Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,264)

Search Parameters:
Keywords = edge users

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 (registering DOI) - 1 Aug 2025
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

26 pages, 2325 KiB  
Review
Personalization of AI-Based Digital Twins to Optimize Adaptation in Industrial Design and Manufacturing—Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Jan Cybulski and Mirosław Kozielski
Appl. Sci. 2025, 15(15), 8525; https://doi.org/10.3390/app15158525 (registering DOI) - 31 Jul 2025
Abstract
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), [...] Read more.
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), with a focus on overcoming computational latencies that hinder real-time responses—especially in complex, large-scale systems and networks. We use bibliometric analysis to map current trends, prevailing themes, and technical challenges in this field. The key findings highlight the growing emphasis on scalable model architectures, multimodal data integration, and the use of high-performance computing platforms. While existing research has focused on model decomposition, structural optimization, and algorithmic integration, there remains a need for fast DT platforms that support diverse user requirements. This review synthesizes these insights to outline new directions for accelerating adaptation and enhancing personalization. By providing a structured overview of the current research landscape, this study contributes to a better understanding of how AI and edge computing can drive the development of the next generation of real-time personalized DTs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

23 pages, 1734 KiB  
Article
Design and Implementation of a Cost-Effective Failover Mechanism for Containerized UPF
by Kiem Nguyen Trung and Younghan Kim
Electronics 2025, 14(15), 2991; https://doi.org/10.3390/electronics14152991 - 27 Jul 2025
Viewed by 231
Abstract
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads [...] Read more.
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads close to end devices, reducing latency and ensuring stringent Quality of Service (QoS). However, edge environments often face resource constraints and unpredictable failures such as network disruptions or hardware malfunctions, which can severely affect the reliability of the network. In addition, existing redundancy-based UPF resilience strategies, which maintain standby instances, incur substantial overheads and degrade resource efficiency and scalability for the applications. To address this issue, this study introduces a novel design that enables quick detection of UPF failures and two failover mechanisms to restore failed UPF instances either within the cluster hosting the failed UPF or across multiple clusters, depending on that cluster’s resource availability and health. We implemented and evaluated our proposed approach on a Kubernetes-based testbed, and the results demonstrate that our approach reduces UPF redeployment time by up to 37% compared to baseline methods and lowers system cost by up to 50% under high-reliability requirements compared to traditional redundancy-based failover methods. These findings demonstrate that our design can serve as a complementary solution alongside traditional resilience strategies, offering a particularly cost-effective and resource-efficient alternative for edge computing and other constrained environments. Full article
(This article belongs to the Special Issue Advances in Intelligent Systems and Networks, 2nd Edition)
Show Figures

Figure 1

22 pages, 1359 KiB  
Article
Fall Detection Using Federated Lightweight CNN Models: A Comparison of Decentralized vs. Centralized Learning
by Qasim Mahdi Haref, Jun Long and Zhan Yang
Appl. Sci. 2025, 15(15), 8315; https://doi.org/10.3390/app15158315 - 25 Jul 2025
Viewed by 206
Abstract
Fall detection is a critical task in healthcare monitoring systems, especially for elderly populations, for whom timely intervention can significantly reduce morbidity and mortality. This study proposes a privacy-preserving and scalable fall-detection framework that integrates federated learning (FL) with transfer learning (TL) to [...] Read more.
Fall detection is a critical task in healthcare monitoring systems, especially for elderly populations, for whom timely intervention can significantly reduce morbidity and mortality. This study proposes a privacy-preserving and scalable fall-detection framework that integrates federated learning (FL) with transfer learning (TL) to train deep learning models across decentralized data sources without compromising user privacy. The pipeline begins with data acquisition, in which annotated video-based fall-detection datasets formatted in YOLO are used to extract image crops of human subjects. These images are then preprocessed, resized, normalized, and relabeled into binary classes (fall vs. non-fall). A stratified 80/10/10 split ensures balanced training, validation, and testing. To simulate real-world federated environments, the training data is partitioned across multiple clients, each performing local training using pretrained CNN models including MobileNetV2, VGG16, EfficientNetB0, and ResNet50. Two FL topologies are implemented: a centralized server-coordinated scheme and a ring-based decentralized topology. During each round, only model weights are shared, and federated averaging (FedAvg) is applied for global aggregation. The models were trained using three random seeds to ensure result robustness and stability across varying data partitions. Among all configurations, decentralized MobileNetV2 achieved the best results, with a mean test accuracy of 0.9927, F1-score of 0.9917, and average training time of 111.17 s per round. These findings highlight the model’s strong generalization, low computational burden, and suitability for edge deployment. Future work will extend evaluation to external datasets and address issues such as client drift and adversarial robustness in federated environments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 455
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 655 KiB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Viewed by 253
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
Show Figures

