Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (447)

Search Parameters:
Keywords = dynamic habitat indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 (registering DOI) - 1 Aug 2025
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 (registering DOI) - 1 Aug 2025
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

17 pages, 5553 KiB  
Article
Effects of Interspecific Competition on Habitat Shifts of Sardinops melanostictus (Temminck et Schlegel, 1846) and Scomber japonicus (Houttuyn, 1782) in the Northwest Pacific
by Siyuan Liu, Hanji Zhu, Jianhua Wang, Famou Zhang, Shengmao Zhang and Heng Zhang
Biology 2025, 14(8), 968; https://doi.org/10.3390/biology14080968 (registering DOI) - 1 Aug 2025
Abstract
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the [...] Read more.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of S. melanostictus and S. japonicus from the Northwest Pacific, collected from June to November between 2017 and 2020. We integrated various environmental parameters, including temperature at different depths (0, 50, 100, 150, and 200 m), eddy kinetic energy (EKE), sea surface height (SSH), chlorophyll-a concentration (Chl-a), and the oceanic Niño index (ONI), to construct interspecific competition species distribution model (icSDM) for both species. We validated these models by overlaying the predicted habitats with fisheries data from 2021 and performing cross-validation to assess the models’ reliability. Furthermore, we conducted correlation analyses of the habitats of these two species to evaluate the impact of interspecies relationships on their habitat dynamics. The results indicate that, compared to single-species habitat models, the interspecific competition species distribution model (icSDM) for these two species exhibit a significantly higher explanatory power, with R2 values increasing by up to 0.29; interspecific competition significantly influences the habitat dynamics of S. melanostictus and S. japonicus, strengthening the correlation between their habitat changes. This relationship exhibits a positive correlation at specific stages, with the highest correlations observed in June, July, and October, at 0.81, 0.80, and 0.88, respectively; interspecific competition also demonstrates stage-specific differences in its impact on the habitat dynamics of S. melanostictus and S. japonicus, with the most pronounced differences occurring in August and November. Compared to S. melanostictus, interspecific competition is more beneficial for the expansion of the optimal habitat (HIS ≥ 0.6) for S. japonicus and, to some extent, inhibits the habitat expansion of S. melanostictus. The variation in migratory routes and predatory interactions (with larger individuals of S. japonicus preying on smaller individuals of S. melanostictus) likely constitutes the primary factors contributing to these observed differences. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

18 pages, 2238 KiB  
Article
Dispersal Patterns of Euphydryas aurinia provincialis (Lepidoptera: Nymphalidae) in the Colfiorito Highlands, Central Italy
by Andrea Brusaferro, Silvia Marinsalti, Federico Maria Tardella, Emilio Insom and Antonietta La Terza
Environments 2025, 12(8), 263; https://doi.org/10.3390/environments12080263 - 30 Jul 2025
Viewed by 109
Abstract
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, [...] Read more.
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, where reproductive sites, despite their spatial proximity, can act as either source or sink habitats depending on environmental conditions. We conducted fieldwork in six nesting patches inside a single node, capturing, marking, and recapturing individuals to assess their spatial distribution and movement tendencies at a large landscape scale. We found a high degree of site fidelity among individuals, with many recaptures occurring within the original marking site, but also a sex-based difference in movement patterns; females dispersed farther than males, likely driven by reproductive strategies, while males remained more localized, prioritizing mate-searching. Our findings suggest a complex dynamic in habitat connectivity: pastures and abandoned fields, despite being open, seem to act like sink areas, while breeding sites with shrub and tree cover act as source habitats, offering optimal conditions for reproduction. Individuals, especially females, from these source areas were later compelled to disperse into open habitats, highlighting a nuanced interaction between landscape structure and population dynamics. These results highlight the importance of maintaining habitat corridors to support metapopulation dynamics and prevent genetic isolation; the abandonment of traditional grazing practices is leading to the rapid closure of these source habitats, posing a severe risk of local extinction. Conservation efforts should prioritize the preservation of these source habitats to ensure the long-term viability of E. a. provincialis populations in fragmented landscapes. Full article
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Variations in Fine-Root Traits of Pseudotsuga sinensis Across Different Rocky-Desertification Gradients
by Wangjun Li, Shun Zou, Dongpeng Lv, Bin He and Xiaolong Bai
Diversity 2025, 17(8), 533; https://doi.org/10.3390/d17080533 - 29 Jul 2025
Viewed by 106
Abstract
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, [...] Read more.
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, subtropical, and temperate forests, leaving a significant gap in comprehensive knowledge regarding fine-root responses in rocky-desertification habitats. This study investigates the fine roots of Pseudotsuga sinensis across varying degrees of rocky desertification (mild, moderate, severe, and extremely severe). By analyzing fine-root morphological and nutrient traits, we aim to elucidate the trait differences and correlations under different desertification intensities. The results indicate that root dry matter content increases significantly with escalating desertification severity. Fine roots in mild and extremely severe desertification exhibit notably higher root C, K, and Mg concentrations compared to those in moderate and severe desertification, while root Ca concentration shows an inverse trend. Our correlation analyses reveal a highly significant positive relationship between specific root length and specific root area, whereas root dry matter content demonstrates a significant negative correlation with elemental concentrations. The principal component analysis (PCA) further indicates that the trait associations adopted by the forest in mild- and extremely severe-desertification environments are different from those in moderate- and severe-desertification environments. This study did not account for soil nutrient dynamics, microbial diversity, or enzymatic activity—key factors influencing fine-root adaptation. Future research should integrate root traits with soil properties to holistically assess resource strategies in rocky-desertification ecosystems. This study can serve as a theoretical reference for research on root characteristics and adaptation strategies of plants in rocky-desertification habitats. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

