Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = economy of human cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3144 KiB  
Review
Artificial Intelligence-Driven and Bio-Inspired Control Strategies for Industrial Robotics: A Systematic Review of Trends, Challenges, and Sustainable Innovations Toward Industry 5.0
by Claudio Urrea
Machines 2025, 13(8), 666; https://doi.org/10.3390/machines13080666 - 29 Jul 2025
Viewed by 675
Abstract
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics [...] Read more.
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics control studies (2023–2025), including an expanded bio-inspired/human-centric subset, to evaluate: (1) the dominant and emerging control methodologies; (2) the transformative role of digital twins and 5G-enabled connectivity; and (3) the persistent technical, ethical, and environmental challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, the study employs a rigorous methodology, focusing on adaptive control, deep reinforcement learning (DRL), human–robot collaboration (HRC), and quantum-inspired algorithms. The key findings highlight up to 30% latency reductions in real-time optimization, up to 22% efficiency gains through digital twins, and up to 25% energy savings from bio-inspired designs (all percentage ranges are reported relative to the comparator baselines specified in the cited sources). However, critical barriers remain, including scalability limitations (with up to 40% higher computational demands) and cybersecurity vulnerabilities (with up to 20% exposure rates). The convergence of AI, bio-inspired systems, and quantum computing is poised to enable sustainable, autonomous, and human-centric robotics, yet requires standardized safety frameworks and hybrid architectures to fully support the transition from Industry 4.0 to Industry 5.0. This review offers a strategic roadmap for future research and industrial adoption, emphasizing human-centric design, ethical frameworks, and circular-economy principles to address global manufacturing challenges. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 1271 KiB  
Review
Energy Efficiency and Sustainability of Additive Manufacturing as a Mass-Personalized Production Mode in Industry 5.0/6.0
by Izabela Rojek, Dariusz Mikołajewski, Jakub Kopowski, Tomasz Bednarek and Krzysztof Tyburek
Energies 2025, 18(13), 3413; https://doi.org/10.3390/en18133413 - 28 Jun 2025
Viewed by 718
Abstract
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and [...] Read more.
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and reducing energy consumption. The integration of smart technologies such as AI and IoT is explored to optimize AM processes and support decentralized, on-demand manufacturing. Thisarticle discusses different AM techniques and materials from an environmental and life-cycle perspective, identifying key benefits and constraints. This review also examines the potential of AM to support circular economy practices through local repair, remanufacturing, and material recycling. The net energy efficiency of AM depends on the type of process, part complexity, and production scale, but the energy savings per component can be significant if implemented strategically.AM significantly improves energy efficiency in certain manufacturing contexts, often reducing energy consumption by 25–50% compared to traditional subtractive methods. The results emphasize the importance of innovation in both hardware and software to overcome current energy and sustainability challenges. This review highlights AM as a key tool in achieving a human-centric, intelligent, and ecological manufacturing paradigm. Full article
Show Figures

Figure 1

18 pages, 1096 KiB  
Review
Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
by Lucas Lopes, Harish Dauari, Paulo Mendonça and Manuela Almeida
Polymers 2025, 17(13), 1729; https://doi.org/10.3390/polym17131729 - 21 Jun 2025
Viewed by 774
Abstract
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste [...] Read more.
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste within the architecture, engineering, and construction (AEC) sectors, following the PRISMA methodology. Sixty-six peer-reviewed articles published between 2015 and 2025 were analysed, focusing on the integration of plastic waste. The review identifies mechanical recycling as the predominant method, involving washing and shredding plastics into fibres or flakes for use in cementitious composites, asphalt modifiers, bricks, panels, and insulation. Results indicate that recycled plastics, such as PET, HDPE, and PP, can enhance thermal insulation, water resistance, and flexural strength in non-structural applications. However, challenges persist regarding compressive strength, fibre dispersion, and chemical compatibility with cementitious matrices. Although the reuse of marine plastics supports circular economy goals by diverting waste from oceans and landfills, significant gaps remain in long-term durability, microplastic release, end-of-life recyclability, and comprehensive environmental assessments. The findings underscore the need for further research on the broader adoption of life cycle analysis, as well as long-term durability and environmental contamination analyses. Full article
(This article belongs to the Special Issue Environmentally Responsive Polymer Materials)
Show Figures

Figure 1

19 pages, 1500 KiB  
Article
Green Design and Life Cycle Assessment of Novel Thiophene-Based Surfactants to Balance Their Synthesis Performance and Environmental Impact
by Catalina Stoica, Alina Roxana Banciu, Hisham Idriss, Justin Z. Lian, Anca-Maria Patrascu, Stefano Cucurachi, Sébastien Richeter, Sébastien Clément and Mihai Nita-Lazar
Materials 2025, 18(12), 2701; https://doi.org/10.3390/ma18122701 - 8 Jun 2025
Viewed by 870
Abstract
Continuous human population growth, industrialization, and technical progress have increased the demand for a new design and synthesis of chemical compounds. Developing eco-friendly chemical compounds has been a priority for fostering a sustainable and healthy environment, which is directly linked to human well-being. [...] Read more.
Continuous human population growth, industrialization, and technical progress have increased the demand for a new design and synthesis of chemical compounds. Developing eco-friendly chemical compounds has been a priority for fostering a sustainable and healthy environment, which is directly linked to human well-being. In this context, green chemistry and circular economy principles have been applied to generate valuable new chemicals, such as surfactants, with high market value. Surfactants play a crucial role in various products for both domestic and industrial applications, leading to their large-scale production a diverse array of chemical structures. However, the advantages of their use must be balanced against their negative environmental impact as pollutants. Thus, there is an increasing demand for the development of new eco-friendly surfactants. Additionally, life cycle assessment (LCA) studies of new surfactants are essential for evaluating their environmental impact, enhancing energy efficiency and facilitating the transition toward sustainable energy resources. In this work, we present the chemical synthesis of oligomeric and polymeric thiophene-based surfactants with potential applications in biosensors, organic transistors, and various other fields. The newly synthesized oligomeric and polymeric thiophene-based surfactants demonstrated medium-to-high biodegradation potential and showed no significant ecotoxicological effects on bacterial communities. However, the LCA of their synthesis revealed a negative impact on the environment and human health, particularly concerning polymeric thiophene-based surfactants. The LCA identified specific chemical steps that could be optimized to develop a new generation of eco-friendly surfactants. Full article
Show Figures

Figure 1

21 pages, 2917 KiB  
Article
A Water Consumption Assessment in the Production of Marble, Granite, and Quartz-Based Composites Using Life Cycle Assessment: A Case Study in Bahia, Brazil
by José Oduque Nascimento de Jesus, Luciano José da Silva, Virginia Parente, Karla Patricia Oliveira Esquerre, Oz Sahin and Wanderbeg Correia de Araujo
Water 2025, 17(10), 1438; https://doi.org/10.3390/w17101438 - 10 May 2025
Viewed by 777
Abstract
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using [...] Read more.
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using 1 m3 blocks as the unit of analysis. This study was conducted in Bahia, a state with significant ornamental stone production, located in a semi-arid region with limited water availability. The methodology included data collection from participating companies, combined with sectorial information and the Ecoinvent version 3.3 database, modeled using the SimaPro 8.0 software. The impact assessment was carried out using the AWaRE (Water Scarcity Footprint) and ReCiPe Endpoint methods, following the guidelines of Life Cycle Assessment (LCA), as per ABNT NBR ISO 14040 standards. The results showed that marble and granite have lower water demand and environmental impact in the categories of particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification when compared to quartz composites. The highest environmental impact occurred during the processing stage, which requires a large amount of water and generates effluents, losses, and particulate matter. The results indicate that marble and granite demand less water and exhibit lower environmental impacts—across categories like particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification—than quartz composites. Notably, the processing stage incurred the highest environmental burden due to its intensive water use and consequent generation of effluents, losses, and particulate matter. These findings highlight the necessity of efficient water management and the adoption of circular economy principles—including water reuse and waste valorization—to promote long-term sustainability in the ornamental stone industry. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

