Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,123)

Search Parameters:
Keywords = early genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3840 KiB  
Article
Identification of CaVβ1 Isoforms Required for Neuromuscular Junction Formation and Maintenance
by Amélie Vergnol, Aly Bourguiba, Stephanie Bauché, Massiré Traoré, Maxime Gelin, Christel Gentil, Sonia Pezet, Lucile Saillard, Pierre Meunier, Mégane Lemaitre, Julianne Perronnet, Frederic Tores, Candice Gautier, Zoheir Guesmia, Eric Allemand, Eric Batsché, France Pietri-Rouxel and Sestina Falcone
Cells 2025, 14(15), 1210; https://doi.org/10.3390/cells14151210 - 6 Aug 2025
Abstract
Voltage-gated Ca2+ channels (VGCCs) are regulated by four CaVβ subunits (CaVβ1–CaVβ4), each showing specific expression patterns in excitable cells. While primarily known for regulating VGCC function, CaVβ proteins also have channel-independent roles, including gene expression modulation. Among these, CaVβ1 is expressed in [...] Read more.
Voltage-gated Ca2+ channels (VGCCs) are regulated by four CaVβ subunits (CaVβ1–CaVβ4), each showing specific expression patterns in excitable cells. While primarily known for regulating VGCC function, CaVβ proteins also have channel-independent roles, including gene expression modulation. Among these, CaVβ1 is expressed in skeletal muscle as multiple isoforms. The adult isoform, CaVβ1D, localizes at the triad and modulates CaV1 activity during Excitation–Contraction Coupling (ECC). In this study, we investigated the lesser-known embryonic/perinatal CaVβ1 isoforms and their roles in neuromuscular junction (NMJ) formation, maturation, and maintenance. We found that CaVβ1 isoform expression is developmentally regulated through differential promoter activation. Specifically, CaVβ1A is expressed in embryonic muscle and reactivated in denervated adult muscle, alongside the known CaVβ1E isoform. Nerve injury in adult muscle triggers a shift in promoter usage, resulting in re-expression of embryonic/perinatal Cacnb1A and Cacnb1E transcripts. Functional analyses using aneural agrin-induced AChR clustering on primary myotubes demonstrated that these isoforms contribute to NMJ formation. Additionally, their expression during early post-natal development is essential for NMJ maturation and long-term maintenance. These findings reveal previously unrecognized roles of CaVβ1 isoforms beyond VGCC regulation, highlighting their significance in neuromuscular system development and homeostasis. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 9552 KiB  
Article
Benefits of Maternal Choline Supplementation on Aged Basal Forebrain Cholinergic Neurons (BFCNs) in a Mouse Model of Down Syndrome and Alzheimer’s Disease
by Melissa J. Alldred, Harshitha Pidikiti, Kyrillos W. Ibrahim, Sang Han Lee, Adriana Heguy, Gabriela Chiosis, Elliott J. Mufson, Grace E. Stutzmann and Stephen D. Ginsberg
Biomolecules 2025, 15(8), 1131; https://doi.org/10.3390/biom15081131 - 5 Aug 2025
Abstract
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial [...] Read more.
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial effects on behavior and gene expression in neurodevelopmental and neurodegenerative disorders, including trisomic mice. Loss of basal forebrain cholinergic neurons (BFCNs) and other DS/AD relevant hallmarks were observed in a well-established trisomic model (Ts65Dn, Ts). MCS attenuates these endophenotypes with beneficial behavioral effects in trisomic offspring. We postulate MCS ameliorates dysregulated cellular mechanisms within vulnerable BFCNs, with attenuation driven by novel gene expression. Here, choline acetyltransferase immunohistochemical labeling identified BFCNs in the medial septal/ventral diagonal band nuclei of the basal forebrain in Ts and normal disomic (2N) offspring at ~11 months of age from dams exposed to MCS or normal choline during the perinatal period. BFCNs (~500 per mouse) were microisolated and processed for RNA-sequencing. Bioinformatic assessment elucidated differentially expressed genes (DEGs) and pathway alterations in the context of genotype (Ts, 2N) and maternal diet (MCS, normal choline). MCS attenuated select dysregulated DEGs and relevant pathways in aged BFCNs. Trisomic MCS-responsive improvements included pathways such as cognitive impairment and nicotinamide adenine dinucleotide signaling, among others, indicative of increased behavioral and bioenergetic fitness. Although MCS does not eliminate the DS/AD phenotype, early choline delivery provides long-lasting benefits to aged trisomic BFCNs, indicating that MCS prolongs neuronal health in the context of DS/AD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