26 pages, 11770 KiB  
Article
Flow Dynamics and Local Scour Around Seabed-Mounted Artificial Reefs: A Case Study from Torbay, UK
by Amir Bordbar, Jakub Knir, Vasilios Kelefouras, Samuel John Stephen Hickling, Harrison Short and Yeaw Chu Lee
J. Mar. Sci. Eng. 2025, 13(8), 1425; https://doi.org/10.3390/jmse13081425 - 26 Jul 2025
Viewed by 247
Abstract
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model [...] Read more.
This study investigates the flow dynamics and local scour around a Reef Cube® artificial reef deployed in Torbay, UK, using computational fluid dynamics. The flow is modelled using Reynolds-Averaged Navier–Stokes (RANS) equations with a k-ω SST turbulence model. A novel hydro-morphodynamic model employing the generalized internal boundary method in HELYX (OpenFOAM-based) is used to simulate scour development. Model performance was validated against experimental data for flow fields, bed shear stress, and local scour. Flow simulations across various scenarios demonstrated that parameters such as the orientation angle and arrangement of Reef Cubes significantly influence flow patterns, bed shear stress, and habitat suitability. The hydro-morphodynamic model was used to simulate scouring around a reef cube in the Torbay marine environment. Results indicate that typical tidal flow velocity flow in the region is barely sufficient to initiate sediment motion, whereas extreme flow events, represented by doubling the mean flow velocity, significantly accelerate scour development, producing holes up to ten times deeper. These findings underscore the importance of considering extreme flow conditions in scour analyses due to their potential impact on the stability and failure risk of AR projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 21087 KiB  
Article
Multi-Scale Ecosystem Service Supply–Demand Dynamics and Driving Mechanisms in Mainland China During the Last Two Decades: Implications for Sustainable Development
by Menghao Qi, Mingcan Sun, Qinping Liu, Hongzhen Tian, Yanchao Sun, Mengmeng Yang and Hui Zhang
Sustainability 2025, 17(15), 6782; https://doi.org/10.3390/su17156782 - 25 Jul 2025
Viewed by 254
Abstract
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across [...] Read more.
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across mainland China—habitat quality (HQ), carbon sequestration (CS), water yield (WY), sediment delivery ratio (SDR), food production (FP), and nutrient delivery ratio (NDR)—by integrating a suite of analytical approaches. These include a spatiotemporal analysis of trade-offs and synergies in supply, demand, and their ratios; self-organizing maps (SOM) for bundle identification; and interpretable machine learning models. While prior research studies have typically examined ES at a single spatial scale, focusing on supply-side bundles or associated drivers, they have often overlooked demand dynamics and cross-scale interactions. In contrast, this study integrates SOM and SHAP-based machine learning into a dual-scale framework (grid and city levels), enabling more precise identification of scale-dependent drivers and a deeper understanding of the complex interrelationships between ES supply, demand, and their spatial mismatches. The results reveal pronounced spatiotemporal heterogeneity in ES supply and demand at both grid and city scales. Overall, the supply services display a spatial pattern of higher values in the east and south, and lower values in the west and north. High-value areas for multiple demand services are concentrated in the densely populated eastern regions. The grid scale better captures spatial clustering, enhancing the detection of trade-offs and synergies. For instance, the correlation between HQ and NDR supply increased from 0.62 (grid scale) to 0.92 (city scale), while the correlation between HQ and SDR demand decreased from −0.03 to −0.58, indicating that upscaling may highlight broader synergistic or conflicting trends missed at finer resolutions. In the spatiotemporal interaction network of supply–demand ratios, CS, WY, FP, and NDR persistently show low values (below −0.5) in western and northern regions, indicating ongoing mismatches and uneven development. Driver analysis demonstrates scale-dependent effects: at the grid scale, HQ and FP are predominantly influenced by socioeconomic factors, SDR and WY by ecological variables, and CS and NDR by climatic conditions. At the city level, socioeconomic drivers dominate most services. Based on these findings, nine distinct supply–demand bundles were identified at both scales. The largest bundle at the grid scale (B3) occupies 29.1% of the study area, while the largest city-scale bundle (B8) covers 26.5%. This study deepens the understanding of trade-offs, synergies, and driving mechanisms of ecosystem services across multiple spatial scales; reveals scale-sensitive patterns of spatial mismatch; and provides scientific support for tiered ecological compensation, integrated regional planning, and sustainable development strategies. Full article
Show Figures

