Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chromatographic Conditions and Instrumentation
2.3. Calibration Curve of TAL
2.4. Isolation of the Essential Oil from Foeniculum vulgare Mill Seeds
2.5. Traditional Extraction of TAL from Fennel Seeds
2.6. Traditional Extraction of TAL from Commercial Formulations (Dietary Supplements)
2.7. Ultrasound-Assisted Extraction of TAL from Fennel Seeds
2.8. Ultrasound-Assisted Extraction of TAL from Commercial Formulations (Dietary Supplements)
2.9. Method Validation
2.10. Quantitative Analysis of TAL in Essential Oil and Traditional and Ultrasound-Assisted Extracts of Fennel and Commercial Formulations
2.11. Statistical Evaluation
3. Results and Discussion
3.1. Method Development
3.2. Method Validation
3.3. Quantitative Analysis of TAL in Essential Oil and Traditional and Ultrasound-Assisted Extracts of Fennel and Commercial Formulations
3.4. Literature Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bahmani, K.; Darbandi, A.I.; Ramshini, H.A.; Moradi, N.; Akbari, A. Agro-morphological and phytochemical diversity of various Iranian fennel landraces. Ind. Crops Prod. 2015, 77, 282–294. [Google Scholar] [CrossRef]
- Shahat, A.A.; Ibrahim, A.Y.; Hendawy, S.F.; Omer, E.A.; Hammouda, F.M.; Abdel-Rahman, F.H.; Saleh, M.A. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 2011, 16, 1366–1377. [Google Scholar] [CrossRef]
- Alam, P.; Abdel-Kader, M.S.; Alqarni, M.H.; Zaatout, H.H.; Ahamad, S.R.; Shakeel, F. Chemical composition of fennel seed extract and determination of fenchone in commercial formulations by GC-MS method. J. Food Sci. Technol. 2019, 56, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, S.M.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicity. Biomed. Res. Int. 2014, 2014, E8426674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontogiorgis, C.; Deligiannidou, G.E.; Hadjipavlou-Litina, D.; Lazari, D.; Papadopoulos, A. Antioxidant protection: The contribution of proper preparation of fennel (Foeniculum vulgare Mill.) beverage. Ind. Crops Prod. 2016, 79, 57–62. [Google Scholar] [CrossRef]
- Majdoub, N.; El-Guendouz, S.; Rezgui, M.; Carlier, J.; Costa, C.; Kaab, L.B.B.; Miguel, M.G. Growth, photosynthetic pigments, phenolic contants and biological activities of Foeniculum vulgare Mill., Anethum greolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 2017, 109, 627–636. [Google Scholar] [CrossRef]
- Choi, E.; Hwang, J. Anti-inflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoter. 2004, 75, 557–565. [Google Scholar] [CrossRef]
- Ozbek, H.; Ugras, S.; Dulger, H.; Bayram, I.; Tuncer, I.; Ozturk, G. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoter. 2003, 74, 317–319. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.A. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Diao, W.R.; Hu, Q.P.; Zhang, H.; Xu, J.G. Chemical composition: Antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Elagayyar, M.; Draughon, F.A.; Golden, D.A. Antimicrobial activity of essential oil from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maurya, S.; Lampasona, M.P.; Catalan, C. Chemical constituents: Antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745–752. [Google Scholar] [CrossRef]
- Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod. 2017, 107, 518–525. [Google Scholar] [CrossRef]
- Cioanca, O.; Hancianu, M.; Mircea, C.; Trifan, A.; Hritcu, L. Essential oils from Apiaceae as valuable resources in neurological disorders: Foeniculum vulgare aetheroleum. Ind. Crops Prod. 2016, 88, 51–57. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakara, A.; Sundaram, C.; Harikumar, K.; Tharakan, S.; Lai, O.; Sung, B.; Aggarwal, B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Hammouda, F.M.; Saleh, M.A.; Abdel-Azim, N.S.; Shams, K.A.; Ismail, S.I.; Shahat, A.A.; Saleh, I.A. Evaluation of the essential oil of Foeniculum vulgare Mill (fennel) fruits extracted by three different extraction methods by GC/MS. Afr. J. Trad. Compl. Alt. Med. 2013, 11, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Solana, R.; Salgado, J.M.; Dominguez, J.M.; Cortes-Dieguez, S. Characterization of fennel extracts and quantification of estragole: Optimization and comparison of accelerated solvent extraction and Soxhlet techniques. Ind. Crops Prod. 2014, 52, 528–536. [Google Scholar] [CrossRef]
- Acimovic, M.; Tesevic, V.; Todosijevic, M.; Djisalov, J.; Oljaca, S. Compositional characteristics of the essential oil of Pimpinella anisum and Foeniculum vulgare grown in Serbia. Bot. Serb. 2015, 39, 9–14. [Google Scholar]
- Shojaiefar, S.; Mirlohi, A.; Sabzalian, M.R.; Yaghini, M. Seed yield and essential oil content of fennel influenced by genetic variation and genotype x year interaction. Ind. Crops Prod. 2015, 71, 97–105. [Google Scholar] [CrossRef]
- Upadhyay, R.K. GC-MS analysis and in vitro antimicrobial susceptibility of Foeniculum vulgare seed essential oil. Am. J. Plant Sci. 2015, 6, 1058–1068. [Google Scholar] [CrossRef] [Green Version]
- Abdel Karm, M.; Ayda, A.; Khalid, M.S. GC-MS analysis and antimicrobial activity of Saudi Foeniculum vulgare Mill. (Apiaceae) fixed oil. Int. J. Adv. Res. 2017, 5, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Kanaan, H.; Chokr, A.; Merah, O. Fennel oil and by-products seed characterization and their potential applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; He, F.; Jin, K.; Wang, J.; Wang, Y.; Zhou, J.; Sun, J.; Fang, Q. Facile conversion of plant oil (anethole) to a high-performance material. Polym. Chem. 2017, 8, 2010–2015. [Google Scholar] [CrossRef] [Green Version]
- Jurado, J.M.; Alcazar, A.; Pablos, F.; Martin, M.J. LC determination of anethole in aniseed drinks. Chromatographia 2006, 64, 223–226. [Google Scholar] [CrossRef]
- Pang, X.; Bai, L.; Wang, Z.; Yang, H.; Liu, H.; Yan, H. Establishment of quantitatively analytical methods for the determination of aroma compounds in edible spices using a homemade chromatographic monolithic column. Chromatographia 2019, 82, 1345–1354. [Google Scholar] [CrossRef]
- Rajabi, M.; Haji-Esfandiari, S.; Barfi, B.; Ghanbari, H. Ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid phase microextraction method for simultaneous determination of anethole, estragole, and para-anisaldehyde in different plant extracts and human urine: A comparative study. Anal. Bioanal. Chem. 2014, 406, 4501–4512. [Google Scholar] [CrossRef]
- Li, W.; Deng, J.; Qiao, J.; Li, Q.; Zhang, Y. HPLC determination of 4-hydroxy-anethole trithione in plasma via enzymatic hydrolysis and its application to bioequivalence study. J. Pharm. Biomed. Anal. 2008, 47, 612–617. [Google Scholar] [CrossRef]