25 pages, 3822 KiB  
Article
Comparative Transcriptome and MicroRNA Profiles of Equine Mesenchymal Stem Cells, Fibroblasts, and Their Extracellular Vesicles
by Sebastian Sawicki, Monika Bugno-Poniewierska, Jakub Żurowski, Tomasz Szmatoła, Ewelina Semik-Gurgul, Michał Bochenek, Elżbieta Karnas and Artur Gurgul
Genes 2025, 16(8), 936; https://doi.org/10.3390/genes16080936 (registering DOI) - 5 Aug 2025
Abstract
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in [...] Read more.
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in intercellular communication. Methods: This study compared the transcriptomic profiles (mRNA and miRNA) of equine MSCs derived from adipose tissue (AT-MSCs), bone marrow (BM-MSCs), and ovarian fibroblasts (as a differentiated control). Additionally, miRNAs present in EVs secreted by these cells were characterized using next-generation sequencing. Results: All cell types met ISCT criteria for MSCs, including CD90 expression, lack of MHC II, trilineage differentiation, and adherence. EVs were isolated using ultracentrifugation and validated with nanoparticle tracking analysis and flow cytometry (CD63, CD81). Differential expression analysis revealed distinct mRNA and miRNA profiles across cell types and their secreted EVs, correlating with tissue origin. BM-MSCs showed unique regulation of genes linked to early development and osteogenesis. EVs contained diverse RNA species, including miRNA, mRNA, lncRNA, rRNA, and others. In total, 227 and 256 mature miRNAs were detected in BM-MSCs and AT-MSCs, respectively, including two novel miRNAs per MSC type. Fibroblasts expressed 209 mature miRNAs, including one novel miRNA also found in MSCs. Compared to fibroblasts, 60 and 92 differentially expressed miRNAs were identified in AT-MSCs and BM-MSCs, respectively. Conclusions: The results indicate that MSC tissue origin influences both transcriptomic profiles and EV miRNA content, which may help to interpret their therapeutic potential. Identifying key mRNAs and miRNAs could aid in future optimizing of MSC-based therapies in horses. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

16 pages, 4746 KiB  
Article
SARS-CoV-2 Nsp1 Is a Major Suppressor of HLA Class I and Class II Expression
by Ivo Schirmeister, Nicolas Eckert, Sebastian Weigang, Jonas Fuchs, Lisa Kern, Georg Kochs and Anne Halenius
Viruses 2025, 17(8), 1083; https://doi.org/10.3390/v17081083 - 5 Aug 2025
Abstract
Human leukocyte antigen class I (HLA-I) molecules present intracellular peptides on the cell surface to enable CD8+ T cells to effectively control viral infections. Many viruses disrupt this antigen presentation pathway to evade immune detection. In this study, we demonstrate that SARS-CoV-2 Nsp1 [...] Read more.
Human leukocyte antigen class I (HLA-I) molecules present intracellular peptides on the cell surface to enable CD8+ T cells to effectively control viral infections. Many viruses disrupt this antigen presentation pathway to evade immune detection. In this study, we demonstrate that SARS-CoV-2 Nsp1 impairs both the constitutive and interferon-γ (IFN-γ)-induced upregulation of HLA-I. Moreover, Nsp1 also blocks IFN-γ-induced expression of HLA-II. We found that, contrary to previously published work, the early SARS-CoV-2 B 1.1.7 Alpha variant lacking the accessory protein ORF8 retained full capacity to downregulate HLA-I, comparable to an ORF8-expressing wild-type isolate. While ectopic overexpression of ORF8 could reduce HLA-I surface levels, this effect was only observed at high expression levels. In contrast, moderate expression of the viral protein Nsp1 was sufficient to potently suppress both basal and IFN-γ-induced HLA-I, as well as HLA-II expression. To probe the underlying mechanism, we analyzed HLA-I-associated genes in previously published RNA-sequencing datasets and confirmed that Nsp1 reduces expression of components required for HLA-I biosynthesis and antigen processing. These findings identify Nsp1 as a key factor that impairs antigen presentation pathways, potentially contributing to the ability of SARS-CoV-2 to modulate immune recognition. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

20 pages, 8975 KiB  
Article
Transcriptome Analysis of Potato (Solanum tuberosum L.) Seedlings with Varying Resistance Levels Reveals Diverse Molecular Pathways in Early Blight Resistance
by Jiangtao Li, Jie Li, Hongfei Shen, Rehemutula Gulimila, Yinghong Jiang, Hui Sun, Yan Wu, Binde Xing, Ruwei Yang and Yi Liu
Plants 2025, 14(15), 2422; https://doi.org/10.3390/plants14152422 - 5 Aug 2025
Abstract
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily [...] Read more.
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily increasing year after year. This study aimed to elucidate the molecular mechanisms underlying resistance to early blight by comparing gene expression profiles in resistant (B1) and susceptible (D30) potato seedlings. Transcriptome sequencing was conducted at three time points post-infection (3, 7, and 10 dpi) to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and pathway enrichment analyses were performed to explore resistance-associated pathways and hub genes. Over 11,537 DEGs were identified, with the highest number observed at 10 dpi. Genes such as LOC102603761 and LOC102573998 were significantly differentially expressed across multiple comparisons. In the resistant B1 variety, upregulated genes were enriched in plant–pathogen interaction, MAPK signaling, hormonal signaling, and secondary metabolite biosynthesis pathways, particularly flavonoid biosynthesis, which likely contributes to biochemical defense against A. solani. WGCNA identified 24 distinct modules, with hub transcription factors (e.g., WRKY33, MYB, and NAC) as key regulators of resistance. These findings highlight critical molecular pathways and candidate genes involved in early blight resistance, providing a foundation for further functional studies and breeding strategies to enhance potato resilience. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 2870 KiB  
Review
Etiopathogenesis and Treatment of Colorectal Cancer
by Mayara Bocchi, Eduardo Vignoto Fernandes, Nathália de Sousa Pereira and Marla Karine Amarante
Immuno 2025, 5(3), 31; https://doi.org/10.3390/immuno5030031 - 4 Aug 2025
Viewed by 114
Abstract
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic [...] Read more.
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic and epigenetic alterations in oncogenes and tumor suppressor genes, including genes related to DNA repair. The pathogenic mechanisms are described based on the pathways of chromosomal instability, microsatellite instability, and CpG island methylator phenotype. When detected early, CRC is potentially curable, and its treatment is based on the pathological characteristics of the tumor and factors related to the patient, as well as on drug efficacy and toxicity studies. Therefore, the aim of this study was to review the pathogenesis and molecular subtypes of CRC and to describe the main targets of disease-directed therapy used in patients refractory to current treatments. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

30 pages, 3430 KiB  
Article
Stage-Specific Serum Proteomic Signatures Reveal Early Biomarkers and Molecular Pathways in Huntington’s Disease Progression
by Christiana C. Christodoulou, Christiana A. Demetriou and Eleni Zamba-Papanicolaou
Cells 2025, 14(15), 1195; https://doi.org/10.3390/cells14151195 - 4 Aug 2025
Viewed by 41
Abstract
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation [...] Read more.
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation were implemented to characterize the proteomic landscape across the three HD stages—asymptomatic, early symptomatic and symptomatic advanced—alongside gender/age-matched controls. Results: We identified 84 over-expressed and 118 under-expressed differentially expressed proteins. Enrichment analysis revealed dysregulation in pathways including the complement cascade, LXR/RXR activation and RHOGDI signaling. Biomarker analysis highlighted key proteins with diagnostic potential, including CAP1 (AUC = 0.809), CAPZB (AUC = 0.861), TAGLN2 (AUC = 0.886), THBS1 (AUC = 0.883) and CFH (AUC = 0.948). CAP1 and CAPZB demonstrated robust diagnostic potential in linear mixed-effects models. CAP1 decreased in the asymptomatic stage, suggesting early cytoskeletal disruption, while CAPZB was consistently increased across HD stages. Conclusions: Our findings illuminate the dynamic proteomic and molecular landscape of HD. Future studies should validate these candidates in larger, more diverse cohorts and explore their mechanistic roles in HD pathology and progression. Full article
Show Figures

Figure 1

21 pages, 328 KiB  
Review
Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions
by Ivana Prkačin, Ana Brkić, Nives Pondeljak, Mislav Mokos, Klara Gaćina and Mirna Šitum
Biomedicines 2025, 13(8), 1894; https://doi.org/10.3390/biomedicines13081894 - 4 Aug 2025
Viewed by 51
Abstract
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This [...] Read more.
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This review aims to synthesize current evidence regarding adjuvant immunotherapy for stage IIB/IIC melanoma, explore emerging strategies, and highlight key challenges and future directions. Methods: We conducted a comprehensive literature review of randomized clinical trials, observational studies, and relevant mechanistic and biomarker research on adjuvant therapy in stage IIB/IIC melanoma. Particular focus was placed on pivotal trials evaluating PD-1 inhibitors (KEYNOTE-716 and CheckMate 76K), novel vaccine and targeted therapy trials, mechanisms of resistance, immune-related toxicity, and biomarker development. Results: KEYNOTE-716 and CheckMate 76K demonstrated significant improvements in recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) with pembrolizumab and nivolumab, respectively, compared to placebo. However, no definitive overall survival benefit has yet been shown. Adjuvant immunotherapy is linked to immune-related adverse events, including permanent endocrinopathies. Emerging personalized approaches, such as circulating tumor DNA monitoring and gene expression profiling, may enhance patient selection, but remain investigational. Conclusions: Adjuvant PD-1 blockade offers clear RFS benefits in high-risk stage II melanoma, but optimal patient selection remains challenging, due to uncertain overall survival benefit and toxicity concerns. Future trials should integrate biomarker-driven approaches to refine therapeutic decisions and minimize overtreatment. Full article
(This article belongs to the Section Gene and Cell Therapy)
21 pages, 632 KiB  
Review
DNA Methylation in Bladder Cancer: Diagnostic and Therapeutic Perspectives—A Narrative Review
by Dragoş Puia, Marius Ivănuță and Cătălin Pricop
Int. J. Mol. Sci. 2025, 26(15), 7507; https://doi.org/10.3390/ijms26157507 - 3 Aug 2025
Viewed by 220
Abstract
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current [...] Read more.
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current evidence on the role of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and the hypermethylation of key tumour suppressor genes, including A2BP1, NPTX2, SOX11, PENK, NKX6-2, DBC1, MYO3A, and CA10, in bladder cancer. It also evaluates the therapeutic application of DNA-demethylating agents such as 5-azacytidine and highlights the impact of chronic inflammation on epigenetic regulation. Promoter hypermethylation of tumour suppressor genes leads to transcriptional silencing and unchecked cell proliferation. Urine-based DNA methylation assays provide a sensitive and specific method for non-invasive early detection, with single-target approaches offering high diagnostic precision. Animal models are increasingly employed to validate these findings, allowing the study of methylation dynamics and gene–environment interactions in vivo. DNA methylation represents a key epigenetic mechanism in bladder cancer, with significant diagnostic, prognostic, and therapeutic implications. Integration of human and experimental data supports the use of methylation-based biomarkers for early detection and targeted treatment, paving the way for personalized approaches in bladder cancer management. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 5845 KiB  
Article
Ultrastructure and Transcriptomic Analysis Reveal Alternative Pathways of Zona Radiata Formation in Culter alburnus with Different Spawning Habits
by Yan Zhao, Ge Xue, Yanghui Peng, Jia Zhang, Feng Chen, Yeke Wang, Jun He, Jun Chen and Ping Xie
Biology 2025, 14(8), 987; https://doi.org/10.3390/biology14080987 (registering DOI) - 3 Aug 2025
Viewed by 173
Abstract
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional [...] Read more.
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional characteristics of fish follicle development between different spawning habits, particularly the zona radiata variations, have been poorly documented. In this study, we integrated histology and transcriptomics to investigate the differences in the zona radiata structure and gene expression profiles among follicles from different spawning habits of Culter alburnus. Our results revealed that stage Ⅲ was the crucial period for zona radiata thickening and structure differentiation. Transcriptomic analyses of adhesive and semi-buoyant eggs at stage Ⅲ revealed a significant upregulation of genes involved in glycoprotein synthesis, extracellular matrix formation, and regulation of protease activity in adhesive eggs, such as the wfdc and a2ml gene family. This upregulation likely underpins the thicker zona radiata in adhesive eggs, facilitating their attachment to substrates. This study represents the first elucidation of the ultrastructure of the zona radiata and gene expression patterns in different developmental stages of adhesive and semi-buoyant eggs of Culter alburnus, offering new perspectives for aquaculture research in understanding fish reproductive adaptations. Full article
Show Figures

Figure 1

16 pages, 1226 KiB  
Article
Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms
by Giorgia Piccioni, Andrea Di Cesare, Raffaella Sabatino, Gianluca Corno, Gianmarco Mangiaterra, Daniela Marchis and Barbara Citterio
Microbiol. Res. 2025, 16(8), 180; https://doi.org/10.3390/microbiolres16080180 - 2 Aug 2025
Viewed by 87
Abstract
Enterococcus spp. are opportunistic and nosocomial pathogens. Intensive pig farms have been recently described as important hotspots for antibiotic resistance and reservoirs of potentially pathogenic enterococci, including other species than the most known E. faecalis and E. faecium. Here, we identified Linezolid-resistant [...] Read more.
Enterococcus spp. are opportunistic and nosocomial pathogens. Intensive pig farms have been recently described as important hotspots for antibiotic resistance and reservoirs of potentially pathogenic enterococci, including other species than the most known E. faecalis and E. faecium. Here, we identified Linezolid-resistant non-E. faecalis and E. faecium (NFF) Enterococcus strains isolated from different production stages (suckling piglets, weaning pigs, and fatteners) across six intensive pig farms. The transferability of the linezolid-resistance determinants was assessed by bacterial conjugation and strains were also characterized for biofilm production, hemolytic and gelatinase activity. Among 64 identified NFF Enterococcus strains, 27 were resistant to at least three different antibiotic classes and 8/27 specifically to Linezolid. E. gallinarum and E. casseliflavus both transferred their Linezolid resistance determinants to the main pathogenic species E. faecium. Remarkably, this is the first report of the optrA gene transfer from E. casseliflavus to E. faecium by conjugation, which can greatly contribute to the spread of antibiotic resistance genes among pathogenic enterococcal species. The “weaning pigs” stage exhibited a significantly higher number of antibiotic-resistant enterococci than the “fatteners”. These findings highlight the importance of monitoring pig farms as hotspots for the spread of antibiotic-resistant enterococci, especially in the early stages of production. Furthermore, they underscore the significant role of NFF Enterococcus species as carriers of antibiotic resistance genes, even to last-resort antibiotics, which may be transferable to the major enterococcal species. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs—Second Edition)
Show Figures

Graphical abstract

Back to TopTop