.H. (Acari:Phytoseiidae) life table parameters. Crop Prot. 2019, 124, 104751. [Google Scholar] [CrossRef]
- Herrick, N.J.; Cloyd, R.A.; Conner, M.A.; Motolai, G. Insidious flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae), predation on western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Transvaal daisy, Gerbera jamesonii, cut flowers and chrysanthemum, Tanacetum x grandiflorum, plants under laboratory and greenhouse conditions. Biol. Control 2021, 163, 104739. [Google Scholar] [CrossRef]
- Silva, L.P.; Souza, I.L.; Marucci, R.C.; Guzman-Martinez, M. Doru luteipes (Dermaptera: Forficulidae) and Orius insidiosus (Hemiptera: Anthocoridae) as Nocturnal and Diurnal Predators of Thrips. Neotrop. Entomol. 2023, 52, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Milenovic, M.; Ripamonti, M.; Eickermann, M.; Rapisarda, C.; Junk, J. Changes in longevity, parasitization rate and development time of the whitefly parasitoid Encarsia formosa under future climate conditions. Biol. Control 2023, 186, 105354. [Google Scholar] [CrossRef]
- Andriani, A.; Arjana, I.; Suryani, S. Increasing Production and Quality of Chrysanthemum Cut Flowers Through the Application Biological Agents; European Alliance for Innovation: Denpasar, Bali, Indonesia, 2021. [Google Scholar]
- Li, Y.; Cloyd, R.A.; Bello, N.M. Effect of Integrating the Entomopathogenic Fungus (Hypocreales: Cordycipitaceae) and the Rove Beetle (Coleoptera: Staphylinidae) in Suppressing Western Flower Thrips (Thysanoptera: Thripidae) Populations Under Greenhouse Conditions. J. Econ. Entomol. 2019, 112, 2085–2093. [Google Scholar] [CrossRef]
- Dlamini, T.M.; Allsopp, E.; Malan, A.P. Efficacy of entomopathogenic nematodes against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), under laboratory conditions. Afr. Entomol. 2019, 27, 322–335. [Google Scholar] [CrossRef]
- Koschier, E. Essential Oil Compounds for Thrips Control—A Review. Nat. Prod. Commun. 2008, 3, 1171–1182. [Google Scholar] [CrossRef]
- Niu, Y.; Pei, T.; Zhao, Y.; Zhou, C.; Liu, B.; Shi, S.; Xu, M.-L.; Gao, Y. Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus. Agronomy 2024, 14, 1212. [Google Scholar] [CrossRef]
- Durr, T.D.; Stratton, C.A.; Dosoky, N.S.; Satyal, P.; Murrell, E.G. Shared phytochemicals predict efficacy of essential oils against western flower thrips (Frankliniella occidentalis) in the greenhouse. Chem. Biol. Technol. Agric. 2022, 9, 62. [Google Scholar] [CrossRef]
- Rahardjo, I.B.; Hutapea, D.; Marwoto, B.; Budiarto, K. Effects of Several Botanical Insecticides Applied in Different Periods to Control Aphids (Macrosiphoniella sanborni Gillete) on Chrysanthemum. Agrivita 2021, 43, 495–506. [Google Scholar] [CrossRef]
Fungal Diseases | Pathogen | Bacterial Diseases | Pathogen | Viral and Viroid Diseases | Viruses/Viroids | Insect Pests | Pest Species |
---|---|---|---|---|---|---|---|
Leaf spot | Nigrospora oryzae, Nigrospora sphaerica | Stem rot | Dickeya chrysanthemi | Viruses | CVB, CVR, CMV, CSNV, TSWV, INSV, PVY, TMV, TAV | Aphids | Macrosiphoniella sanborni, Myzus persicae, Aphis gossypii |
Leaf blight | Alternaria alternata | Bacterial wilt | Ralstonia solanacearum | Viroids | CSVd, CChMVd | Thrips | Frankliniella occidentalis |
Powdery mildew | Golovinomyces cichoracearum | Leaf spot/blight | Pseudomonas cichorii, P. putida | Whiteflies | Trialeurodes vaporariorum, Bemisia tabaci | ||
Anthracnose | Colletotrichum siamense | Crown gall | Agrobacterium rubi, A. tumefaciens | Leafminers | Liriomyza spp. (L. trifolii, L. huidobrensis, L. sativae) | ||
Gray mold | Botrytis cinerea | Leafy gall | Rhodococcus fascians | Spider mites | Tetranychus urticae | ||
Wilt | Fusarium incarnatum | Lepidoptera pests | Helicoverpa armigera | ||||
White rust | Puccinia horiana, P. chrysanthemi | ||||||
Soil-borne diseases | Sclerotinia sclerotiorum, Verticillium dahliae |
Category | Factor/Approach | Mechanism and Effect | References |
---|---|---|---|
Natural Resistance Traits | Leaf toughness, trichome density, secondary metabolites | Physical/chemical barriers; natural variation linked to higher resistance | [106] |
VOCs | Aphid-induced VOC shifts; species-specific preferences, compounds linked to resistance | [107] | |
Transcription Factors and Regulation | CmWRKY48 | Aphid-inducible; overexpression suppressed aphid growth | [107] |
CmMYB15 | Promotes lignin biosynthesis; overexpression enhanced resistance | [108,109] | |
CmMYB19 | Activates lignin pathway; restricted aphid multiplication | [108,110] | |
CmWRKY53 | Negative regulator; overexpression increased susceptibility, repression enhanced resistance | [111] | |
CmHRE2-like | Regulates flavonoids; overexpression increased susceptibility, repression enhanced resistance | [111] | |
Exogenous Genes and Emerging Tech | cry1Ab + sarcotoxin IA | Produced insecticidal proteins; high-expression lines killed H. armigera and lepidopteran larvae | [113,114] |
TcEbFS | Synthesized aphid alarm pheromone (E)-β-farnesene; disrupted feeding | [115] | |
PTA gene | Interfered with feeding; stable aphid resistance in transgenic lines | [116] | |
TcCHS | Produced chrysanthemol and glycosides; suppressed A. gossypii probing and reproduction | [117] | |
RNAi (chloroplast vs. nuclear) | Chloroplast dsRNA gave strong resistance; nuclear siRNA weaker | [118,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Han, L.; Ye, T.; Xie, C. Research Progress on Diseases and Pests of Chrysanthemum (2015–2025). Int. J. Mol. Sci. 2025, 26, 9767. https://doi.org/10.3390/ijms26199767
Chen Y, Han L, Ye T, Xie C. Research Progress on Diseases and Pests of Chrysanthemum (2015–2025). International Journal of Molecular Sciences. 2025; 26(19):9767. https://doi.org/10.3390/ijms26199767
Chicago/Turabian StyleChen, Yuan, Lihui Han, Tengqing Ye, and Chengjian Xie. 2025. "Research Progress on Diseases and Pests of Chrysanthemum (2015–2025)" International Journal of Molecular Sciences 26, no. 19: 9767. https://doi.org/10.3390/ijms26199767
APA StyleChen, Y., Han, L., Ye, T., & Xie, C. (2025). Research Progress on Diseases and Pests of Chrysanthemum (2015–2025). International Journal of Molecular Sciences, 26(19), 9767. https://doi.org/10.3390/ijms26199767