Figure 1

7 pages, 408 KiB  
Brief Report
A Note on the Honey Bee Parasitic Phorid Fly (Apocephalus borealis Brues) in an Urban Ecosystem
by Lioh Jaboeuf, Miguel Cabrera, Jenny Hoffmann, Emma Gallagher, Laura Byrne, John F. Mejía and Mitzy F. Porras
Insects 2025, 16(8), 765; https://doi.org/10.3390/insects16080765 - 25 Jul 2025
Viewed by 343
Abstract
The honey bee is a crucial pollinator in urban ecosystems but faces multiple challenges, including habitat degradation, pollution, and parasitism by species such as the phorid fly, Apocephalus borealis Brues (Diptera: Phoridae). This study investigated honey bee abundance and the percentage of A. [...] Read more.
The honey bee is a crucial pollinator in urban ecosystems but faces multiple challenges, including habitat degradation, pollution, and parasitism by species such as the phorid fly, Apocephalus borealis Brues (Diptera: Phoridae). This study investigated honey bee abundance and the percentage of A. borealis parasitism in an urban environment in San Francisco, California. We monitored six sites weekly for six months using two sampling methods. Individual bees were weighed and observed for parasitoid emergence under controlled laboratory conditions. Our results indicate fluctuations in honey bee parasitism by A. borealis from September 2024 to May 2025, with four distinct peaks occurring in mid-September, February, late March, and early May. The highest parasitism rates exceeded 50% in early May, coinciding with increased temperatures and drops in relative humidity. These results suggest a potential link between abiotic conditions and parasitoid activity, highlighting the importance of long-term monitoring to understand the seasonal dynamics of host–parasite interactions in urban environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 211
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

19 pages, 2614 KiB  
Article
Multiparametric Analysis of PET and Quantitative MRI for Identifying Intratumoral Habitats and Characterizing Trastuzumab-Induced Alterations
by Ameer Mansur, Carlos Gallegos, Andrew Burns, Lily Watts, Seth Lee, Patrick Song, Yun Lu and Anna Sorace
Cancers 2025, 17(15), 2422; https://doi.org/10.3390/cancers17152422 - 22 Jul 2025
Viewed by 181
Abstract
Background/Objectives: This study investigates the utility of multiparametric PET/MRI in delineating changes in physiologically distinct intratumoral habitats during trastuzumab-induced alterations in a preclinical HER2+ breast cancer model. Methods: By integrating diffusion-weighted MRI, dynamic contrast-enhanced MRI, [18F]Fluorodeoxyglucose- and [18F]Fluorothymidine-PET, voxel-wise [...] Read more.
Background/Objectives: This study investigates the utility of multiparametric PET/MRI in delineating changes in physiologically distinct intratumoral habitats during trastuzumab-induced alterations in a preclinical HER2+ breast cancer model. Methods: By integrating diffusion-weighted MRI, dynamic contrast-enhanced MRI, [18F]Fluorodeoxyglucose- and [18F]Fluorothymidine-PET, voxel-wise parametric maps were generated capturing cellular density, vascularity, metabolism, and proliferation. BT-474 tumor-bearing mice have high expression of HER2 and, in response to trastuzumab, an anti-HER2 antibody, effectively show changes in proliferation and tumor microenvironment alterations that result in decreases in tumor volume through time. Results: Single imaging metrics and changes in metrics were incapable of identifying treatment-induced alterations early in the course of therapy (day 4) prior to changes in tumor volume. Hierarchical clustering identified five distinct tumor habitats, which enabled longitudinal assessment of early treatment response. Tumor habitats were defined based on imaging metrics related to biology and categorized as highly vascular (HV), hypoxic responding (HRSP), transitional zone (TZ), active tumor (ATMR) and responding (RSP). The HRSP cluster volume significantly decreased in trastuzumab-treated tumors compared to controls by day 4 (p = 0.015). The volume of ATMR cluster was significantly different at baseline between cohorts (p = 0.03). The TZ cluster, indicative of regions transitioning more to necrosis, significantly decreased in treated tumors (p = 0.031), suggesting regions had already transitioned. Multiparametric image clustering showed a significant positive linear correlation with histological multiparametric mapping, with R2 values of 0.56 (HRSP, p = 0.013, 0.64 (ATMR, p = 0.0055), and 0.49 (responding cluster, p = 0.024), confirming the biological relevance of imaging-derived clusters. Conclusions: These findings highlight the potential utility of multiparametric PET/MRI to capture biological alterations prior to any single imaging metric which has potential for better understanding longitudinal changes in biology, stratifying tumors based on those changes, optimizing therapeutic monitoring and advancing precision oncology. Full article
(This article belongs to the Special Issue Application of Advanced Biomedical Imaging in Cancer Treatment)
Show Figures

Figure 1

23 pages, 2875 KiB  
Article
Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Zihan Dong, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang and Qiao Chen
Land 2025, 14(8), 1509; https://doi.org/10.3390/land14081509 - 22 Jul 2025
Viewed by 353
Abstract
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study [...] Read more.
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study analyzes land-use data from 2000 to 2020 for Golog Tibetan Autonomous Prefecture. The PLUS model was utilized to project land-use potential for the year 2030. The InVEST model was employed to conduct a comprehensive assessment of habitat quality in the study area for both 2020 and 2030, thereby pinpointing ecological sources. Critical ecological restoration zones were delineated by identifying ecological corridors, pinch points, and barrier points through the application of the Minimum Cumulative Resistance model and circuit theory. By comparing ecological security patterns (ESPs) in 2020 and 2030, we proposed a dynamic restoration framework and optimization recommendations based on habitat quality changes and ESPs. The results indicate significant land-use changes in the eastern part of Golog Tibetan Autonomous Prefecture from 2020 to 2030, with large-scale conversion of grasslands into bare land, farmland, and artificial surfaces. The ecological security pattern is threatened by risks like the deterioration of habitat quality, diminished ecological sources as well as pinch points, and growing barrier points. Optimizing the layout of ecological resources, strengthening barrier zone restoration and pinch point protection, and improving habitat connectivity are urgent priorities to ensure regional ecological security. This study offers a scientific foundation for the harmonization of ecological protection and economic development and the policy development and execution of relevant departments. Full article
Show Figures

Figure 1

20 pages, 3327 KiB  
Article
Identification of Simultaneous Occurrence of Amphibian Chytrid Fungi and Ranavirus in South Korea
by Ji-Eun Lee, Young Jin Park, Mun-Gyeong Kwon, Yun-Kyeong Oh, Min Sun Kim and Yuno Do
Animals 2025, 15(14), 2132; https://doi.org/10.3390/ani15142132 - 18 Jul 2025
Viewed by 263
Abstract
Emerging infectious diseases such as chytridiomycosis and ranavirosis, caused by Batrachochytrium dendrobatidis (Bd) and ranavirus (RV), respectively, are major contributors to global amphibian declines. Despite their significance, comprehensive data on the spatial epidemiology of these pathogens in South Korea remain limited. [...] Read more.
Emerging infectious diseases such as chytridiomycosis and ranavirosis, caused by Batrachochytrium dendrobatidis (Bd) and ranavirus (RV), respectively, are major contributors to global amphibian declines. Despite their significance, comprehensive data on the spatial epidemiology of these pathogens in South Korea remain limited. This study aimed to assess the nationwide co-occurrence and prevalence of Bd and RV across four anuran species in five administrative regions. Infection rates were analyzed in relation to host species, sex, and life history stage. Results indicated distinct prevalence patterns driven by ecological traits. Bd was predominantly detected in mountainous and coastal habitats, whereas RV was more common in flat inland areas. Both pathogens exhibited peak occurrence in central regions, likely reflecting seasonal transmission dynamics rather than stable endemic hotspots. The observed spatial heterogeneity appears to be influenced by pathogen-specific thermal tolerance and host ecology. These findings underscore the importance of understanding host–pathogen–environment interactions for effective disease surveillance and management. Continuous monitoring and integrative ecological approaches are essential to mitigate pathogen-induced biodiversity loss and to inform amphibian conservation strategies in East Asia. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

19 pages, 2552 KiB  
Article
The Biogeographic Patterns of Two Typical Mesopelagic Fishes in the Cosmonaut Sea Through a Combination of Environmental DNA and a Trawl Survey
by Yehui Wang, Chunlin Liu, Mi Duan, Peilong Ju, Wenchao Zhang, Shuyang Ma, Jianchao Li, Jianfeng He, Wei Shi and Yongjun Tian
Fishes 2025, 10(7), 354; https://doi.org/10.3390/fishes10070354 - 17 Jul 2025
Viewed by 271
Abstract
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a [...] Read more.
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a more cost-effective and sustainable alternative to traditional sampling approaches. To study the biogeographic patterns of two typical mesopelagic fishes, Antarctic lanternfish (Electrona antarctica) and Antarctic deep-sea smelt (Bathylagus antarcticus), in the Cosmonaut Sea in the Indian Ocean sector of the Southern Ocean, we conducted both eDNA and trawling sampling at a total of 86 stations in the Cosmonaut Sea during two cruises in 2021–2022. Two sets of species-specific primers and probes were developed for a quantitative eDNA analysis of two fish species. Both the eDNA and trawl results indicated that the two fish species are widely distributed in the Cosmonaut Sea, with no significant difference in eDNA concentration, biomass, or abundance between stations. Spatially, E. antarctica tended to be distributed in shallow waters, while B. antarcticus tended to be distributed in deep waters. Vertically, E. antarctica was more abundant above 500 m, while B. antarcticus had a wider range of habitat depths. The distribution patterns of both species were affected by nutrients, with E. antarctica additionally affected by chlorophyll, indicating that their distribution is primarily influenced by food resources. Our study provides broader insight into the biogeographic patterns of the two mesopelagic fishes in the remote Cosmonaut Sea, demonstrates the potential of combining eDNA with traditional methods to study biodiversity and ecosystem dynamics in the Southern Ocean and even at high latitudes, and contributes to future ecosystem research and biodiversity conservation in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 1743 KiB  
Article
Unravelling Metazoan and Fish Community Patterns in Yujiang River, China: Insights from Beta Diversity Partitioning and Co-Occurrence Network
by Yusen Li, Dapeng Wang, Yuying Huang, Jun Shi, Weijun Wu, Chang Yuan, Shiqiong Nong, Chuanbo Guo, Wenjian Chen and Lei Zhou
Diversity 2025, 17(7), 488; https://doi.org/10.3390/d17070488 - 17 Jul 2025
Viewed by 312
Abstract
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. [...] Read more.
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. Moreover, studies integrating both metazoan and fish communities at fine spatial scales remain limited. To address these gaps, we employed a multi-marker eDNA metabarcoding approach, targeting both the 12S and 18S rRNA gene regions, to comprehensively investigate the composition of metazoan and fish communities in the Yujiang River. A total of 12 metazoan orders were detected, encompassing 15 families, 21 genera, and 19 species. For the fish community, 32 species were identified, belonging to 25 genera, 10 families, and 7 orders. Among these, Adula falcatoides and Coptodon zillii were identified as the most prevalent and abundant metazoan and fish species, respectively. Notably, the most prevalent fish species, C. zillii and Oreochromis niloticus, are both recognized as invasive species. The Bray–Curtis distance of metazoa (average: 0.464) was significantly lower than that of fish communities (average: 0.797), suggesting higher community heterogeneity among fish assemblages. Beta-diversity decomposition indicated that variations in the metazoan and fish communities were predominantly driven by species replacement (turnover) (65.4% and 70.9% for metazoa and fish, respectively) rather than nestedness. Mantel tests further revealed that species turnover in metazoan communities was most strongly influenced by water temperature, while fish community turnover was primarily affected by water transparency, likely reflecting the physiological sensitivity of metazoans to thermal gradients and the dependence of fish on visual cues for foraging and habitat selection. In addition, a co-occurrence network of metazoan and fish species was constructed, highlighting potential predator-prey interactions between native species and Corbicula fluminea, which emerged as a potential keystone species. Overall, this study demonstrates the utility of multi-marker eDNA metabarcoding in characterizing aquatic community structures and provides new insights into the spatial dynamics and species interactions within river ecosystems. Full article
Show Figures

Figure 1

40 pages, 6079 KiB  
Article
Stream Community Metabolism and Dissolved-Oxygen Dynamics: Where Did the Oxygen Come From?
by James N. McNair and Jay R. Zuidema
Environments 2025, 12(7), 236; https://doi.org/10.3390/environments12070236 - 10 Jul 2025
Viewed by 529
Abstract
Stream metabolism is traditionally defined as the combined metabolism of all aerobic organisms in a stream. Its component processes of oxygenic photosynthesis and aerobic respiration create and consume dissolved oxygen (DO) and therefore can be measured using time series of DO concentration, solar [...] Read more.
Stream metabolism is traditionally defined as the combined metabolism of all aerobic organisms in a stream. Its component processes of oxygenic photosynthesis and aerobic respiration create and consume dissolved oxygen (DO) and therefore can be measured using time series of DO concentration, solar radiation, and water temperature, in conjunction with a model of DO dynamics that includes photosynthesis, respiration, and oxygen exchange with the atmosphere. A complication is that stream communities typically exhibit pronounced longitudinal heterogeneity in habitat type (e.g., shaded versus unshaded reaches) and species composition and abundance. The influence of a given stream reach and associated community on DO concentration propagates downstream with the current, gradually being replaced, over a transition zone, by the influence of the next downstream reach. Knowing the approximate length of this transition zone is important when estimating stream metabolism with one-station DO monitoring, since it indicates which stream reach and associated community the metabolism estimates apply to. We propose new methods for estimating the transition-zone length and for estimating the proportions of DO at a given location in a stream reach that entered the reach from upstream, from photosynthesis within the reach, and from atmospheric uptake within the reach. We also propose methods for estimating the residence-time distribution of DO present at a given stream location, and the corresponding distribution of upstream distances at which the DO entered the stream. Both distributions are approximately exponential. Thus, habitat immediately upstream of the sonde has the greatest influence on metabolism estimates with one-station monitoring, and it is therefore important to place the sonde so this habitat is representative of the study reach. Full article
Show Figures

Figure 1

Back to TopTop