- Fagundes, V.H.V.; Pinho, R.J.; Wiirzler, L.A.M.; Kimura, E.; Bersani-Amado, C.A.; Cuman, R.K.N. High performance liquid chromatography method for the determination of anethole in rat plasma. Trop. J. Pharm. Res. Anal. 2014, 13, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Najdoska-Bogdanov, M.; Bogdanov, J.B.; Stefova, M. Simultaneous determination of essential oil components and fatty acids in fennel using gas chromatography with a polar capillary column. Nat. Prod. Comm. 2015, 10, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Leal, P.F.; Almeida, T.S.; Prado, G.H.C.; Prado, J.M.; Meireles, M.A.A. Extraction kinetics and anethole content of fennel (Foeniculum vulgare) and anise seed (Pimpenella anisum) extracts obtained by Soxhlet, ultrasound, percolation, centrifugation, and steam distillation. Sep. Sci. Technol. 2011, 46, 1848–1856. [Google Scholar] [CrossRef]
- Saini, N.; Singh, G.K. Gas chromatographic validated method for quantification of ayurvedic polyherbal formulation. Asian J. Pharm. 2015, 9, 200–205. [Google Scholar] [CrossRef]
- Duta, D.E.; Culetu, A.; Negoita, M.; Ionescu, V. Quantification of anethole in fennel and anise essential oils using gas chromatography and 1H-NMR-spectroscopy. Bull. UASVM Food Sci. Technol. 2019, 76, 105–113. [Google Scholar]
- Najdoska, M.; Bogdanov, J.; Zdravkovski, Z. TLC and GC-MS analyses of essential oil isolated from Macedonian Foeniculi fructus. Maced. Pharm. Bull. 2010, 56, 29–36. [Google Scholar] [CrossRef]
- Quezada-Moreno, W.F.; Quezada-Torres, W.D.; Gallardo-Aguilar, I.; Cevallos-Carvajal, E.; Arias-Palma, G.; Travez-Castellano, A.; Zambrano-Ochoa, Z.; Rojas-Molina, O. Extraction and chemical characterization of the essential oil of Tagetes pusilla, in fresh and stored samples. Afinidad 2019, 76, 307–313. [Google Scholar]
- Schulz, K.; Schlenz, K.; Metasch, R.; Malt, S.; Romhild, W.; Drebler, J. Determination of anethole in serum samples by headspace solid-phase microextraction-gas chromatography-mass spectrometry for congener analysis. J. Chromatogr. A 2008, 1200, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Fumarola, M.; Gallori, S.; Mazzi, G.; Vincieri, F.F. Identification by HPLC-DAD and HPLC-MS analyses and quantification of constituents of fennel teas and decoctions. J. Agric. Food Chem. 2000, 48, 4734–4738. [Google Scholar] [CrossRef]
- Kowalcze, M.; Wyrwa, J.; Dziubaniuk, M.; Jakubowska, M. Voltammetric determination of anethole on La2O3/CPE and BDDE. J. Anal. Methods Chem. 2018, 2018, E2158407. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Alqarni, M.H.; Alam, P.; Foudah, A.I.; Ghazwani, M. A HPTLC method for determination of anethole in essential oil, methanolic extract of Foeniculum vulgare and commercial herbal products. J. Pharm. Res. Int. 2020, 32, 68–75. [Google Scholar] [CrossRef]
- Alam, P.; Ezzeldin, E.; Iqbal, M.; Anwer, M.K.; Mostafa, G.A.E.; Alqarni, M.H.; Foudah, A.I.; Shakeel, F. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents. RSC Adv. 2020, 10, 2133–2140. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Ezzeldin, E.; Iqbal, M.; Mostafa, G.A.E.; Anwer, M.K.; Alqarni, M.H.; Foudah, A.I.; Shakeel, F. Determination of delafloxacin in pharmaceutical formulations using a green RP-HPTLC and NP-HPTLC methods. Antibiotics 2020, 9, 359. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alam, P.; Anwer, M.K.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Shakeel, F. A green RP-HPTLC-densitometry method for the determination of diosmin in pharmaceutical formulations. Processes 2020, 8, 817. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Yusufoglu, H.S.; Ross, S.A.; Alam, P. Simultaneous determination of 6-shogaol and 6-gingerol in various ginger (Zingiber officinale Roscoe) extracts and commercial formulations using a green RP-HPTLC-densitometry method. Foods 2020, 9, 1136. [Google Scholar] [CrossRef] [PubMed]
- International conference on harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–Text and Methodology; International Conference on Harmonization (ICH): Geneva, Switzerland, 2005. [Google Scholar]
Linearity Range (ng/band) | 50–1000 |
---|---|
Regression equation | Y = 12.24x + 59.01 |
Determination coefficient | 0.9995 |
Slope ± SD | 12.24 ± 0.79 |
Intercept ± SD | 59.01 ± 2.76 |
Standard error of slope | 0.32 |
Standard error of intercept | 1.12 |
95% confidence interval of slope | 10.8–13.6 |
95% confidence interval of intercept | 54.1–63.8 |
LOD ± SD (ng/band) | 16.85 ± 0.82 |
LOQ ± SD (ng/band) | 50.55 ± 2.46 |
Excess Drug Added to Analyte (%) | Theoretical Content (ng/band) | Conc. Found (ng/band) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|---|
0 | 100 | 98.41 ± 1.84 | 98.41 | 1.86 |
50 | 150 | 147.86 ± 2.14 | 98.57 | 1.44 |
100 | 200 | 201.47 ± 2.18 | 100.73 | 1.08 |
150 | 250 | 252.84 ± 2.42 | 101.13 | 0.95 |
Conc. (ng/band) | Repeatability (Intraday Precision) | Intermediate Precision (Interday) | ||||
---|---|---|---|---|---|---|
Area ± SD | Standard Error | % RSD | Area ± SD | Standard Error | % RSD | |
100 | 1344 ± 22 | 8.98 | 1.63 | 1324 ± 25 | 10.20 | 1.88 |
150 | 2086 ± 24 | 9.79 | 1.15 | 2062 ± 27 | 11.02 | 1.30 |
200 | 2568 ± 21 | 8.57 | 0.81 | 2580 ± 23 | 9.39 | 0.89 |
250 | 3076 ± 23 | 9.39 | 0.74 | 3102 ± 24 | 9.79 | 0.77 |
Conc. (ng/band) | Mobile Phase Composition (EtOH:H2O) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Area ± SD | % RSD | Rf | ||
7.7:2.3 | +0.2 | 2534 ± 21 | 0.82 | 0.30 | ||
200 | 7.5:2.5 | 7.5:2.5 | 0.0 | 2498 ± 19 | 0.76 | 0.31 |
7.3:2.7 | −0.2 | 2438 ± 23 | 0.94 | 0.32 |
Samples | Traditional Extraction | Ultrasound-Based Extraction |
---|---|---|
Amount of TAL (mg/g) | ||
Essential oil | 8.82 ± 0.54 | NA * |
Methanolic extract | 6.44 ± 0.32 | 8.34 ± 0.48 |
Formulation 1 | 4.88 ± 0.27 | 6.46 ± 0.35 |
Formulation 2 | 4.48 ± 0.24 | 5.81 ± 0.30 |
Analytical Method | Linearity Range | Accuracy (% Recovery) | Precision (% RSD) | Ref. |
---|---|---|---|---|
HPLC | 2–16 (µg/mL) | 95–101 | 0.9–1.6 | [24] |
HPLC | 0.015–98 (µg/mL) | 97.6–101.1 | 3.6 | [26] |
HPLC | 0.1–200 (µg/mL) | 99.38–101.33 | 1.53–2.82 | [25] |
HPTLC | 100–600 (ng/band) | 98.33–99.30 | 0.34–1.02 | [38] |
GC | 240–1200 (µL/mL) | 99.70–100.90 | 0.21 | [31] |
HPTLC | 50–1000 (ng/band) | 98.42–101.13 | 0.74–1.88 | Present work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Yusufoglu, H.S.; Salkini, M.A.; Alam, P. Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method. Separations 2020, 7, 51. https://doi.org/10.3390/separations7040051
Foudah AI, Shakeel F, Alqarni MH, Yusufoglu HS, Salkini MA, Alam P. Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method. Separations. 2020; 7(4):51. https://doi.org/10.3390/separations7040051
Chicago/Turabian StyleFoudah, Ahmed I., Faiyaz Shakeel, Mohammad H. Alqarni, Hasan. S. Yusufoglu, Mohammad A. Salkini, and Prawez Alam. 2020. "Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method" Separations 7, no. 4: 51. https://doi.org/10.3390/separations7040051
APA StyleFoudah, A. I., Shakeel, F., Alqarni, M. H., Yusufoglu, H. S., Salkini, M. A., & Alam, P. (2020). Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method. Separations, 7(4), 51. https://doi.org/10.3390/separations7040051