Figure 1

14 pages, 1295 KiB  
Article
Edge-FLGuard+: A Federated and Lightweight Anomaly Detection Framework for Securing 5G-Enabled IoT in Smart Homes
by Manuel J. C. S. Reis
Future Internet 2025, 17(8), 329; https://doi.org/10.3390/fi17080329 - 24 Jul 2025
Viewed by 168
Abstract
The rapid expansion of 5G-enabled Internet of Things (IoT) devices in smart homes has heightened the need for robust, privacy-preserving, and real-time cybersecurity mechanisms. Traditional cloud-based security systems often face latency and privacy bottlenecks, making them unsuitable for edge-constrained environments. In this work, [...] Read more.
The rapid expansion of 5G-enabled Internet of Things (IoT) devices in smart homes has heightened the need for robust, privacy-preserving, and real-time cybersecurity mechanisms. Traditional cloud-based security systems often face latency and privacy bottlenecks, making them unsuitable for edge-constrained environments. In this work, we propose Edge-FLGuard+, a federated and lightweight anomaly detection framework specifically designed for 5G-enabled smart home ecosystems. The framework integrates edge AI with federated learning to detect network and device anomalies while preserving user privacy and reducing cloud dependency. A lightweight autoencoder-based model is trained across distributed edge nodes using privacy-preserving federated averaging. We evaluate our framework using the TON_IoT and CIC-IDS2018 datasets under realistic smart home attack scenarios. Experimental results show that Edge-FLGuard+ achieves high detection accuracy (≥95%) with minimal communication and computational overhead, outperforming traditional centralized and local-only baselines. Our results demonstrate the viability of federated AI models for real-time security in next-generation smart home networks. Full article
Show Figures

Figure 1

23 pages, 3689 KiB  
Article
An Innovative Medical Image Analyzer Incorporating Fuzzy Approaches to Support Medical Decision-Making
by Cristina Ticala, Camelia M. Pintea, Mihaela Chira and Oliviu Matei
Med. Sci. 2025, 13(3), 97; https://doi.org/10.3390/medsci13030097 - 24 Jul 2025
Viewed by 310
Abstract
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, [...] Read more.
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, which offer improved boundary representation in images where uncertainty and soft transitions are prevalent. Results: One of the main novelties in contrast to the initial innovative Medical Image Analyzer, iMIA, is the fact that the system includes fuzzy C-means clustering to support tissue classification and unsupervised segmentation based on pixel intensity distribution. The application also features an interactive zooming and panning module with the option to overlay edge detection results. As another novelty, fuzzy performance metrics were added, including fuzzy false negatives, fuzzy false positives, fuzzy true positives, and the fuzzy index, offering a more comprehensive and uncertainty-aware evaluation of edge detection accuracy. Conclusions: The application executable file is provided at no cost for the purposes of evaluation and testing. Full article
Show Figures

Figure 1

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 313
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

16 pages, 1159 KiB  
Article
SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies
by Gozde Cay, Myeounggon Lee, David G. Armstrong and Bijan Najafi
Sensors 2025, 25(14), 4490; https://doi.org/10.3390/s25144490 - 19 Jul 2025
Viewed by 535
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes, associated with high recurrence and amputation rates. Adherence to offloading devices is critical for wound healing but remains inadequately monitored in real-world settings. This study evaluates the SmartBoot edge-computing system—a wearable, real-time remote [...] Read more.
Diabetic foot ulcers (DFUs) are a serious complication of diabetes, associated with high recurrence and amputation rates. Adherence to offloading devices is critical for wound healing but remains inadequately monitored in real-world settings. This study evaluates the SmartBoot edge-computing system—a wearable, real-time remote monitoring solution integrating an inertial measurement unit (Sensoria Core) and smartwatch—for its validity in quantifying cadence and step count as digital biomarkers of frailty, and for detecting adherence. Twelve healthy adults wore two types of removable offloading boots (Össur and Foot Defender) during walking tasks at varied speeds; system outputs were validated against a gold-standard wearable and compared with staff-recorded adherence logs. Additionally, user experience was assessed using the Technology Acceptance Model (TAM) in healthy participants (n = 12) and patients with DFU (n = 81). The SmartBoot demonstrated high accuracy in cadence and step count across conditions (bias < 5.5%), with an adherence detection accuracy of 96% (Össur) and 97% (Foot Defender). TAM results indicated strong user acceptance and perceived ease of use across both cohorts. These findings support the SmartBoot system’s potential as a valid, scalable solution for real-time remote monitoring of adherence and mobility in DFU management. Further clinical validation in ongoing studies involving DFU patients is underway. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

