Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,231)

Search Parameters:
Keywords = edge pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

24 pages, 3795 KiB  
Article
An Improved Galerkin Framework for Solving Unsteady High-Reynolds Navier–Stokes Equations
by Jinlin Tang and Qiang Ma
Appl. Sci. 2025, 15(15), 8606; https://doi.org/10.3390/app15158606 (registering DOI) - 3 Aug 2025
Viewed by 133
Abstract
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the [...] Read more.
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the multiscale nature of these flows demands prohibitively high computational resources for uniformly refined meshes. This paper proposes an improved Galerkin framework that synergistically integrates a Variational Multiscale Stabilization (VMS) method with an adaptive mesh refinement (AMR) strategy to overcome these dual challenges. Based on the Ritz–Galerkin formulation with the stable Taylor–Hood (P2P1) element, a VMS term is introduced, derived from a generalized θ-scheme. This explicitly constructs a subgrid-scale model to effectively suppress numerical oscillations without introducing excessive artificial diffusion. To enhance computational efficiency, a novel a posteriori error estimator is developed based on dual residuals. This estimator provides the robust and accurate localization of numerical errors by dynamically weighting the momentum and continuity residuals within each element, as well as the flux jumps across element boundaries. This error indicator guides an AMR algorithm that combines longest-edge bisection with local Delaunay re-triangulation, ensuring optimal mesh adaptation to complex flow features such as boundary layers and vortices. Furthermore, the stability of the Taylor–Hood element, essential for stable velocity–pressure coupling, is preserved within this integrated framework. Numerical experiments are presented to verify the effectiveness of the proposed method, demonstrating its ability to achieve stable, high-fidelity solutions on adaptively refined grids with a substantial reduction in computational cost. Full article
Show Figures

