A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine
Abstract
:1. Introduction
2. Results and Discussions
2.1. Method Development
2.2. Method Validation
2.2.1. System Suitability
2.2.2. Linearity
2.2.3. Accuracy
2.2.4. Precision
2.2.5. Robustness
2.2.6. Sensitivity
2.2.7. Specificity
2.3. Selectivity/Forced Degradation
2.4. Application of the Present Method in the Analysis of EGT in Procured Tablets
2.5. Greenness Evaluation
3. Materials and Methods
3.1. Materials
3.2. Instrumentation and Measurements
3.3. EGT Calibration Curve
3.4. Preparation of Samples for the EGT Assay in Marketed Tablets
3.5. Validation Parameters
3.5.1. System Suitability
3.5.2. Linearity
3.5.3. Accuracy (Percent Recovery)
3.5.4. Precision
3.5.5. Robustness
3.5.6. Sensitivity
3.5.7. Specificity
3.6. Forced Degradation/Selectivity
3.7. Application of the Present Method in the Analysis of EGT in Procured Tablets
3.8. Greenness Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Florea, S.; Panaccione, D.G.; Schardl, C.L. Ergot alkaloids of the family clavicipitaceae. Phytopathology 2017, 107, 504–518. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, F.; Wahba, M.E.K. Liquid chromatographic determination of ergotamine tartrate in its combined tablets using fluorimetric and UV detection: Application to content uniformity testing. Sep. Sci. Technol. 2014, 49, 2228–2240. [Google Scholar] [CrossRef]
- Schiff, P.L., Jr. Ergot and its alkaloids. Am. J. Pharm. Educ. 2006, 70, E98. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Schwedt, T. Cluster headache-acute and prophylactic therapy. Headache 2011, 51, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Hooper, W.D.; Sutherland, J.M.; Eadie, M.J.; Tyrer, J.H. Fluorimetric assay of ergotamine. Anal. Chim. Acta 1974, 69, 11–17. [Google Scholar] [CrossRef]
- Legnerová, Z.; Sklenárová, H.; Solich, P. Automated sequential injection fluorimetric determination and dissolution studies of ergotamine tartrate in pharmaceuticals. Talanta 2002, 58, 1151–1155. [Google Scholar] [CrossRef]
- Polo Martí, E.; Catalá Icardo, M.; Lahuerta Zamora, L.; Antón Fos, G.M.; Martínez Calatayud, J. Theoretical prediction of the chemiluminescence behavior of the ergot alkaloids: Direct flow injection chemiluminescence determination of ergotamine tartrate. Anal. Chim. Acta 2004, 527, 177–186. [Google Scholar] [CrossRef]
- Ahour, S.; Omar, S. Sensitive method for the quantitative determination of ergotamine in tablet dosage form by high-performance liquid chromatography using bromocriptine as internal standard. Int. J. Pure Appl. Chem. 2013, 3, 286–298. [Google Scholar] [CrossRef]
- Farid, N.F.; Abdelhamid, N.S.; Naguib, I.A.; Anwar, B.H.; Magdy, M.A. Quantitative determination of anti-migraine quaternary mixture in presenceof p-aminophenol and 4-chloroacetanilide. J. Chromatogr. Sci. 2022, 60, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Cieri, U.R. Determination of ergotamine tartrate in tablets by liquid chromatography with fluorescence detection. J. Assoc. Off. Anal. Chem. 1987, 70, 538–540. [Google Scholar] [CrossRef] [PubMed]
- Jalal, I.M.; Sasa, S.I.; Yasin, T.A. Determination of ergotamine tartarate and cyclizine hydrochloride in pharmaceutical tablets by reverse phase HPLC. Anal. Lett. 1988, 21, 1561–1577. [Google Scholar] [CrossRef]
- Khalil, I.A.; Abdel Razeq, S.A.; Mohammed, S.A. Validated HPLC-DAD and spectrophotometric methods for simultaneous determination of ternary mixture of analgin, caffeine, and ergotamine. J. AOAC Int. 2023, 106, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Rottinghaus, G.E.; Schultz, L.M.; Ross, P.F.; Hill, N.S. An HPLC method for the detection of ergot in ground and pelleted feeds. J. Vet. Diagn. Investig. 1993, 5, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moubarak, A.S.; Piper, E.L.; Johnson, Z.B.; Flieger, M. HPLC method for detection of ergotamine, ergosine, and ergine after intravenous injection of a single dose. J. Agric. Food Chem. 1996, 44, 146–148. [Google Scholar] [CrossRef]
- Edlund, P.O. Determination of ergot alkaloids in plasma by high-performance liquid chromatography and fluorescence detection. J. Chromatogr. B 1981, 226, 107–115. [Google Scholar] [CrossRef]
- Lehner, A.F.; Craig, M.; Fannin, N.; Bush, L.; Tobin, T. Electrospray[+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: Screening of grass or forage samples for novel toxic compounds. J. Mass Spectrom. 2005, 40, 1484–1502. [Google Scholar] [CrossRef]
- Favretto, D.; Frison, G.; Vogliardi, S.; Ferrara, S.D. Highly specific quantification of ergotamine in urine, blood, and hair samples by liquid chromatography–tandem mass spectrometry. Ther. Drug Monit. 2007, 29, 325–332. [Google Scholar] [CrossRef]
- Wang, C.C.; Fernandez, L.P.; Gomez, M.R. Sensitive ergotamine determination in pharmaceuticals and biologicalsamples using cloud point preconcentration and spectrofluorimetric detection. Anal. Chim. Acta 2013, 768, 90–95. [Google Scholar] [CrossRef]
- Aranda, M.; Morlock, G. Simultaneous determination of caffeine, ergotamine, and metamizol in solid pharmaceutical formulation by HPTLC–UV-FLD with mass confirmation by online HPTLC–ESI-MS. J. Chromatogr. Sci. 2007, 45, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Farid, N.F.; Naguib, I.A.; Abdelhamid, N.S.; Anwar, B.H.; Magdy, M.A. Validated ecofriendly chromatographic method for quantitative determination of anti-migraine quaternary mixture. J. Sep. Sci. 2020, 43, 2330–2337. [Google Scholar] [CrossRef]
- Amin, M.; Sepp, W. Quantitative thin-layer chromatographic analysis of ergotamine tartrate and caffeine in the nanogram range. J. Chromatogr. A 1976, 118, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.A.; Maher, H.M.; Alzoman, N.Z.; Alshehri, M.M.; Rizk, M.S.; Elshahed, M.S.; Olah, I.V. Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci. 2013, 51, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhoudary, M.M.; Abdel Salam, R.A.; Hadad, G.M. Resolution and quantification challenge of modern chemometric models in the determination of antimigraine tablets containing ergotamine, caffeine, acetaminophen, and metoclopramide. RSC Adv. 2017, 7, 20936–20946. [Google Scholar] [CrossRef] [Green Version]
- Rosenthaler, J.; Munzer, H.; Voges, R.; Andres, H.; Gull, P.; Bolliger, G. Immunoassay of ergotamine and dihydroergotamine using a common H-labelled ligand as tracer for specific antibody and means to overcomeexperienced pitfalls. Int. J. Nucl. Med. Biol. 1984, 11, 85–89. [Google Scholar] [CrossRef]
- Feng, N.; Minder, E.I.; Grampp, T.; Vonderschmitt, D.J. Identification and quantification of ergotamine inhuman plasma by gas chromatography-massspectrometry. J. Chromatogr. 1992, 575, 289–294. [Google Scholar] [CrossRef]
- Di Nezio, M.S.; Pistonesi, M.F.; Centurion, M.E.; Palomeque, M.E.; Lista, A.G.; Band, B.S.F. A home-made hybrid system for the simultaneous determination of ergotamine, dipyrone and caffeine in pharmaceutical preparations. J. Braz. Chem. Soc. 2007, 18, 1439–1442. [Google Scholar] [CrossRef] [Green Version]
- Galuszka, A.; Migaszewski, Z.; Namiesnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously administered madness drops (tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, E105582. [Google Scholar] [CrossRef]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain. Chem. Pharm. 2021, 21, E100413. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, E105960. [Google Scholar] [CrossRef]
- Keith, L.H.; Brass, H.J.; Sullivan, D.J.; Boiani, J.A.; Alben, K.T. An introduction to the national environmental methods index. Environ. Sci. Technol. 2005, 39, 173A–176A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Plotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green analytical procedure index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Nowak, P.M.; Koscielnaik, P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posluszny, R.; Pawliszyn, J. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality. Trends Anal. Chem. 2021, 138, E116223. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Alam, P.; Iqbal, M.; Ezzeldin, E.; Khalil, N.Y.; Foudah, A.I.; Alqarni, M.H.; Shakeel, F. Simple and accurate HPTLC-densitometric method for quantification of delafloxacin (a novel fluoroquinolone antibiotic) in plasma samples: Application to pharmacokinetic study in rats. Antibiotics 2020, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- El-Yazbi, F.A.; Amin, O.A.; El-Kimary, E.I.; Khamis, E.F.; Younis, S.E. High-performance thin-layer chromatographic methods for the determination of febuxostat and febuxostat/diclofenac combination in human plasma. J. Chromatogr. B 2018, 1086, 89–96. [Google Scholar] [CrossRef]
- Bhatt, N.M.; Chavada, V.D.; Sanyal, M.; Shrivastav, P.S. Densitometry and indirect normal-phase HPTLC-ESI-MS for separation and quantification of drugs and their glucuronide metabolites from plasma. Biomed. Chromatogr. 2019, 33, E4602. [Google Scholar] [CrossRef]
- Alam, P.; Shakeel, F.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alam, A.; Ghoneim, M.M.; Asdaq, S.M.B.; Alshehri, S.; Iqbal, M. Determination of cordycepin using a stability-indicating greener HPTLC method. Separations 2023, 10, 38. [Google Scholar] [CrossRef]
- ICH. International Conference on Harmonization (ICH), Q2 (R1): Validation of Analytical Procedures—Text and Methodology; ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Cue, B.W.; Zhang, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev. 2009, 2, 193–211. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.B.; Abou-Snehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less-classical solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary (USP 29-NF 24); United States Pharmacopeial Convention: Rockville, MD, USA, 2006; Volume 30, p. 1198. Available online: http://www.pharmacopeia.cn/v29240/usp29nf24s0_m29980.html (accessed on 18 June 2023).
- Bhosale, D.; Nikalje, A.P.G. Development and validation of RP-chromatography for simultaneous determination of paracetamol, caffeine, ergotamine and prochlorperazine in tablets. Asian J. Pharm. Sci. 2012, 7, 364–370. [Google Scholar]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef] [PubMed]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. Arab. J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef] [Green Version]
Eco-Friendly Mobile Phase | As | N m−1 | Rf |
---|---|---|---|
EtOH–H2O (50:50 v/v) | 1.22 ± 0.04 | 2732 ± 2.02 | 0.33 ± 0.03 |
EtOH–H2O (60:40 v/v) | 1.17 ± 0.03 | 3012 ± 2.35 | 0.31 ± 0.03 |
EtOH–H2O (70:30 v/v) | 1.11 ± 0.03 | 3246 ± 2.78 | 0.27 ± 0.01 |
EtOH–H2O (80:20 v/v) | 1.03 ± 0.02 | 5614 ± 4.97 | 0.21 ± 0.01 |
EtOH–H2O (90:10 v/v) | 1.16 ± 0.02 | 3941 ± 4.14 | 0.26 ± 0.02 |
Ace–H2O (50:50 v/v) | 1.41 ± 0.05 | 1412 ± 1.89 | 0.67 ± 0.04 |
Ace–H2O (60:40 v/v) | 1.37 ± 0.05 | 1564 ± 1.95 | 0.63 ± 0.03 |
Ace–H2O (70:30 v/v) | 1.34 ± 0.04 | 1687 ± 1.98 | 0.57 ± 0.03 |
Ace–H2O (80:20 v/v) | 1.31 ± 0.03 | 1718 ± 2.01 | 0.54 ± 0.03 |
Ace–H2O (90:10 v/v) | 1.28 ± 0.02 | 1941 ± 2.13 | 0.52 ± 0.02 |
EA–MeOH (50:50 v/v) | 1.18 ± 0.02 | 3014 ± 3.47 | 0.48 ± 0.03 |
EA–MeOH (60:40 v/v) | 1.20 ± 0.02 | 2841 ± 3.03 | 0.46 ± 0.04 |
EA–MeOH (70:30 v/v) | 1.22 ± 0.03 | 2652 ± 2.97 | 0.44 ± 0.03 |
EA–MeOH (80:20 v/v) | 1.24 ± 0.04 | 2471 ± 2.81 | 0.41 ± 0.03 |
EA–MeOH (90:10 v/v) | 1.26 ± 0.03 | 2212 ± 2.64 | 0.39 ± 0.02 |
CYH–EA (50:50 v/v) | 1.38 ± 0.04 | 1617 ± 1.91 | 0.67 ± 0.04 |
CYH–EA (60:40 v/v) | 1.35 ± 0.04 | 1714 ± 1.96 | 0.63 ± 0.03 |
CYH–EA (70:30 v/v) | 1.32 ± 0.03 | 1871 ± 2.08 | 0.57 ± 0.03 |
CYH–EA (80:20 v/v) | 1.28 ± 0.04 | 1914 ± 2.16 | 0.54 ± 0.03 |
CYH–EA (90:10 v/v) | 1.25 ± 0.03 | 2082 ± 2.32 | 0.52 ± 0.02 |
Parameters | Values |
---|---|
Rf | 0.21 ± 0.01 |
As | 1.03 ± 0.02 |
N m−1 | 5614 ± 4.97 |
Parameters | Value |
---|---|
Linearity range (ng band−1) | 25–1000 |
Regression equation | y = 32.2x + 664.84 |
R2 | 0.9983 |
R | 0.9991 |
Standard error of slope | 0.50 |
Standard error of intercept | 2.58 |
95% confidence interval of slope | 30.03–34.36 |
95% confidence interval of intercept | 653.71–675.96 |
LOD ± SD (ng band−1) | 8.35 ± 0.04 |
LOQ ± SD (ng band−1) | 25.05 ± 0.12 |
Conc. (ng Band−1) | Conc. Found (ng Band−1) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|
Intra-day accuracy | |||
450 | 454.12 ± 4.54 | 100.91 | 0.99 |
600 | 593.64 ± 5.12 | 98.94 | 0.86 |
750 | 744.31 ± 6.24 | 99.24 | 0.83 |
Inter-day accuracy | |||
450 | 446.31 ± 4.65 | 99.18 | 1.04 |
600 | 604.21 ± 5.41 | 100.70 | 0.89 |
750 | 753.54 ± 6.38 | 100.47 | 0.84 |
Conc. (ng Band−1) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. (ng Band−1) ± SD | SE | RSD (%) | Conc. (ng Band−1) ± SD | SE | (%) RSD | |
450 | 447.91 ± 4.47 | 1.78 | 0.97 | 456.28 ± 4.50 | 1.83 | 0.98 |
600 | 596.51 ± 5.08 | 2.07 | 0.85 | 606.52 ± 5.57 | 2.27 | 0.91 |
750 | 756.35 ± 5.97 | 2.43 | 0.78 | 746.38 ± 6.50 | 2.65 | 0.87 |
Conc. (ng Band−1) | Eco-Friendly Mobile Phase (EtOH–H2O) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Level | Conc. (ng Band−1) ± SD | RSD (%) | Rf | |
82:18 | +2.0 | 588.74 ± 5.33 | 0.90 | 0.20 | ||
600 | 80:20 | 80:20 | 0.0 | 594.98 ± 5.61 | 0.94 | 0.21 |
78:22 | −2.0 | 607.84 ± 6.00 | 0.98 | 0.22 |
Stress Condition | Number of Degradation Products (Rf) | EGT Rf | EGT Remained (ng band−1) | EGT Recovered (%) |
---|---|---|---|---|
1M HCl | 1 (0.01) | 0.20 | 528.18 | 88.03 ± 2.06 |
1M NaOH | 1 (0.49) | 0.21 | 226.44 | 37.74 ± 0.92 |
30% H2O2 | ND | ND | ND | ND |
Thermal | 0 | 0.21 | 600.00 | 100 ± 0.00 |
Photolytic | 0 | 0.21 | 600.00 | 100 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, F.; Alam, P.; Alqarni, M.H.; Haq, N.; Bar, F.M.A.; Iqbal, M. A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine. Molecules 2023, 28, 5101. https://doi.org/10.3390/molecules28135101
Shakeel F, Alam P, Alqarni MH, Haq N, Bar FMA, Iqbal M. A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine. Molecules. 2023; 28(13):5101. https://doi.org/10.3390/molecules28135101
Chicago/Turabian StyleShakeel, Faiyaz, Prawez Alam, Mohammed H. Alqarni, Nazrul Haq, Fatma M. Abdel Bar, and Muzaffar Iqbal. 2023. "A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine" Molecules 28, no. 13: 5101. https://doi.org/10.3390/molecules28135101
APA StyleShakeel, F., Alam, P., Alqarni, M. H., Haq, N., Bar, F. M. A., & Iqbal, M. (2023). A Rapid and Sensitive Stability-Indicating Eco-Friendly HPTLC Assay for Fluorescence Detection of Ergotamine. Molecules, 28(13), 5101. https://doi.org/10.3390/molecules28135101