18 pages, 821 KiB  
Article
Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems
by Hao Cheng, Min Zhang and Ruoyu Su
Entropy 2025, 27(7), 762; https://doi.org/10.3390/e27070762 - 18 Jul 2025
Viewed by 215
Abstract
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a [...] Read more.
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a cooperative downlink SCMA system is proposed to improve transmission reliability. To the best of our knowledge, multiuser detection is still an open issue for this cooperative downlink SCMA system. To this end, we propose a joint iterative decoding design of the cooperative downlink SCMA system by using the joint factor graph stemming from direct and relay transmission. The closed form bit-error rate (BER) performance of the cooperative downlink SCMA system is also derived. Simulation results verify that the proposed cooperative downlink SCMA system performs better than the non-cooperative one. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives, 2nd Edition)
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Integrating Large Language Models into Robotic Autonomy: A Review of Motion, Voice, and Training Pipelines
by Yutong Liu, Qingquan Sun and Dhruvi Rajeshkumar Kapadia
AI 2025, 6(7), 158; https://doi.org/10.3390/ai6070158 - 15 Jul 2025
Viewed by 1319
Abstract
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into [...] Read more.
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into low-level control signals, supporting semantic planning and enabling adaptive execution. Systems like SayTap improve gait stability through LLM-generated contact patterns, while TrustNavGPT achieves a 5.7% word error rate (WER) under noisy voice-guided conditions by modeling user uncertainty. Frameworks such as MapGPT, LLM-Planner, and 3D-LOTUS++ integrate multi-modal data—including vision, speech, and proprioception—for robust planning and real-time recovery. We also highlight the use of physics-informed neural networks (PINNs) to model object deformation and support precision in contact-rich manipulation tasks. To bridge the gap between simulation and real-world deployment, we synthesize best practices from benchmark datasets (e.g., RH20T, Open X-Embodiment) and training pipelines designed for one-shot imitation learning and cross-embodiment generalization. Additionally, we analyze deployment trade-offs across cloud, edge, and hybrid architectures, emphasizing latency, scalability, and privacy. The survey concludes with a multi-dimensional taxonomy and cross-domain synthesis, offering design insights and future directions for building intelligent, human-aligned robotic systems powered by LLMs. Full article
Show Figures

Figure 1

27 pages, 648 KiB  
Article
An Algorithm for Mining Frequent Approximate Subgraphs with Structural and Label Variations in Graph Collections
by Daybelis Jaramillo-Olivares, Jesús Ariel Carrasco-Ochoa and José Francisco Martínez-Trinidad
Appl. Sci. 2025, 15(14), 7880; https://doi.org/10.3390/app15147880 - 15 Jul 2025
Viewed by 223
Abstract
Using graphs as a data structure is a simple way to represent relationships between objects. Consequently, it has raised the need for algorithms to process, analyze, and extract meaningful information from graphs. Therefore, frequent subgraph mining (FSM) algorithms have been reported in the [...] Read more.
Using graphs as a data structure is a simple way to represent relationships between objects. Consequently, it has raised the need for algorithms to process, analyze, and extract meaningful information from graphs. Therefore, frequent subgraph mining (FSM) algorithms have been reported in the literature to discover interesting, unexpected, and useful patterns in graph databases. Frequent subgraph mining involves discovering subgraphs that appear no less than a user-specified threshold; this can be performed exactly or approximately. Although several algorithms for mining frequent approximate subgraphs exist, mining this type of subgraph in graph collections has scarcely been addressed. Thus, we propose AGCM-SLV, an algorithm for mining frequent approximate subgraphs within a graph collection that allows structural and label variations. Unlike other FSM approaches, our proposed algorithm tracks subgraph occurrences and their structural dissimilarities, allowing user-defined partial similarities between node and edge labels, and captures frequent approximate subgraphs (patterns) that would otherwise be overlooked. Experiments on real-world datasets demonstrate that our algorithm identifies more patterns than the most similar state-of-the-art algorithm with a shorter runtime. We also present experiments in which we add white noise to the graph collection at different levels, revealing that over 99% of the patterns extracted without noise are preserved under noisy conditions, making the proposed algorithm noise-tolerant. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

Back to TopTop