18 pages, 607 KiB  
Review
Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation
by Juliana Britto Martins de Oliveira, Dario Corrêa Junior, Cláudio Ernesto Taveira Parente and Susana Frases
Microorganisms 2025, 13(4), 878; https://doi.org/10.3390/microorganisms13040878 - 11 Apr 2025
Viewed by 1329
Abstract
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal [...] Read more.
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal erosion control, and the filtration of nutrients and pollutants. The unique structure of the roots of some mangrove tree species facilitates sediment deposition and organic matter retention, creating favorable conditions for the development of rich and specialized biodiversity, including fungi, bacteria, and other life forms. Furthermore, mangroves serve as important nurseries for many species of fish, crustaceans, and birds, being fundamental to maintaining trophic networks and the local economy, which relies on fishing resources. However, these ecosystems have been significantly impacted by anthropogenic pressures and global climate change. In recent years, the increase in average global temperatures, rising sea levels, changes in precipitation patterns, and ocean acidification have contributed to the degradation of mangroves. Additionally, human activities such as domestic sewage discharge, pollution from organic and inorganic compounds, and alterations in hydrological regimes have accelerated this degradation process. These factors directly affect the biodiversity present in mangrove sediments, including the fungal community, which plays a crucial role in the decomposition of organic matter and nutrient cycling. Fungi, which include various taxonomic groups such as Ascomycota, Basidiomycota, and Zygomycota, are sensitive to changes in environmental conditions, making the study of their diversity and distribution relevant for understanding the impacts of climate change and pollution. In particular, fungal bioremediation has gained significant attention as an effective strategy for mitigating pollution in these sensitive ecosystems. Fungi possess unique abilities to degrade or detoxify environmental pollutants, including heavy metals and organic contaminants, through processes such as biosorption, bioaccumulation, and enzymatic degradation. This bioremediation potential can help restore the ecological balance of mangrove ecosystems and protect their biodiversity from the adverse effects of pollution. Recent studies suggest that changes in temperature, salinity, and the chemical composition of sediments can drastically modify microbial and fungal communities in these environments, influencing the resilience of the ecosystem. The objective of this narrative synthesis is to point out the diversity of fungi present in mangrove sediments, emphasizing how the impacts of climate change and anthropogenic pollution influence the composition and functionality of these communities. By exploring these interactions, including the role of fungal bioremediation in ecosystem restoration, it is expected that this study would provide a solid scientific basis for the conservation of mangroves and the development of strategies to mitigate the environmental impacts on these valuable ecosystems. Full article
Show Figures

Figure 1

38 pages, 18765 KiB  
Review
Recycled Materials in Construction: Trends, Status, and Future of Research
by Jiawei Wu, Xunrong Ye and Huachun Cui
Sustainability 2025, 17(6), 2636; https://doi.org/10.3390/su17062636 - 17 Mar 2025
Cited by 5 | Viewed by 5612
Abstract
The utilization of recycled materials has emerged as a pivotal strategy for mitigating resource depletion and reducing carbon emissions in the construction industry. However, existing reviews predominantly focus on specific technical aspects, often overlooking the interdisciplinary complexities associated with recycled materials as a [...] Read more.
The utilization of recycled materials has emerged as a pivotal strategy for mitigating resource depletion and reducing carbon emissions in the construction industry. However, existing reviews predominantly focus on specific technical aspects, often overlooking the interdisciplinary complexities associated with recycled materials as a systems engineering challenge. This study systematically reviews 1533 documents from the Web of Science Core Collection, integrating quantitative and qualitative analytical approaches to assess the current state and future trajectory of the field, thereby addressing existing research gaps. The findings highlight the substantial evolution of recycled building materials from waste recovery to a multifaceted domain encompassing value assessment, circular economy principles, advanced technologies, interdisciplinary collaboration, and long-term societal benefits. This study identifies six key research themes in recycled building materials: life cycle assessment, biological and natural materials, recycled concrete, recycled asphalt and building infrastructure, construction and demolition waste, and environmental impacts with composite factors. Furthermore, current research is categorized into two primary dimensions: value strategies and technological tools. The analysis of future research directions underscores the potential of AI-driven innovations and their role in enhancing human living environments. However, developing countries continue to face critical challenges, necessitating further interdisciplinary integration and knowledge exchange. Finally, this study proposes a comprehensive and systematic disciplinary framework that offers valuable insights for future strategic planning and technological advancements in the field. Full article
Show Figures

Figure 1

31 pages, 1754 KiB  
Review
Advancing Sustainability in Modern Polymer Processing: Strategies for Waste Resource Recovery and Circular Economy Integration
by Ionut-Cristian Radu, Andreea-Mihaela Vadureanu, Derniza-Elena Cozorici, Erika Blanzeanu and Catalin Zaharia
Polymers 2025, 17(4), 522; https://doi.org/10.3390/polym17040522 - 17 Feb 2025
Cited by 4 | Viewed by 1649
Abstract
By the late 1970s, plastics had emerged as the most widely used materials globally. The discovery, development, and processing of diverse polymeric materials have profoundly shaped modern life and driven the expansion of numerous industries. Given the widespread interest in the utilization of [...] Read more.
By the late 1970s, plastics had emerged as the most widely used materials globally. The discovery, development, and processing of diverse polymeric materials have profoundly shaped modern life and driven the expansion of numerous industries. Given the widespread interest in the utilization of these materials, it has become increasingly imperative to design their life cycles from the outset. This approach aims to maximize their utility while minimizing their environmental footprint. This review aims to identify and analyze the key challenges in polymer processing applicable to both additive and formative manufacturing methods, emphasizing the relationship between processing and recycling within the framework of sustainability. Modern polymer processing techniques play a crucial role in enhancing the sustainability of polymer products by improving recycling potential (with consideration of polymer type, source, and additives), cost-effectiveness, carbon footprint, and key properties such as durability, lifespan, performance, and environmental impact. It will also explore the concept of the circular economy and its integration into modern processing methods, including extrusion, injection molding, and 3D printing. Additionally, current polymer recycling methods are analyzed with respect to their effectiveness, sustainability, and compatibility with the original materials. Moreover, the discussion emphasizes the benefits of a circular economy compared to a linear one by exploring the concepts of closed-loop and open-loop systems, along with their diverse applications depending on the material and the initial processing method employed. To ensure that humanity continues to benefit from polymer materials while striving for a waste-free environment, it is essential to integrate the principles of sustainable development from the very beginning. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

22 pages, 2450 KiB  
Article
Impact of Ecological Restoration on Carbon Sink Function in Coastal Wetlands: A Review
by Xiaoqun Guo, Yanjin Liu, Tian Xie, Yina Li, Hongxi Liu and Qing Wang
Water 2025, 17(4), 488; https://doi.org/10.3390/w17040488 - 9 Feb 2025
Cited by 2 | Viewed by 4310
Abstract
Reducing carbon emissions and increasing carbon sinks have become the core issues of the international community. Although coastal blue carbon ecosystems (such as mangroves, seagrass beds, coastal salt marshes and large algae) account for less than 0.5% of the seafloor area, they contain [...] Read more.
Reducing carbon emissions and increasing carbon sinks have become the core issues of the international community. Although coastal blue carbon ecosystems (such as mangroves, seagrass beds, coastal salt marshes and large algae) account for less than 0.5% of the seafloor area, they contain more than 50% of marine carbon reserves, occupying an important position in the global carbon cycle. However, with the rapid development of the economy and the continuous expansion of human activities, coastal wetlands have suffered serious damage, and their carbon sequestration capacity has been greatly limited. Ecological restoration has emerged as a key measure to reverse this trend. Through a series of measures, including restoring the hydrological conditions of damaged wetlands, cultivating suitable plant species, effectively managing invasive species and rebuilding habitats, ecological restoration is committed to restoring the ecological functions of wetlands and increasing their ecological service value. Therefore, this paper first reviews the research status and influencing factors of coastal wetland carbon sinks, discusses the objectives, types and measures of various coastal wetland ecological restoration projects, analyzes the impact of these ecological restoration projects on wetland carbon sink function, and proposes suggestions for incorporating carbon sink enhancement into wetland ecological restoration. Full article
(This article belongs to the Special Issue Wetland Conservation and Ecological Restoration)
Show Figures

Figure 1

23 pages, 3017 KiB  
Article
Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling
by Muhammad Hassan Javed, Anees Ahmad, Mohammad Rehan, Farayi Musharavati, Abdul-Sattar Nizami and Mohammad Ilyas Khan
Sustainability 2025, 17(3), 1277; https://doi.org/10.3390/su17031277 - 5 Feb 2025
Cited by 5 | Viewed by 2748
Abstract
The explosion of plastic waste generation, approaching 400 million tons per year, has created a worldwide environmental crisis that conventional waste management systems cannot handle. This problem can be solved through gasification, which converts nonrecyclable plastics to syngas with potential applications in electricity [...] Read more.
The explosion of plastic waste generation, approaching 400 million tons per year, has created a worldwide environmental crisis that conventional waste management systems cannot handle. This problem can be solved through gasification, which converts nonrecyclable plastics to syngas with potential applications in electricity generation and synthetic fuel production. This study investigates whether syngas production from plastic waste by gasification is environmentally and economically feasible. Environmental impacts were assessed through a life cycle assessment framework using a life cycle impact assessment approach, ReCiPe 2016, with 10 midpoint/endpoint categories. Midpoint results of the baseline scenario with grid-mix electricity revealed climate change (GWP) of 775 kg CO2 equivalent and fossil depletion potential (FDP) of 311 kg oil equivalent per ton of plastic waste. Meanwhile, a solar scenario showed GWP as 435 kg CO2 equivalent and FDP as 166 kg oil equivalent per ton of plastic waste. Switching to solar energy cut GWP 44% and FDP 47%, respectively. However, the tradeoffs were higher human toxicity potential (HTP) and marine ecotoxicity potential (METP) due to upstream material extraction of renewable systems, respectively. Among environmental performance drivers, electricity inputs and operating materials were identified through sensitivity and uncertainty analyses. Syngas production from a plant of 50 tons per day can yield electricity sales revenue of USD 4.79 million, excluding USD 4.05 million in operational expenditures. Financial indicators like a 2.06-year payback period, USD 5.32 million net present value over a 20-year project life, and 38.2% internal rate of return indicate the profitability of the system. An external cost analysis showed emissions-related costs of USD 26.43 per ton of plastic waste processed, dominated by CO2 and NOx emissions. Despite these costs, the avoided impacts of less landfilling/incineration and electricity generation support gasification. Gasification should be promoted as a subsidy and incentive by policymakers for wider adoption and integration into municipal waste management systems. Findings show it can be adapted to global sustainability goals and circular economy principles while delivering strong economic returns. The study findings also contribute to several Sustainable Development Goals (SDGs), for instance, SDG 7 by promoting clean energy technologies, SDG 12 by implementing circular economy, and SDG 13 by reducing greenhouse gas (GHG) emissions. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

24 pages, 5780 KiB  
Article
Tea Waste as a Sustainable Catalyst Support for Enhanced Removal of Contaminants of Emerging Concern via the Electro-Fenton Process: A Circular Economy Approach
by Lucas Moreno-Bermedo, Jonathan Correa-Puerta, Claudio González-Fuentes, Néstor Escalona, Christian Onfray and Abdoulaye Thiam
Appl. Sci. 2025, 15(3), 1418; https://doi.org/10.3390/app15031418 - 30 Jan 2025
Cited by 2 | Viewed by 1966
Abstract
Contaminants of emerging concern (CECs) in water, including pharmaceuticals and personal care products, represent a significant threat to environmental and human health. In this context, the electro-Fenton (EF) process has emerged as a highly effective technique for the removal of such pollutants. This [...] Read more.
Contaminants of emerging concern (CECs) in water, including pharmaceuticals and personal care products, represent a significant threat to environmental and human health. In this context, the electro-Fenton (EF) process has emerged as a highly effective technique for the removal of such pollutants. This study investigates the innovative use of tea waste material (TWM) in combination with copper-iron nanoparticles (FeCuNPs) to degrade a mixture of CECs. A central aspect of this research is the sustainable reuse of organic waste material, such as TWM, to support catalytic nanoparticles. This approach not only utilizes a resource that would otherwise be discarded but also promotes sustainability in the treatment of contaminated water, aligning with the principles of the circular economy. The as-prepared FeCuNPs@TWM catalyst was fully characterized, and critical parameters influencing the pollutant removal were assessed, including adsorption capacity, catalyst load, and applied current. Under optimized conditions, the EF process, enhanced by FeCuNPs@TWM, achieved complete degradation of the contaminants within 15 min of the electrochemical process, and the activity remained after five catalytic cycles. Results demonstrate that using tea waste functionalized with FeCu nanoparticles as a catalyst not only improves the efficiency of the EF process but also offers an eco-friendly and cost-effective alternative. Full article
(This article belongs to the Special Issue Resource Utilization of Solid Waste and Circular Economy)
Show Figures

Figure 1

13 pages, 1854 KiB  
Article
Life Cycle Assessment of Waste Glass Geopolymerization for the Production of Sustainable Construction Materials
by Georgios Manthos, Dimitris Zagklis, Christos Georgopoulos, Constantina Zafiri and Michael Kornaros
Processes 2025, 13(2), 331; https://doi.org/10.3390/pr13020331 - 24 Jan 2025
Cited by 4 | Viewed by 1426
Abstract
Replacing conventional materials with new recycled materials is one of the goals of sustainable development, as it promotes the creation of environmentally friendly products while reducing the amount of waste to be treated. A common recyclable waste stream associated with urban living is [...] Read more.
Replacing conventional materials with new recycled materials is one of the goals of sustainable development, as it promotes the creation of environmentally friendly products while reducing the amount of waste to be treated. A common recyclable waste stream associated with urban living is waste glass, which typically comes from packaging or product containers. Although most of this stream can be reused and/or recycled, it is worth exploring alternative uses, especially for areas with high fluctuations in waste glass production. An example would be the sudden increase in waste glass in tourist areas during the high season. To this end, the present work presents the results from the life cycle assessment of waste glass geopolymerization for the production of cement tiles. The methodology includes the estimation of mass and energy balances by dividing the whole process into several sub-processes (NaOH addition, energy consumption, etc.). The NaOH addition was found to be the most burden-intensive process, with a total damage of 9 × 10−5 DALY per ton of waste glass in the human health category, while a minor contribution in all damage categories was attributed to process electricity demands (7.7 to 19.4%). By comparing the geopolymerization process with conventional recycling, an environmental benefit of 20 mPt and 26 kg CO2 per ton of waste glass was demonstrated, indicating the process’s expediency. The present study is a valuable tool for the up-scaling of processes towards a circular economy. Full article
Show Figures

Figure 1

25 pages, 8142 KiB  
Article
Life Cycle Assessment of Methanol Production from Municipal Solid Waste: Environmental Comparison with Landfilling and Incineration
by Cristiano Queiroz Cerqueira, Electo Eduardo Silva Lora, Lidiane La Picirelli de Souza, Márcio Montagnana Vicente Leme, Regina Mambeli Barros and Osvaldo José Venturini
Resources 2025, 14(1), 12; https://doi.org/10.3390/resources14010012 - 9 Jan 2025
Cited by 3 | Viewed by 2400
Abstract
Inadequate waste management strategies play a significant role in exacerbating environmental challenges, such as increased greenhouse gas emissions, resource depletion, and other adverse ecological impacts. These issues are aggravated by the global rise in municipal solid waste (MSW) generation, surpassing the rate of [...] Read more.
Inadequate waste management strategies play a significant role in exacerbating environmental challenges, such as increased greenhouse gas emissions, resource depletion, and other adverse ecological impacts. These issues are aggravated by the global rise in municipal solid waste (MSW) generation, surpassing the rate of population growth. Simultaneously, there is an urgent demand for sustainable energy solutions to combat climate change and its wide-ranging impacts. In response, this study addresses a critical question: is methanol production from MSW, a waste-to-chemical (WtC) alternative based on circular economy principles, a more environmentally sustainable approach compared to traditional waste-to-energy (WtE) methods like landfilling with biogas recovery and incineration? To answer this, this study evaluates the environmental performance of MSW-to-methanol technologies using life cycle assessment (LCA), focusing on key indicators such as global warming potential, resource depletion, and impacts on human health and ecosystem quality. The results reveal that methanol production from MSW significantly reduces global warming potential (GWP) by 87% compared to landfilling and 56% compared to incineration. Additionally, the process demonstrates high energy efficiency in electricity generation, achieving 80% of the output of incineration. These findings position MSW-to-methanol as a promising alternative for advancing sustainable waste management and renewable energy transitions. While the technology is still in its developmental stages, this research highlights the need for further advancements and policy support to enhance feasibility and scalability. By providing a comparative environmental analysis, this study contributes to identifying innovative pathways for addressing pressing waste management and energy sustainability challenges. Full article
Show Figures

Graphical abstract

16 pages, 1497 KiB  
Article
Life Cycle Assessment of Pig Production in Central Portugal: Environmental Impacts and Sustainability Challenges
by Lenise Santos, Miguel Ferreira, Idalina Domingos, Veronica Oliveira, Carla Rodrigues, António Ferreira and José Ferreira
Sustainability 2025, 17(2), 426; https://doi.org/10.3390/su17020426 - 8 Jan 2025
Cited by 1 | Viewed by 1660
Abstract
Pig farming plays a crucial socioeconomic role in the European Union, which is one of the largest pork exporters in the world. In Portugal, pig farming plays a key role in regional development and the national economy. To ensure future sustainability and minimize [...] Read more.
Pig farming plays a crucial socioeconomic role in the European Union, which is one of the largest pork exporters in the world. In Portugal, pig farming plays a key role in regional development and the national economy. To ensure future sustainability and minimize environmental impacts, it is essential to identify the most deleterious pig production activities. This study carried out a life cycle assessment (LCA) of pig production using a conventional system in central Portugal to identify the unitary processes with the greatest environmental impact problems. LCA followed the ISO 14040/14044 standards, covering the entire production cycle, from feed manufacturing to waste management, using 1 kg of live pig weight as the functional unit. The slurry produced is used as fertilizer in agriculture, replacing synthetic chemical fertilizers. Results show that feed production, raising piglets, and fattening pigs are the most impactful phases of the pig production cycle. Fodder production is the stage with the greatest impact, accounting for approximately 60% to 70% of the impact in the categories analyzed in most cases. The environmental categories with the highest impacts were freshwater ecotoxicity, human carcinogenic toxicity, and marine ecotoxicity; the most significant impacts were observed for human health, with an estimated effect of around 0.00045 habitants equivalent (Hab.eq) after normalization. The use of more sustainable ingredients and the optimization of feed efficiency are effective strategies for promoting sustainability in the pig farming sector. Full article
Show Figures

Figure 1

22 pages, 875 KiB  
Article
Unraveling the Environmental Impacts of the Fashion Industry: A Fourier-Based Analysis of Pollution Dynamics and Causality Across Five Countries
by Melike Bildirici, Irmak Türkkahraman and Özgür Ömer Ersin
Sustainability 2025, 17(1), 69; https://doi.org/10.3390/su17010069 - 26 Dec 2024
Viewed by 5809
Abstract
The fashion industry, which stands out for its creativity and dynamism, has multidimensional impacts in terms of environmental sustainability from raw material extraction to waste management. The textile and fashion industries are criticized for posing significant threats to the ecosystem, biodiversity, and human [...] Read more.
The fashion industry, which stands out for its creativity and dynamism, has multidimensional impacts in terms of environmental sustainability from raw material extraction to waste management. The textile and fashion industries are criticized for posing significant threats to the ecosystem, biodiversity, and human health by negatively impacting air, water, and soil quality throughout the cycle, from production and distribution to consumption and disposal. By focusing on five emerging economies among the top ten textile exporters, this study focuses on an empirical examination of the nexus between the fashion and textile industry, energy consumption, economic growth, and carbon dioxide emissions. This study fills the existing quantitative research gap in the fashion sector. It provides a comprehensive review that analyzes the environmental impacts in the sector to adopt more sustainable and effective policies. After acknowledging the structural breaks in the sample covering 1980–2023, novel Fourier bootstrapping ARDL and Fourier Granger Causality methods are adopted to examine the long- and short-run interconnections and the directions of causality in a comparative setting for China, Türkiye, India, Bangladesh, and Vietnam. The results confirmed the positive effects of textiles and fashion as well as energy consumption and economic growth with varying magnitudes for the countries examined. The causality tests confirmed varying and complex unidirectional and bidirectional causality and feedback effects among the variables examined depending on the country analyzed, in addition to identifying common causal effects from textile and fashion to environmental degradation. The findings are of great importance and have significant policy implications. Full article
Show Figures

Figure 1

Back to TopTop