Figure 1

17 pages, 4522 KiB  
Article
A Two-Dimensional Position and Motion Monitoring System for Preterm Infants Using a Fiber-Optic Pressure-Sensitive Mattress
by Giulia Palladino, Zheng Peng, Deedee Kommers, Henrie van den Boom, Oded Raz, Xi Long, Peter Andriessen, Hendrik Niemarkt and Carola van Pul
Sensors 2025, 25(15), 4774; https://doi.org/10.3390/s25154774 - 3 Aug 2025
Viewed by 175
Abstract
Monitoring position and movements of preterm infants is important to ensure their well-being and optimal development. This study evaluates the feasibility of a pressure-sensitive fiber-optic mattress (FM), made entirely of plastic, for two-dimensional analysis of preterm infant movements and positioning. Before clinical use, [...] Read more.
Monitoring position and movements of preterm infants is important to ensure their well-being and optimal development. This study evaluates the feasibility of a pressure-sensitive fiber-optic mattress (FM), made entirely of plastic, for two-dimensional analysis of preterm infant movements and positioning. Before clinical use, we developed a simple, replicable, and cost-effective test protocol to simulate infant movements and positions, enabling early identification of technical limitations. Using data from 20 preterm infants, we assessed the FM’s potential to monitor posture and limb motion. FM-derived pressure patterns were compared with camera-based manual annotations to distinguish between different positions and out-of-bed moments, as well as limb-specific movements. Bench-test results demonstrated the FM’s sensitivity to motion and pressure changes, supporting its use in preclinical validation. Clinical data confirmed the FM’s reliability in identifying infant positions and movement patterns, showing an accuracy comparable to camera annotations. However, limitations such as calibration, sensitivity to ambient light, and edge-related artifacts were noted, indicating areas for improvement. In conclusion, the test protocol proved effective for early-stage evaluation of smart mattress technologies. The FM showed promising clinical feasibility for non-obtrusive monitoring of preterm infants, though further optimization is needed for robust performance in neonatal care. Full article
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 203
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 3932 KiB  
Article
Design and Development of a New 10 kV Overhead Line Fixing Device in Power System
by Bohan Liu, Shuhan Tao, Lingxi Chen, Jiawen Li, Xingtong Zhong, Lanxin Bao, You Shu and Yi Liu
Processes 2025, 13(8), 2379; https://doi.org/10.3390/pr13082379 - 26 Jul 2025
Viewed by 252
Abstract
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device [...] Read more.
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device mainly consists of a buckle type base and an infinitely adjustable gripper. The base is quickly installed through mechanical interlocking buckles, supplemented by auxiliary buckles to enhance stability, and the edge arc design improves operational safety. The clamp is equipped with a raised diamond-shaped structure to increase the friction coefficient and meshing strength. Combined with an arc-shaped inner surface and an infinitely adjustable screw, it can adapt to insulated wires of different diameters. The fixed device has a simple structure, easy installation, and advantages such as firm fixation and adaptability to overhead lines of different diameters. The fixed device of the overhead power line has been subjected to finite element mechanical simulation and electronic universal testing machine tension and pressure testing, and can meet the on-site mechanical performance, effectively improving the construction efficiency and safety of the overhead power line in the distribution network. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 30210 KiB  
Article
Research on a Rapid Three-Dimensional Compressor Flow Field Prediction Method Integrating U-Net and Physics-Informed Neural Networks
by Chen Wang and Hongbing Ma
Mathematics 2025, 13(15), 2396; https://doi.org/10.3390/math13152396 - 25 Jul 2025
Viewed by 153
Abstract
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow [...] Read more.
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow prediction. It maps flow data from the physical domain to a uniform computational domain and employs a U-Net-based neural network capable of capturing the sharp local transitions induced by fluid acceleration near the blade leading edge, as well as learning flow features associated with internal boundaries (e.g., the wall boundary). The inputs to PINN-AeroFlow-U are the flow-field coordinate data from high-fidelity multi-geometry blade solutions, the 3D blade geometry, and the first-order metric coefficients obtained via mesh transformation. Its outputs include the pressure field, temperature field, and velocity vector field within the blade passage. To enhance physical interpretability, the network’s loss function incorporates both the Euler equations and gradient constraints. PINN-AeroFlow-U achieves prediction errors of 1.063% for the pressure field and 2.02% for the velocity field, demonstrating high accuracy. Full article
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Manufacturing Considerations in the Aerodynamic Design Process of Turbomachinery Components
by Christian Effen, Benedikt Riegel, Nicklas Gerhard, Stefan Henninger, Pascal Behrens genannt Wäcken, Peter Jeschke, Viktor Rudel and Thomas Bergs
Processes 2025, 13(8), 2363; https://doi.org/10.3390/pr13082363 - 24 Jul 2025
Viewed by 430
Abstract
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given [...] Read more.
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given to the leading edge region of the blade, where high curvature results in increased sensitivity in both aerodynamic behavior and manufacturability. The generic blisk geometry on which this study is based is characterized by an elliptical leading edge. For the optimization, the leading edge is described by Bézier curves that transition smoothly to the suction and pressure sides with continuous curvature and a non-dimensional length ratio. In steady-state RANS parameter studies, the length ratio is systematically varied while the chord length is kept constant. For the aerodynamic evaluation of the design’s key performance parameters such as blade pressure distribution, total pressure loss and compressor efficiency are considered. To evaluate the machine dynamics for a given design, compliance with the nominal feed rate and the deviation between the planned and actual tool tip positions were used as evaluation parameters. Compared to the reference geometry with an elliptical leading edge, the purely aerodynamic optimization achieved an isentropic efficiency improvement of +0.24 percentage points in the aerodynamic design point and a profile deviation improvement of 3 µm in the 99th quantile. The interdisciplinary optimization achieved an improvement of +0.20 percentage points and 30 µm, respectively. This comparative study illustrates the potential of multidisciplinary design approaches that balance aerodynamic performance goals with manufacturability via a novel approach for Design-to-Manufacture-to-Design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

29 pages, 6638 KiB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 388
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

24 pages, 10199 KiB  
Article
How Does Eco-Migration Influence Habitat Fragmentation in Resettlement Areas? Evidence from the Shule River Resettlement Project
by Lucang Wang, Ting Liao and Jing Gao
Land 2025, 14(8), 1514; https://doi.org/10.3390/land14081514 - 23 Jul 2025
Viewed by 257
Abstract
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on [...] Read more.
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on the China Land Cover Dataset (CLCD) data of the resettlement area from 1996 to 2020, using the Landscape Pattern Index (LPI) and the land use transfer matrix (LTM) to clearly define the stages of migration and the types of resettlement areas and to quantitative explore how EM affects HF. The results show that (1) EM accelerates the transformation of natural habitats (NHs) to artificial habitats (AHs) and shows the characteristics of sudden changes in the initial stage (1996–2002), with stability in the middle stage (2002–2006) and late stage (2007–2010) and dramatic changes in the post-migration stage (2011–2020). In IS, MS, LS, and PS, AH increased by 26.145 km2, 21.573 km2, 22.656 km2, and 16.983 km2, respectively, while NH changed by 73.116 km2, −21.575 km2, −22.655 km2, −121.82 km2, and −213.454 km2, respectively. The more dispersed the resettlement areas are the more obvious the expansion of AH will be, indicating that the resettlement methods for migrants have a significant effect on habitat changes. (2) During the resettlement process, the total number of plaques (NP), edge density (ED), diversity (SHDI), and dominance index (SHEI) all continued to increase, while the contagion index (C) and aggregation index (AI) continued to decline, indicating that the habitat is transforming towards fragmentation, diversification, and complexity. Compared with large-scale migration bases (LMBs), both small-scale migration bases (SMBs), and scattered migration settlement points (SMSPs) exhibit a higher degree of HF, which reflects how the scale of migration influences the extent of habitat fragmentation. While NHs are experiencing increasing fragmentation, AHs tend to show a decreasing trend in fragmentation. Ecological migrants play a dual role: they contribute to the alteration and fragmentation of natural habitat patterns, while simultaneously promoting the formation and continuity of artificial habitat structures. This study offers valuable practical insights and cautionary lessons for the resettlement of ecological migrants. Full article
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 415
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

