Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = economic conversion ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1391 KiB  
Article
Valorization of Food By-Products: Formulation and Evaluation of a Feed Complement for Broiler Chickens Based on Bonito Fish Meal and Única Potato Peel Flour
by Ashley Marianella Espinoza Davila and Rebeca Salvador-Reyes
Resources 2025, 14(8), 125; https://doi.org/10.3390/resources14080125 - 1 Aug 2025
Viewed by 528
Abstract
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal ( [...] Read more.
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (Sarda chiliensis chiliensis) and Única potato peel flour (Solanum tuberosum L. cv. Única). This study was conducted in three phases: (i) production and nutritional characterization of the two by-product flours; (ii) formulation of a 48:52 (w/w) blend, incorporated into broiler diets at 15%, 30%, and 45% replacement levels over a 7-week trial divided into starter (3 weeks), grower (3 weeks), and finisher (1 week) phases; and (iii) assessment of growth performance (weight gain, final weight, and feed conversion ratio), followed by a sensory evaluation of the resulting meat using a Check-All-That-Apply (CATA) analysis. The Bonito fish meal exhibited 50.78% protein, while the Única potato peel flour was rich in carbohydrates (74.08%). The final body weights of broiler chickens ranged from 1872.1 to 1886.4 g across treatments, and the average feed conversion ratio across all groups was 0.65. Replacing up to 45% of commercial feed with the formulated complement did not significantly affect growth performance (p > 0.05). Sensory analysis revealed that meat from chickens receiving 15% and 45% substitution levels was preferred in terms of aroma and taste, whereas the control group was rated higher in appearance. These findings suggest that the formulated feed complement may represent a viable poultry-feed alternative with potential sensory and economic benefits, supporting future circular-economy strategies. Full article
Show Figures

Figure 1

25 pages, 3631 KiB  
Article
Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea
by James S. Stanley, Stephen C. Mansbridge, Michael R. Bedford, Ian F. Connerton and Kenneth H. Mellits
Microorganisms 2025, 13(8), 1760; https://doi.org/10.3390/microorganisms13081760 - 28 Jul 2025
Viewed by 579
Abstract
During commercial pig production, weaning is a major stressor that disrupts the gut microbiome, compromises intestinal barrier integrity, and increases the susceptibility of piglets to pathogens. This often results in post-weaning diarrhoea (PWD), leading to growth retardation, morbidity, and economic loss. This study [...] Read more.
During commercial pig production, weaning is a major stressor that disrupts the gut microbiome, compromises intestinal barrier integrity, and increases the susceptibility of piglets to pathogens. This often results in post-weaning diarrhoea (PWD), leading to growth retardation, morbidity, and economic loss. This study investigated the effects of dietary xylo-oligosaccharide (XOS) supplementation on the growth performance and gut health of 216 piglets with naturally occurring PWD. Piglets received either 0 (CON), 50 (XOS-50), or 500 (XOS-500) mg XOS/kg feed from weaning at 28 days of age (d1) for 54 days. XOS-500 significantly improved body weight at d22 and d54, but had no effect on average daily gain, daily feed intake (DFI), or feed conversion ratio. The intestinal microbiota alpha-diversity was unaffected by XOS, though jejunal beta diversity differed between CON and XOS-500 groups at d22. Jejunal Chao richness correlated positively with d54 body weight, while ileal Chao richness correlated negatively with DFI. Salmonella was present in all diet groups but did not differ in abundance; however, the levels were negatively correlated with alpha diversity. XOSs increased Lactobacillus (d22, d54) and Clostridium_XI (d22), while reducing Veillonellaceae spp. (d22). XOSs reduced jejunal goblet cell (GC) density at d22 but increased duodenal and jejunal GCs and reduced duodenal crypt depth at d54. XOSs upregulated the genes for the tight junction proteins CLDN2, CLDN3, ALPI, and ZO-1, while downregulating the cytokine IL-8. These findings highlight XOSs’ potential to improve growth and gut health in weaning piglets with naturally occurring PWD, to maintain productivity and enhance welfare. Full article
Show Figures

Figure 1

18 pages, 1782 KiB  
Systematic Review
Exploring the Impact of Selenium Nanoparticles on Growth and Gonadal Development in Asian Seabass (Lates calcarifer): A Systematic Review and Meta-Analysis
by Ilias Ahmed, Mohammad Abu Baker Siddique, Shanur Jahedul Hasan, Mohammad Mahfujul Haque, Md. Mahmudul Hasan and A. K. Shakur Ahammad
Aquac. J. 2025, 5(3), 11; https://doi.org/10.3390/aquacj5030011 - 22 Jul 2025
Viewed by 422
Abstract
Selenium nanoparticles (SeNPs), with their high absorption and antioxidant properties, hold promise as feed additives in aquaculture, enhancing growth and reproductive health in fish. This review evaluates how selenium nanoparticles influence growth and reproductive traits in Asian seabass (L. calcarifer). Using [...] Read more.
Selenium nanoparticles (SeNPs), with their high absorption and antioxidant properties, hold promise as feed additives in aquaculture, enhancing growth and reproductive health in fish. This review evaluates how selenium nanoparticles influence growth and reproductive traits in Asian seabass (L. calcarifer). Using the PRISMA approach, we examined the impacts of selenium nanoparticles (SeNPs) on the growth performance and gonadal development of Asian seabass (L. calcarifer) by synthesizing findings from the existing literature. Meta-analysis explored that selenium nanoparticles (SeNPs) supplementation significantly improved specific growth rate (SGR) (pooled effect size = 3.97; 95% CI: 3.68–4.26) and feed conversion ratio (FCR) (pooled effect size = 0.81; 95% CI: 0.75–0.86), with low heterogeneity. Regarding reproductive outcomes, SeNPs enhanced gonadal development, sperm quality, and steroidogenesis. Significant improvements were observed in gonadosomatic index (effect size = 0.5), fertilization rate (0.6), and testosterone levels (0.5), along with a reduction in abnormal embryogenesis (−0.3) (p < 0.05). While an optimal level of SeNPs is effective for enhancing aquaculture performance, excessive use may lead to toxicity; therefore, their economic viability, environmental impact, and sustainability in large-scale aquaculture warrant further investigation. This review provides insights for researchers, policymakers, and industry stakeholders on the potential of SeNPs in advancing sustainable aquaculture through fish productivity and reproductive performance. Full article
Show Figures

Figure 1

27 pages, 481 KiB  
Article
Advancing Sustainable Urban Mobility in Oman: Unveiling the Predictors of Electric Vehicle Adoption Intentions
by Wafa Said Al-Maamari, Emad Farouk Saleh and Suliman Zakaria Suliman Abdalla
World Electr. Veh. J. 2025, 16(7), 402; https://doi.org/10.3390/wevj16070402 - 17 Jul 2025
Viewed by 430
Abstract
The global shift toward sustainable transportation has gained increasing interest, promoting the use of electric vehicles (EVs) as an environmentally friendly alternative to conventional vehicles as a result of a complex interaction between economic incentives, social dynamics, and environmental imperatives. This study is [...] Read more.
The global shift toward sustainable transportation has gained increasing interest, promoting the use of electric vehicles (EVs) as an environmentally friendly alternative to conventional vehicles as a result of a complex interaction between economic incentives, social dynamics, and environmental imperatives. This study is based on the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) to understand the key factors influencing consumers’ intentions in the Sultanate of Oman toward adopting electric vehicles. It is based on a mixed methodology combining quantitative data from a questionnaire of 448 participants, analyzed using ordinal logistic regression, with qualitative thematic analysis of in-depth interviews with 18 EV owners. Its results reveal that performance expectations, trust in EV technology, and social influence are the strongest predictors of EV adoption intentions in Oman. These findings suggest that some issues related to charging infrastructure, access to maintenance services, and cost-benefit ratio are key considerations that influence consumers’ intention to accept and use EVs. Conversely, recreational motivation is not a statistically significant factor, which suggests that consumers focus on practical and economic motivations when deciding to adopt EVs rather than on their enjoyment of driving the vehicle. The findings of this study provide valuable insights for decision-makers and practitioners to understand public perceptions of electric vehicles, enabling them to design effective strategies to promote the adoption of these vehicles in the emerging sustainable transportation market of the future. Full article
Show Figures

Figure 1

46 pages, 5003 KiB  
Article
Optimization of Kerosene-like Fuels Produced via Catalytic Pyrolysis of Packaging Plastic Waste via Central Composite Design and Response Surface Methodology: Performance of Iron-Doped Dolomite and Activated Carbon
by Oratepin Arjharnwong, Tharapong Vitidsant, Aminta Permpoonwiwat, Naphat Phowan and Witchakorn Charusiri
Molecules 2025, 30(13), 2884; https://doi.org/10.3390/molecules30132884 - 7 Jul 2025
Cited by 1 | Viewed by 452
Abstract
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize [...] Read more.
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize kerosene-like hydrocarbon production. The temperature (420–500 °C), N2 flow rate (25–125 mL/min), and catalyst loading (5–20 wt.%) were examined individually and in combination with activated carbon and an Fe-doped dolomite (Fe/DM) catalyst. Central composite design (CCD) and response surface methodology (RSM) were used to identify the optimal conditions and synergistic effects. Pyrolysis product analysis involved simulation distillation gas chromatography (Sim-DGC), gas chromatography/mass spectrometry (GC/MS), and Fourier transform infrared (FT-IR) spectroscopy. The optimal conditions (440 °C, 50 mL/min N2 flow, catalyst loading of 10 wt.% using a 5 wt.% Fe-doped dolomite-activated carbon 0.6:0.4 mass/molar ratio) yielded the highest pyrolysis oil (79.6 ± 0.35 wt.%) and kerosene-like fraction (22.3 ± 0.22 wt.%). The positive synergistic effect of Fe/DM and activated carbon (0.6:0.4) enhanced the catalytic activity, promoting long-chain polymer degradation into mid-range hydrocarbons, with secondary cracking yielding smaller hydrocarbons. The pore structure and acid sites of the catalyst improved the conversion of intermediate hydrocarbons into aliphatic compounds (C5–C15), increasing kerosene-like hydrocarbon production. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

23 pages, 317 KiB  
Review
Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review
by Jim Kioko Katu, Tamás Tóth, Balázs Ásványi, Zoltán Hatvan and László Varga
Animals 2025, 15(13), 1957; https://doi.org/10.3390/ani15131957 - 3 Jul 2025
Viewed by 765
Abstract
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes [...] Read more.
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes enhance nutrient bioavailability; reduce anti-nutritional factors; and generate beneficial metabolites, such as short-chain fatty acids, which contribute to gut health. Incorporating fermented feed in broiler diets has been shown to improve weight gain, the feed conversion ratio, and nutrient absorption by promoting favorable gut morphology changes, including an increased villus height and villus height-to-crypt depth ratios. Additionally, fermented feed fosters a beneficial microbial environment by increasing lactic acid bacteria populations while reducing pathogenic microbes. Fermentation also modulates gut immunity by regulating cytokine production and stimulating immune cell activity. However, challenges such as inconsistent effects on feed intake and growth during the early production stages underscore the need for optimizing fermentation protocols tailored to broiler production systems. Although the implementation of liquid fermented feed presents logistical challenges, research suggests it can significantly improve feed digestibility. Advances in precision fermentation techniques and multi-strain inoculant use hold promise for further improving fermented feed efficacy. Future research should focus on assessing the long-term impacts, economic viability, and environmental sustainability of fermented feed in commercial poultry systems. Overall, fermented feed offers a promising strategy to enhance productivity and sustainability in broiler farming while reducing the reliance on conventional feed additives. This review reflects the body of knowledge at the time of writing. Full article
(This article belongs to the Section Poultry)
15 pages, 1398 KiB  
Article
A Profitability and Risk Decomposition Analysis of the Open Economy Insurance Sector
by Zdeněk Zmeškal, Dana Dluhošová, Karolina Lisztwanová and Iveta Ratmanová
Risks 2025, 13(7), 129; https://doi.org/10.3390/risks13070129 - 2 Jul 2025
Viewed by 262
Abstract
The objective of this paper is to analyse profitability and risk through the return on equity (ROE) measure of the open economy insurance sector in a non-stable economic period with an economic shock chain, during the years 2018–2022, characterised by an [...] Read more.
The objective of this paper is to analyse profitability and risk through the return on equity (ROE) measure of the open economy insurance sector in a non-stable economic period with an economic shock chain, during the years 2018–2022, characterised by an overheating economy, the Covid pandemic, the war in Ukraine, and a high-inflation wave. The ROE pyramid decomposition structure is proposed, along with the detailed CARAMEL version. A static and risk (dynamic) decomposition deviation analysis is used. The yearly non-stable drivers of insurance sector profitability deviation were confirmed. Despite this, the most influential were the earnings ratio deviations in either increasing or decreasing ROE alternatives. Solvency positively influenced the ROE deviation. It turned out that earnings and asset quality enormously increase the risk of the insurance sector. Conversely, risk is decreased mainly by liquidity and management. Simultaneously, significant, influential factors were identified. The results can serve as a background for carrying out operations, strategic analysis, and decision-making. Full article
Show Figures

Figure 1

23 pages, 5352 KiB  
Article
Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments
by Adeshina Adewale Adewumi, Babatunde Abiodun Salami, Mohd Azreen Bin Mohd Ariffin, Moruf Olalekan Yusuf, Khaled A. Alawi Al-Sodani and Mohammed Ibrahim
Sustainability 2025, 17(12), 5611; https://doi.org/10.3390/su17125611 - 18 Jun 2025
Viewed by 422
Abstract
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium [...] Read more.
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium sulfate, magnesium sulfate, and a combined sulfate solution over 12 months. The samples were synthesized using natural pozzolan (NP) and limestone powder (LSP) in three distinct binder combinations to evaluate the influence of varying precursor ratios on the material’s performance, as follows: NP: LSP = 40:60 (AN40L60), 50:50 (AN50L50), and 60:40 (AN60L40). At the same time, the alkaline activators of 10 M NaOH(aq) and Na₂SiO3(aq) were combined in a ratio of 1:1 and cured at 75 °C. The research examines the weight variations of the samples, their residual compressive strength, and microstructural characteristics under exposure to magnesium sulfate, sodium sulfate, and a combined sulfate solution. In terms of weight change, samples exposed to Na2SO4 gained weight slightly, with AN40L60 recording the highest gain (3.2%) due to the ingress of sulfate ions and pore filling. Under MgSO4, AN60L40 had the lowest weight gain (29%), while AN40L60 reached 54%. In mixed sulfate, AN60L40 showed negligible weight gain (0.11%); whereas, AN50L50 and AN40L60 gained 2.43% and 1.81%, respectively. Compressive strength retention after one year indicated that mixes with higher NP content fared better. AN60L40 exhibited the highest residual strength across all solutions—16.12 MPa in Na2SO4, 12.5 MPa in MgSO4, and 19.45 MPa in the mixed solution. Conversely, AN40L60 showed the highest strength degradation, losing 47.22%, 58.11%, and 55.89%, respectively. SEM-EDS and FTIR analyses confirm that LSP’s vulnerability to sulfate attack diminishes with increased NP incorporation, highlighting a synergistic interaction that mitigates degradation and retains structural integrity. The combination of 60% NP and 40% LSP demonstrated superior resistance to all sulfate environments, as evidenced by visual durability, minimized weight gain, and retained compressive strength. This study highlights the potential of tailored NP-LSP combinations in developing durable and sustainable AAMs, paving the way for innovative solutions in sulfate-prone environments, while reducing environmental impact and promoting economic efficiency. Full article
Show Figures

Figure 1

44 pages, 22908 KiB  
Article
Performance Ratio and Econometrics of a Community Waste Power Plant (Biogas) System
by Oluwaseun Olanrewaju Akinte, Ritthichai Ratchapan, Sarun Nakthanom, Krisada Prompinit and Boonyang Plangklang
Sustainability 2025, 17(11), 5187; https://doi.org/10.3390/su17115187 - 4 Jun 2025
Viewed by 894
Abstract
This study examined a proposed system integrating waste power plants, a utility grid, and battery technologies to optimize energy operations for the On-nut community in Bangkok. The system was modeled through experimental, mathematical, and schematic approaches to identify the most efficient energy generation [...] Read more.
This study examined a proposed system integrating waste power plants, a utility grid, and battery technologies to optimize energy operations for the On-nut community in Bangkok. The system was modeled through experimental, mathematical, and schematic approaches to identify the most efficient energy generation and cost management strategies utilizing lithium, flow, and zinc bromide batteries. This was achieved by employing industrial smart grid analysis, closed-loop algorithms, and feedback control systems to manage energy flow econometrics through switching operations, thereby maximizing electric cost efficiency and network service from the integrated system architectures (grid/lithium/biogas, grid/flow/biogas, and grid/zinc bromide/biogas systems). The proposed configuration of the biogas generator/grid/lithium-ion storage network demonstrated the highest technical efficiency in energy purchases, totaling 239,764 kWh, with energy sales to the grid amounting to 1,959,426 kWh and the lowest net energy purchase from the grid at 1,719,661 kWh. Conversely, the biogas generator/grid/zinc bromide storage configuration achieved the most economical network, reflected in an overall current cost of USD 8,647,863.00, an operating cost of USD 143,974.00, an investment return rate of 17.00%, an internal return rate of 20.30%, and a payback period of 4.83 years. The biogas generator/grid/zinc bromide network exhibited the highest performance ratio at 80.55%, surpassing the flow battery at 79.65% and lithium-ion at 78.89% in terms of energetic configurations. Full article
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 784
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 2354 KiB  
Article
Design of a Superhydrophobic Photothermal Shape-Memory Material Based on Carbon-Nanotubes-Doped Resin for Anti-Icing/De-Icing Applications
by Yingcheng Zhao, Pei Tian, Xinlin Li, Di Gai and Wei Tong
Materials 2025, 18(11), 2540; https://doi.org/10.3390/ma18112540 - 28 May 2025
Cited by 1 | Viewed by 486
Abstract
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion [...] Read more.
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion capabilities. Here, we developed three photothermal superhydrophobic shape-memory polymers with anti-icing performance (PSSPs), with 3%, 5%, and 7% CNT doping ratios, through a two-step process: resin preparation and laser-processing modification. The results showed that all samples presented good superhydrophobic properties. In addition, the tested materials demonstrated good shape-memory performance (recovery rates were close to 100%). They also showed excellent de-icing performance. Owing to the simplicity of the fabrication process, the material is suitable for mass production. The synergistic interplay between superhydrophobicity and photothermal activation endows the material with dual-functional icephobic performance, demonstrating practical applicability in industrial cryogenic environments. Full article
Show Figures

Figure 1

16 pages, 1024 KiB  
Article
Substrate Composition Effects on the Microbial Enhancement of Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Chenyao Gong, Haihan Wang, Peilin Zhu and Yi Liu
Sustainability 2025, 17(11), 4953; https://doi.org/10.3390/su17114953 - 28 May 2025
Viewed by 430
Abstract
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by [...] Read more.
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by carrying out anaerobic fermentation experiments on coal and microorganisms. Spearman correlation analysis, multiple linear regression, random forest and principal component analysis (PCA) were used to evaluate the effects of 14 coal-quality and microorganism composition parameters on methane production. The results showed that the hemicellulose content of microorganisms was significantly positively correlated with methane production, while total sugar and total fat significantly reduced the gas production. The protein content of microorganisms in a reasonable range could promote methane production. Among the coal-quality parameters, the C/H ratio (β = 0.43) and dry volatile matter (β = 0.17) had a weak positive contribution to methane production, while a high carbonization degree (C% > 80%; vitrinite reflectance > 1.2%) significantly inhibited the fermentation activity. The higher the maturity of the coal, the lower the methane production. The optimal methanogenic performance was concentrated in the combination of a low degree of coalification in coal (PC1 < −1.5) and high hemicellulose in microorganisms (PC2 > 1.8). In this study, a process optimization strategy was put forward, and the combination of low-rank coal with vitrinite reflectance < 0.5%, volatile matter > 35%, microorganisms with hemicellulose > 4.5%, and total sugar < 20% was optimized in an anaerobic fermentation experiment of coal and microorganisms. The results provide theoretical support for the directional control of anaerobic digestion of coal enhanced by microorganisms. Full article
Show Figures

Graphical abstract

19 pages, 2511 KiB  
Article
Socioeconomic Determinants of Biomass Energy Transition in China: A Multiregional Spatial Analysis for Sustainable Development
by Chanyun Li, Yifei Zhang and Chenshuo Ma
Energies 2025, 18(10), 2477; https://doi.org/10.3390/en18102477 - 12 May 2025
Cited by 1 | Viewed by 416
Abstract
This study investigates the socioeconomic determinants governing biomass energy transitions in rural areas of Eastern China through a multiregional spatial analysis. Drawing on time-series data from national and local statistical yearbooks, screened and processed to ensure consistency, the research analyzes evolving rural energy [...] Read more.
This study investigates the socioeconomic determinants governing biomass energy transitions in rural areas of Eastern China through a multiregional spatial analysis. Drawing on time-series data from national and local statistical yearbooks, screened and processed to ensure consistency, the research analyzes evolving rural energy consumption patterns across nine cities in Heilongjiang, Jiangsu, and Guangdong provinces. Biomass energy potential was estimated by integrating crop production and domestic waste data with region-specific residue-to-product ratios, calorific values, and conversion efficiencies. These estimates were further spatialized through GIS-based surplus–deficit modeling to reveal regional disparities in supply–demand balance. The analysis identifies a critical income threshold, whereby lower-income regions exhibit rapid growth in energy consumption until reaching a saturation point around RMB 13,000, while higher-income areas experience continued increases in energy demand beyond the capacity of biomass resources to supply. The findings emphasize that an integrated approach, incorporating agricultural residue and domestic waste utilization, is essential for facilitating sustainable energy transitions, particularly in economically advanced regions. Furthermore, the study develops a scalable framework that integrates socioeconomic and spatial variables into biomass energy planning, underscoring the need for regional transition strategies to address not only resource endowments but also demographic mobility, urbanization dynamics, and income-driven consumption behaviors. Full article
Show Figures

Figure 1

18 pages, 633 KiB  
Article
Can We Turn Harmful Invasive Non-Native Fish Species into a Valuable Food Resource?
by Milica Jaćimović, Marko Stanković, Dejana Trbović, Dušan Nikolić, Marija Smederevac-Lalić and Zoran Marković
Fishes 2025, 10(5), 207; https://doi.org/10.3390/fishes10050207 - 1 May 2025
Viewed by 583
Abstract
This study explores the potential of utilizing black bullhead (Ameiurus melas Rafinesque, 1820), an invasive freshwater species, as a stocking fish for aquaculture. Fish were mass-removed from Ponjavica Nature Park during two periods (2018–2019 and 2020–2021), with selected individuals reared to evaluate [...] Read more.
This study explores the potential of utilizing black bullhead (Ameiurus melas Rafinesque, 1820), an invasive freshwater species, as a stocking fish for aquaculture. Fish were mass-removed from Ponjavica Nature Park during two periods (2018–2019 and 2020–2021), with selected individuals reared to evaluate growth, survival, and meat quality. A total of 20,145 individuals were removed in the first period (168 reared), and 15,921 in the second (120 reared). Two rearing systems—cages and recirculating aquaculture systems (RAS)—and four feed types were tested. Results demonstrated the species’ adaptability to intensive aquaculture, with good growth, resilience to high-protein diets, and tolerance to high stocking densities. Cage systems generally showed superior growth performance, while RAS produced higher survival rates. Both systems achieved favorable feed conversion ratios. Meat analysis revealed optimal levels of polyunsaturated fatty acids (PUFAs) in RAS and cage-reared fish, enhancing the species’ nutritional value for human consumption. These findings demonstrate the feasibility of repurposing black bullhead as a sustainable aquaculture resource. This dual-purpose approach addresses ecological concerns while offering economic benefits through increased fish production and affordable, nutritious food availability. Further technological development is needed to optimize production systems for broader implementation. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

29 pages, 3276 KiB  
Article
Study on the Factors Affecting the Drainage Efficiency of New Integrated Irrigation and Drainage Networks and Network Optimization Based on Annual Cost System
by Zhiwei Zheng, Mingrui Li, Tianzhi Wang and Hejing Ren
Water 2025, 17(8), 1201; https://doi.org/10.3390/w17081201 - 16 Apr 2025
Viewed by 748
Abstract
With the frequent occurrence of extreme weather events worldwide, the compound frequency of drought and flood events has significantly increased, imposing multidimensional pressures on agricultural water resource management. Agricultural water consumption accounts for approximately 70%, with severe waste, as a large amount of [...] Read more.
With the frequent occurrence of extreme weather events worldwide, the compound frequency of drought and flood events has significantly increased, imposing multidimensional pressures on agricultural water resource management. Agricultural water consumption accounts for approximately 70%, with severe waste, as a large amount of water is lost during transmission and distribution. Faced with increasingly severe and frequent extreme weather, traditional drainage systems may become unsustainable. Identifying the factors influencing drainage time is crucial for efficient drainage. The MIKE URBAN model has significant potential in farmland waterlogging simulation and drainage network optimization. This study validated the model’s accuracy based on infiltration well overflow capacity experiments, with Average Relative Error (ARE) values of 2.29%, 6.52%, 4.41%, 3.17%, 4.37%, and 5.69%, demonstrating good simulation accuracy. The MIKE URBAN model was used to simulate drainage networks, explore factors affecting drainage time, establish an annual cost system for the drainage network, and optimize the network using a genetic algorithm with the objective of minimizing annual costs. Research findings: There is a clear negative correlation between the maximum inflow of infiltration wells and drainage time. As inflow increases, drainage becomes faster, but beyond 0.0075 m3/s (27 m3/h), the efficiency gains level off. This indicates that selecting infiltration wells with at least a 20% opening ratio is essential. Similarly, increasing the collector’s diameter enhances drainage efficiency significantly, though the effect follows a diminishing return pattern. While smaller lateral spacing improves local water collection, it may lead to flow congestion if the collector is undersized; conversely, larger spacing increases drainage paths and delays, even if the collector is large. An optimal spacing range of 100–150 m is suggested alongside the collector diameter. Lateral diameter also affects performance: increasing it reduces drainage time, but the benefit plateaus around 200 mm, making further enlargement cost-ineffective. The genetic algorithm helped to optimize the drainage network design. Utilizing the genetic algorithm, the drainage network was optimized in just 15 iterations. The fitness function value rapidly decreased from 351,000 CNY to 55,000 CNY and then stabilized, reducing the annual cost from 59,640.67 CNY to 45,337.86 CNY—a 24% savings—highlighting the approach’s effectiveness in designing efficient and economical farmland drainage systems. This study has shown that the simulation-based optimization of drainage networks provides a more rational and cost-effective approach to planning drainage infrastructure. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop