Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = eco-friendly HPTLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2721 KiB  
Article
Natural Deep Eutectic Solvents (NADESs) for the Extraction of Bioactive Compounds from Quinoa (Chenopodium quinoa Willd.) Leaves: A Semi-Quantitative Analysis Using High Performance Thin-Layer Chromatography
by Verónica Taco, Dennys Almachi, Pablo Bonilla, Ixchel Gijón-Arreortúa, Samira Benali, Jean-Marie Raquez, Pierre Duez and Amandine Nachtergael
Molecules 2025, 30(12), 2620; https://doi.org/10.3390/molecules30122620 - 17 Jun 2025
Viewed by 419
Abstract
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and [...] Read more.
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and biological activities. Given the interest in flavonoids from Chenopodium quinoa Willd. leaves, an efficient “green” extraction method was developed by investigating eight NADESs with defined molar ratios, i.e., malic acid-choline chloride (chcl)-water (w) (1:1:2, N1), chcl-glucose-w (5:2:5, N2), proline-malic acid-w (1:1:3, N3), glucose-fructose-sucrose-w (1:1:1:11, N4), 1,2-propanediol-chcl-w (1:1:1, N5), lactic acid-glucose-w (5:1:3, N6), glycerol-chcl-w (2:1:1, N7), and xylitol-chcl-w (1:2:3, N8). Rheological measurements of all NADESs confirmed their pseudoplastic behaviors. To improve the extraction processes, differential scanning calorimetry (DSC) allowed us to determine the maximum amount of water that could be added to the most stable NADES (N1, N2, N3, and N4; 17.5%, 20%, 10%, and 10% w/w, respectively) to lower their viscosities without disturbing their eutectic environments. The phytochemical compositions of NADES extracts were analyzed using high-performance thin-layer chromatography (HPTLC), and their free radical scavenging and α-amylase inhibitory properties were assessed using HPTLC-bioautography. N2, diluted with 20% of water, and N7 presented the best potential for replacing methanol for an eco-friendly extraction of flavonoids, radical scavengers, and α-amylase inhibitors from quinoa leaves. Their biological properties, combined with a good understanding of both thermal behavior and viscosity, make the obtained quinoa leaf NADES extracts good candidates for direct incorporation in nutraceutical formulations. Full article
Show Figures

Graphical abstract

18 pages, 4315 KiB  
Article
High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness
by Huda Salem AlSalem, Faisal K. Algethami, Maimana A. Magdy, Nourudin W. Ali, Hala E. Zaazaa, Mohamed Abdelkawy, Maha M. Abdelrahman and Mohammed Gamal
Pharmaceuticals 2024, 17(8), 1002; https://doi.org/10.3390/ph17081002 - 29 Jul 2024
Cited by 5 | Viewed by 2786
Abstract
A cost-effective, selective, sensitive, and operational TLC-densitometric approach has been adapted for the concurrent assay of Hydroxyzine Hydrochloride (HYX), Ephedrine Hydrochloride (EPH), and Theophylline (THP) in their pure powder and pharmaceutical forms. In the innovative TLC-densitometric approach, HYX, EPH, and THP were efficaciously [...] Read more.
A cost-effective, selective, sensitive, and operational TLC-densitometric approach has been adapted for the concurrent assay of Hydroxyzine Hydrochloride (HYX), Ephedrine Hydrochloride (EPH), and Theophylline (THP) in their pure powder and pharmaceutical forms. In the innovative TLC-densitometric approach, HYX, EPH, and THP were efficaciously separated and quantified on a 60F254 silica gel stationary phase with chloroform–ammonium acetate buffer (9.5:0.5, v/v) adjusted to pH 6.5 using ammonia solution as a mobile liquid system and UV detection at 220 nm. The novel TLC method validation has been performed in line with the international conference for harmonization (ICH) standards and has been effectively used for the estimation of the researched medicines in their pharmaceutical formulations without intervention from excipients. Additionally, parameters affecting the chromatographic analysis have been investigated. The new TLC approach’s functionality and greenness were appraised using three modern and automated tools, namely the Blue Applicability Grade Index (BAGI), the Analytical Greenness metric (AGREE), and the Green Analytical Procedure Index (GAPI) tools. In short, the greenness characteristics were not achieved as a result of using mandatory, non-ecofriendly solvents such as ammonia and chloroform. On the contrary, the applicability and usefulness of the novel TLC approach were attained via concurrent estimation for the three drugs using simple and straightforward procedures. Moreover, the novel TLC method outperforms previously published HPLC ones in terms of the short run time per sample and moderate pH value for the liquid system. According to the conclusions of comparisons with previously recorded TLC methods, our novel HPTLC method has the highest AGREE score, so it is the greenest HPTLC strategy. Moreover, its functionality and applicability are very appropriate because of the simultaneous assessment of three drugs in one TLC run. Furthermore, no tedious and complicated extraction and evaporation processes are prerequisites. Full article
(This article belongs to the Special Issue Analytical Techniques in the Pharmaceutical Sciences 2023)
Show Figures

Figure 1

15 pages, 2216 KiB  
Article
A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine
by Faiyaz Shakeel, Prawez Alam, Mohammed H. Alqarni, Nazrul Haq, Fatma M. Abdel Bar and Muzaffar Iqbal
Molecules 2023, 28(13), 5101; https://doi.org/10.3390/molecules28135101 - 29 Jun 2023
Viewed by 1481
Abstract
Eco-friendly liquid chromatographic methods for measuring ergotamine (EGT) are scant in the published database. Accordingly, the goal of the current study was to develop a high-performance thin-layer chromatography (HPTLC) method for fluorescence detection of EGT in commercially available tablets. This approach was based [...] Read more.
Eco-friendly liquid chromatographic methods for measuring ergotamine (EGT) are scant in the published database. Accordingly, the goal of the current study was to develop a high-performance thin-layer chromatography (HPTLC) method for fluorescence detection of EGT in commercially available tablets. This approach was based on the application of ethyl alcohol–water (80:20 v/v) as the eco-friendly eluent mixture. The fluorescence detection of EGT was carried out at 322 nm. The greenness score of the present approach was evaluated by “Analytical GREENness (AGREE)” technology. The present approach for measuring EGT in the 25–1000 ng band−1 range was linear. The present assay for fluorescence detection of EGT was validated successfully by ICH guidelines for various parameters. The method was found to be rapid, sensitive, eco-friendly, and stability-indicating. The computed AGREE index for the current strategy was 0.84, displaying outstanding greenness features. The present methodology successfully separated the EGT degradation products under forced-degradation circumstances, exhibiting its stability-indicating qualities and selectivity. An amount of 99.33% of EGT was found in commercial formulations, indicating the validity of the current method for pharmaceutical analysis of EGT in commercial products. The results showed that EGT in commercial products might be regularly measured by the existing method. Full article
Show Figures

Figure 1

14 pages, 2012 KiB  
Article
A Validated, Stability-Indicating, Eco-Friendly HPTLC Method for the Determination of Cinnarizine
by Mohammed H. Alqarni, Faiyaz Shakeel, Ahmed I. Foudah, Tariq M. Aljarba, Wael A. Mahdi, Fatma M. Abdel Bar, Sultan Alshehri and Prawez Alam
Separations 2023, 10(2), 138; https://doi.org/10.3390/separations10020138 - 17 Feb 2023
Cited by 8 | Viewed by 2741
Abstract
The eco-friendly high-performance thin-layer chromatographic (HPTLC) approaches for measuring cinnarizine (CIN) are scant in reported databases. As a result, the current work has developed and validated an eco-friendly HPTLC technique for assessing CIN in commercial formulations. The proposed approach was based the use [...] Read more.
The eco-friendly high-performance thin-layer chromatographic (HPTLC) approaches for measuring cinnarizine (CIN) are scant in reported databases. As a result, the current work has developed and validated an eco-friendly HPTLC technique for assessing CIN in commercial formulations. The proposed approach was based the use of ethyl alcohol-water (90:10 v/v) as the eco-friendly mobile phase. A wavelength of 197 nm was used to detect CIN. The greenness score of the current approach was measured using the Analytical GREENness (AGREE) approach. The current approach was linear for CIN measurement in 50–800 ng band−1 range. The current approach for CIN measurement was validated successfully using ICH guidelines and was found to be linear, accurate (% recovery = 99.07–101.29%), precise (% CV = 0.80–0.95%), robust, sensitive (LOD = 16.81 ng band−1 and LOQ = 50.43 ng band−1), specific, selective, stability-indicating, and eco-friendly. The AGREE score for the current approach was calculated to be 0.80, showing an excellent greenness characteristic of the present approach. Under forced degradation conditions, the current approach was successful in separating the CIN degradation product, demonstrating the stability-indicating qualities/selectivity of the present approach. The % assay of CIN in commercial tablet brands A and B was found to be 98.64 and 101.22%, respectively, suggesting the reliability of the present approach in the pharmaceutical analysis of CIN in commercial dosage forms. The obtained findings indicated that CIN in commercial formulations could be routinely determined using the current approach. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

12 pages, 2183 KiB  
Article
Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid
by Prawez Alam, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Tariq M. Aljarba, Mohammed M. Ghoneim, Syed Mohammed Basheeruddin Asdaq and Sultan Alshehri
Separations 2023, 10(1), 39; https://doi.org/10.3390/separations10010039 - 8 Jan 2023
Cited by 7 | Viewed by 2309
Abstract
The literature on ecofriendly/greener high-performance thin-layer chromatographic (HPTLC) methods for quantifying flufenamic acid (FFA) is scant. In order to develop and validate a stability-indicating greener HPTLC densitometry assay for FFA determination in marketed products, this research was conducted. The ecofriendly eluent system was [...] Read more.
The literature on ecofriendly/greener high-performance thin-layer chromatographic (HPTLC) methods for quantifying flufenamic acid (FFA) is scant. In order to develop and validate a stability-indicating greener HPTLC densitometry assay for FFA determination in marketed products, this research was conducted. The ecofriendly eluent system was composed of ethanol–water (70:30 v/v). FFA was measured at 290 nm of wavelength. The greenness scale of suggested analytical assay was derived using “Analytical GREENness (AGREE)” methodology. The suggested stability-indicating HPTLC assay was linear for FFA determination in 25–1400 ng/band range with a determination coefficient of 0.9974. The suggested analytical assay for FFA analysis was simple, rapid, accurate, precise, robust, selective, stability-indicating, and greener. The AGREE scale for the developed stability-indicating HPTLC assay was derived to be 0.77 utilizing AGREE methodology, indicating an outstanding greenness characteristic of the suggested densitometry technique. The ecofriendly HPTLC technique was able to detect FFA degradation product under forced degradation studies, indicating its stability-indication characteristics and selectivity. The amount of FFA in marketed tablets brand A and B was determined to be 101.28 and 99.17%, respectively, indicating the suitability of the suggested analytical technique in the assay of FFA in marketed products. These results indicated that FFA in marketed products may be routinely measured using the stability-indicating greener HPTLC technique. Full article
(This article belongs to the Special Issue Analysis of Natural Products and Synthetic Drugs by HPLC or HPTLC)
Show Figures

Figure 1

12 pages, 767 KiB  
Article
Two Eco-Friendly Chromatographic Methods Evaluated by GAPI for Simultaneous Determination of the Fluoroquinolones Moxifloxacin, Levofloxacin, and Gemifloxacin in Their Pharmaceutical Products
by Eman A. Abdel Hameed, Zaitona A. Abd El-Naby, Alaa El Gindy, Roshdy E. Saraya, Aisha Nawaf Al balawi, Sawsan A. Zaitone and Gasser M. Khairy
Separations 2022, 9(11), 330; https://doi.org/10.3390/separations9110330 - 28 Oct 2022
Cited by 7 | Viewed by 2628
Abstract
In this paper, novel green HPLC and HPTLC chromatographic methods were developed for the concurrent determination of moxifloxacin, levofloxacin, and gemifloxacin in bulk and pharmaceutical products. The green HPLC method was used on Thermo C18 (4.6 × 250 mm, 5 µm). By mixing [...] Read more.
In this paper, novel green HPLC and HPTLC chromatographic methods were developed for the concurrent determination of moxifloxacin, levofloxacin, and gemifloxacin in bulk and pharmaceutical products. The green HPLC method was used on Thermo C18 (4.6 × 250 mm, 5 µm). By mixing ethanol and 20 mM sodium dihydrogen phosphate dihydrate (pH 5) in a ratio of 25:75, v/v, the mobile phase was created using isocratic elution. The flow rate was 1 mLmin−1. The studied antibiotics were separated well within 9.5 min. The green HPTLC method was used on coated HPTLC aluminum sheets with Silica gel 60 F254 using a mobile phase mixture of water: acetone: ammonia (8:1:1, v/v/v). Compact and well-resolved peaks were obtained under chamber-saturation circumstances for the standard fluoroquinolone antibiotics. Both methods were optimized individually, validated by ICH, and assessed using the Green analytical procedure index (GAPI). The methods were applied to pharmaceutical products and compared with the published methods for the determination of each of these antibiotics individually, using Student’s t-test. They can be used by quality-control laboratories in pharmaceutical factories as sensitive eco-friendly methods for the analysis of these drugs and for the detection of cross-contamination during manufacturing processes. Full article
(This article belongs to the Special Issue Application of Chromatography in Analytical Chemistry)
Show Figures

Graphical abstract

12 pages, 1631 KiB  
Article
Simultaneous Detection of Chlorzoxazone and Paracetamol Using a Greener Reverse-Phase HPTLC-UV Method
by Ahmed I. Foudah, Faiyaz Shakeel, Mohammed H. Alqarni, Tariq M. Aljarba, Sultan Alshehri and Prawez Alam
Separations 2022, 9(10), 300; https://doi.org/10.3390/separations9100300 - 9 Oct 2022
Cited by 8 | Viewed by 3254
Abstract
In the literature, greener/eco-friendly analytical techniques for simultaneous estimation of chlorzoxazone (CZN) and paracetamol (PCT) are scarce. As a consequence, greener reverse-phase high-performance thin-layer chromatography with ultraviolet (HPTLC-UV) detection was developed and validated for simultaneous estimation of CZN and PCT in commercial capsules [...] Read more.
In the literature, greener/eco-friendly analytical techniques for simultaneous estimation of chlorzoxazone (CZN) and paracetamol (PCT) are scarce. As a consequence, greener reverse-phase high-performance thin-layer chromatography with ultraviolet (HPTLC-UV) detection was developed and validated for simultaneous estimation of CZN and PCT in commercial capsules and tablets. The greenness of the proposed HPTLC-UV technique was assessed quantitatively by utilizing the “Analytical GREENness (AGREE)” methodology. For simultaneous estimation of CZN and PCT, the greener HPTLC-UV technique was linear in the 40–1600 ng band−1 and 30–1600 ng band−1 ranges, respectively. Furthermore, the suggested HPTLC-UV methodology proved sensitive, accurate, precise, and robust for simultaneous detection of CZN and PCT. The assay of CZN in marketed capsules and tablets was found to be 99.01 ± 1.53 and 100.87 ± 1.61%, respectively, using the suggested HPTLC-UV method. The assay of PCT in commercial capsules and tablets was found to be 98.31 ± 1.38 and 101.21 ± 1.67%, respectively. The AGREE index for the greener HPTLC-UV technique was found to be 0.79, suggesting an excellent greenness profile for the proposed HPTLC-UV technique. These results and data suggested the suitability of the greener HPTLC-UV methodology for simultaneous estimation of CZN and PCT in commercial formulations. Full article
Show Figures

Figure 1

8 pages, 689 KiB  
Article
Ecofriendly Validated RP-HPTLC Method for Simultaneous Determination of the Bioactive Sesquiterpene Coumarins Feselol and Samarcandin in Five Ferula Species Using Green Solvents
by Maged S. Abdel-Kader, Mohammed H. Alqarni, Sura Baykan, Bintug Oztürk, Mohammad Ayman A. Salkini, Hasan S. Yusufoglu, Prawez Alam and Ahmed I. Foudah
Separations 2022, 9(8), 206; https://doi.org/10.3390/separations9080206 - 8 Aug 2022
Cited by 5 | Viewed by 2347
Abstract
An environmentally friendly unreported rapid and simple reverse-phase high-performance thin-layer chromatography (RP-HPTLC) has been designed for the simultaneous determination of bioactive sesquiterpene coumarins feselol and samarcandin in the methanol extract of five Ferula species. The method was developed using glass plates coated with [...] Read more.
An environmentally friendly unreported rapid and simple reverse-phase high-performance thin-layer chromatography (RP-HPTLC) has been designed for the simultaneous determination of bioactive sesquiterpene coumarins feselol and samarcandin in the methanol extract of five Ferula species. The method was developed using glass plates coated with RP-18 silica gel 60 F254S and a green solvent system of ethanol–water mixture (8:2 v/v) as mobile phase. After development, the plates were quantified densitometrically at 254 for feselol and samarcandin. Feselol and samarcandin peaks from methanol extract of five Ferula species were identified by comparing their single band at Rf = 0.43 ± 0.02 and Rf = 0.60 ± 0.01, respectively. Valid linear relationships between the peak areas and concentrations of feselol and samarcandin in the range of 1000–7000 ng/band respectively were obtained. The method was subjected to the validation criteria of the international conference on harmonization (ICH) for precision, accuracy, and robustness. The new method provides an analytical tool to enumerate the therapeutic doses of feselol and samarcandin in herbal formulations and/or crude drugs. The obtained results indicated that F. drudeana was the richest species in the more active samarcandin, with 0.573% w/w, while F. duranii had the largest quantity of the less active feselol, 0.813% w/w. F. drudeana was superior to the other species in the sum of the two active compounds, 1.4552% w/w, and was consequently expected to be the most active aphrodisiac among the five studied species. Full article
(This article belongs to the Special Issue Extraction and Analysis of Plant Active Ingredients)
Show Figures

Figure 1

9 pages, 2181 KiB  
Article
High-Performance Thin-Layer Chromatography (HPTLC) Method for Identification of Meloxicam and Piroxicam
by Stanislava Ivanova, Velislava Todorova, Stanislav Dyankov and Kalin Ivanov
Processes 2022, 10(2), 394; https://doi.org/10.3390/pr10020394 - 18 Feb 2022
Cited by 23 | Viewed by 10984
Abstract
Background: High-performance thin-layer chromatography (HPTLC) is an advantageous, modern analytical technique based on the principles of thin-layer chromatography (TLC), which provides essential benefits, such as improved sample application, better and faster separation, and less mobile phase usage. The aim of this work was [...] Read more.
Background: High-performance thin-layer chromatography (HPTLC) is an advantageous, modern analytical technique based on the principles of thin-layer chromatography (TLC), which provides essential benefits, such as improved sample application, better and faster separation, and less mobile phase usage. The aim of this work was to develop a simple and rapid HPTLC method that could be used for the identification of meloxicam and piroxicam. Methods: HPTLC. The analysis was carried out using silica gel 60 F254 glass TLC plates and as the mobile phase: hexane: ethyl acetate: glacial acetic acid, in a ratio of 65:30:5 v/v/v. For the standard solution preparation, ethanol was used. Front: 60 mm. Detection was performed at 366 nm. Results: The Rf value for meloxicam was 0.81 and the Rf value for piroxicam was 0.57. The proposed method can be used in the detection of the analyzed compounds in very low concentrations. It was established that the detection limit of meloxicam was 0.04 μg per band and that of piroxicam was 0.05 μg per band. It was also established that the quantitation limit of meloxicam was 0.12 μg per band and that of piroxicam was 0.15 μg per band. Conclusions: The proposed method is simple, sensitive, stable, cost effective, and eco-friendly. It could be used in research or for routine quality control purposes. Full article
Show Figures

Figure 1

11 pages, 891 KiB  
Article
Eco-Friendly Direct GC–MS Method for Estimation of Niacin and Related Impurities Involving Pyridine in Food Supplements
by Atiah H. Almalki, Ibrahim A. Naguib and Fatma F. Abdallah
Separations 2021, 8(4), 46; https://doi.org/10.3390/separations8040046 - 6 Apr 2021
Cited by 3 | Viewed by 4676
Abstract
Niacin is a water-soluble vitamin whose deficiency causes many disorders and diseases, including pellagra and high blood cholesterol. Herein, niacin and four common impurities, isonicotinic acid (ISO), 5-ethyl-2-methylpyridine (MP), pyridine-2, 5-dicarboxylic acid (PDC) and pyridine PYR, are simultaneously analyzed, where PYR is known [...] Read more.
Niacin is a water-soluble vitamin whose deficiency causes many disorders and diseases, including pellagra and high blood cholesterol. Herein, niacin and four common impurities, isonicotinic acid (ISO), 5-ethyl-2-methylpyridine (MP), pyridine-2, 5-dicarboxylic acid (PDC) and pyridine PYR, are simultaneously analyzed, where PYR is known as potentially nephrotoxic and hepatotoxic. The separation of a mixture using gas chromatography–mass spectroscopy (GC–MS) without any derivatization steps was the main target. Many studies have been published to study Niacin and its impurities using colorimetry and HPLC. GC–MS was selected to study the analyzed mixture owing to its known sensitivity and selectivity. In this study, a single quadrupole mass spectrometer operated in selected ion monitoring (SIM) mode at an electron ionization energy of 70 eV was applied for the quantitative analysis of Niacin. Helium was used as the carrier gas and adjusted to run through an HP-5ms (5%-phenyl)-methylpolysiloxane column. Statistical analysis proved that this method is equally effective as the previously reported method. Importantly, this study was eco-friendly as compared to the reported high performance thin layer chromatographic method (HPTLC). Finally, this study provides a new and valid eco-friendly method analysis to determine the concentration of niacin and its common impurities at very low concentration. Conclusion: A simple, rapid accurate and green GC–MS analytical method was developed and validated to determine niacin and its related official impurities. Full article
(This article belongs to the Special Issue Rapid Separations of Complex Mixtures)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method
by Ahmed I. Foudah, Faiyaz Shakeel, Mohammad H. Alqarni, Hasan. S. Yusufoglu, Mohammad A. Salkini and Prawez Alam
Separations 2020, 7(4), 51; https://doi.org/10.3390/separations7040051 - 29 Sep 2020
Cited by 8 | Viewed by 5145
Abstract
Due to the lack of ecofriendly/green reversed-phase high-performance thin-layer chromatography (RP-HPTLC) methods for trans-anethole (TAL) and its simplicity over routine analytical techniques, there was a necessity to establish a suitable HPTLC methodology for the quantitative analysis of TAL. Therefore, the first objective of [...] Read more.
Due to the lack of ecofriendly/green reversed-phase high-performance thin-layer chromatography (RP-HPTLC) methods for trans-anethole (TAL) and its simplicity over routine analytical techniques, there was a necessity to establish a suitable HPTLC methodology for the quantitative analysis of TAL. Therefore, the first objective of this research was to develop an accurate, rapid and green RP-HPTLC densitometry methodology for the quantitative analysis of TAL in essential oil, traditional and ultrasound-assisted extracts of Foeniculum vulgare Mill and commercial formulations. The second objective was to compare the traditional method of extraction of TAL with its ultrasound-assisted method of extraction. The chromatogram of TAL from essential oil and traditional and ultrasound-assisted extracts of fennel and commercial formulations was verified by recoding its single spectra at Rf = 0.31 ± 0.01 in comparison to standard TAL. The proposed analytical methodology has been found to be superior in terms of linearity, accuracy and precision compared to most of the reported analytical methods for TAL analysis. The amount of TAL in the essential oil of fennel was recorded as 8.82 mg per g of oil. The content of TAL in traditional extracts of fennel, formulation 1 (dietary supplement 1) and formulation 2 (dietary supplement 2), was recorded as 6.44, 4.88 and 4.48 mg per g, respectively. The amount of TAL in ultrasound-assisted extracts of fennel, formulation 1 and formulation 2, was recorded as 8.34, 6.46 and 5.81 mg per g, respectively. The ultrasound method of extraction of TAL was found to be better than the traditional method of extraction. The results of validation studies and phytochemical analysis showed that the proposed methodology could be efficiently utilized for the quantification of TAL in the wide range of products having TAL as a component. Full article
(This article belongs to the Special Issue Current Trends in Chromatography for Bioanalytical Applications)
Show Figures

Figure 1

Back to TopTop