30 pages, 1042 KiB  
Article
A Privacy-Preserving Polymorphic Heterogeneous Security Architecture for Cloud–Edge Collaboration Industrial Control Systems
by Yukun Niu, Xiaopeng Han, Chuan He, Yunfan Wang, Zhigang Cao and Ding Zhou
Appl. Sci. 2025, 15(14), 8032; https://doi.org/10.3390/app15148032 - 18 Jul 2025
Viewed by 252
Abstract
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for [...] Read more.
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for sensitive industrial data processing. In contrast to existing work that treats scheduling and privacy as separate concerns, this paper proposes a unified polymorphic heterogeneous security architecture that integrates hybrid event–time triggered scheduling with adaptive privacy-preserving arbitration, specifically designed to address the unique challenges of cloud–edge collaboration ICSs where both security resilience and privacy preservation are paramount requirements. The architecture introduces three key innovations: (1) a hybrid event–time triggered scheduling algorithm with credibility assessment and heterogeneity metrics to mitigate common-mode escape scenarios, (2) an adaptive privacy budget allocation mechanism that balances privacy protection effectiveness with system availability based on attack activity levels, and (3) a unified framework that organically integrates privacy-preserving arbitration with heterogeneous redundancy management. Comprehensive evaluations using natural gas pipeline pressure control and smart grid voltage control systems demonstrate superior performance: the proposed method achieves 100% system availability compared to 62.57% for static redundancy and 86.53% for moving target defense, maintains 99.98% availability even under common-mode attacks (102 probability), and consistently outperforms moving target defense methods integrated with state-of-the-art detection mechanisms (99.7790% and 99.6735% average availability when false data deviations from true values are 5% and 3%, respectively) across different attack detection scenarios, validating its effectiveness in defending against availability attacks and privacy leakage threats in cloud–edge collaboration environments. Full article
Show Figures

Figure 1

18 pages, 5708 KiB  
Article
Monitoring the Permeability and Evaluating the Impact of Cleaning on Two Permeable Pavement Systems
by Oscar Perez, Lu-Ming Chen, Jui-Wen Chen, Timothy J. Lecher, Lane A. Simpson, Ting-Hao Chen and Paul C. Davidson
Water 2025, 17(14), 2140; https://doi.org/10.3390/w17142140 - 18 Jul 2025
Viewed by 334
Abstract
Permeable pavement is an alternative to conventional impermeable pavement for various applications. However, a common issue with permeable pavement is clogging over time. Permeability is a parameter that reflects the capacity of the pavement to reduce surface runoff; a decline in permeability implies [...] Read more.
Permeable pavement is an alternative to conventional impermeable pavement for various applications. However, a common issue with permeable pavement is clogging over time. Permeability is a parameter that reflects the capacity of the pavement to reduce surface runoff; a decline in permeability implies the occurrence of clogging. In this study, permeability data collected on pervious concrete (PC) and JW Eco-Technology (JW) revealed that JW maintained consistent permeability over time. However, PC displayed reduced values, and several locations along the edges had zero permeability, despite no regular vehicular and pedestrian use. Therefore, a portable pressure washer was used to clean the pavements. The cleaning procedure was able to recover the permeability of the areas that showed signs of clogging (0 to 2.69 cm/s) and restore the permeability of PC up to 4.60–5.58 cm/s for corner and center areas, respectively. Moreover, visual inspection using a borescope further revealed the full function of the JW pores (aqueducts), regardless of cleaning. Regardless, it is recommended that periodic cleaning maintenance be performed for both PC and JW using a pressure washer due to its convenience and efficacy, which will be discussed. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

28 pages, 2091 KiB  
Review
Spatiotemporal Heterogeneity of Tumor Glucose Metabolism Reprogramming: From Single-Cell Mechanisms to Precision Interventions
by Xiaoxue Chai, Qian Tao and Lili Li
Int. J. Mol. Sci. 2025, 26(14), 6901; https://doi.org/10.3390/ijms26146901 - 18 Jul 2025
Viewed by 583
Abstract
Glucose metabolism reprogramming as a defining hallmark of cancer has become a pivotal frontier in oncology research. Recent technological advances in single-cell sequencing, spatial omics, and metabolic imaging have transformed the field from static bulk analyses to dynamic investigations of spatiotemporal heterogeneity at [...] Read more.
Glucose metabolism reprogramming as a defining hallmark of cancer has become a pivotal frontier in oncology research. Recent technological advances in single-cell sequencing, spatial omics, and metabolic imaging have transformed the field from static bulk analyses to dynamic investigations of spatiotemporal heterogeneity at a single-cell resolution. This review systematically summarizes the current knowledge on tumor glucose metabolism dynamics, discussing spatial heterogeneity and temporal evolution patterns, metabolic subpopulation interactions revealed by single-cell metabolomics, the glucose metabolism–epigenetics–immunology regulatory axis, and therapeutic strategies targeting metabolic vulnerabilities. Recent technological advances in single-cell sequencing and spatial omics have transformed our understanding of tumor glucose metabolism by providing high-resolution insights into metabolic heterogeneity and regulatory mechanisms, contrasting with classical bulk analyses. Spatiotemporal heterogeneity critically influences therapeutic outcomes by enabling tumor cells to adapt metabolically under selective pressures (e.g., hypoxia, nutrient deprivation), fostering treatment resistance and relapse. Deciphering these dynamics is essential for developing spatiotemporally targeted strategies that address intratumoral diversity and microenvironmental fluctuations. By integrating cutting-edge advances, this review deepens our understanding of tumor metabolic complexity and provides a conceptual framework for developing spatiotemporally precise interventions. Full article
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Drag Reduction and Efficiency Enhancement in Wide-Range Electric Submersible Centrifugal Pumps via Bio-Inspired Non-Smooth Surfaces: A Combined Numerical and Experimental Study
by Tao Fu, Songbo Wei, Yang Gao and Bairu Shi
Appl. Sci. 2025, 15(14), 7989; https://doi.org/10.3390/app15147989 - 17 Jul 2025
Viewed by 240
Abstract
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was [...] Read more.
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was employed: a 3D CFD model with the k-ω turbulence model analyzed oil–water flow (1:9 ratio) to identify optimal dimple placement, while parametric studies tested diameters (0.6–1.2 mm). Experimental validation used 3D-printed prototypes. Results revealed that dimples on the pressure surface trailing edge reduced boundary layer separation, achieving a 12.98% head gain and 8.55% efficiency improvement at 150 m3/d in simulations, with experimental tests showing an 11.5% head increase and 4.6% efficiency gain at 130 m3/d. The optimal dimple diameter (0.9 mm, 2% of blade chord) balanced performance and manufacturability, demonstrating that bio-inspired surfaces improve ESP efficiency. This work provides practical guidelines for deploying drag reduction technologies in petroleum engineering, with a future focus on wear resistance in abrasive flows. Full article
Show Figures

Figure 1

27 pages, 8289 KiB  
Article
A High-Efficient Modeling Method for Aerodynamic Loads of an Airfoil with Active Leading Edge Based on RFA and CFD
by Shengyong Fang, Sheng Zhang, Jinlong Zhou and Weidong Yang
Aerospace 2025, 12(7), 632; https://doi.org/10.3390/aerospace12070632 - 15 Jul 2025
Viewed by 301
Abstract
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to [...] Read more.
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to improve the rotor aerodynamic performance. In this paper, a modeling method for an airfoil with an active leading edge was developed to calculate its aerodynamic loads. The pitch motion of the rotor blade and the leading edge deflections were taken into account. Firstly, simulations of steady and unsteady flow for the airfoil with an active leading edge were conducted under different boundary conditions and with different leading edge deflection movement. Secondly, the rational function approximation (RFA) was employed to establish the relationship between aerodynamic loads and airfoil/active leading edge deflections. Then, coefficient matrices of the RFA approach were identified based on a limited number of high-fidelity computational fluid dynamics (CFD) results. Finally, an aerodynamic model of the airfoil with an active leading edge was developed, and its accuracy was validated by comparing it to the high-fidelity CFD results. Comparative results reveal that the developed model can calculate the aerodynamic loads of an airfoil with an active leading edge accurately and efficiently when applied appropriately. The modeling method can be used in aerodynamic load calculations and the aeroelastic coupling analysis of a rotor with active control devices. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop