Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = dyes and pharmaceutical wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1395 KB  
Article
Production of Natural Pigment from Bacillus subtilis KU710517 Using Agro-Industrial Wastes and Application in Dyeing of Wool Fabrics
by K. A. Ahmed, Heba M. El-Hennawi and Hala R. Wehaidy
Processes 2025, 13(11), 3453; https://doi.org/10.3390/pr13113453 - 27 Oct 2025
Viewed by 608
Abstract
A comparative study was performed between some waste materials to assess their ability to produce natural pigment from Bacillus subtilis KU710517 isolated from the marine sponge Pseudoceratina arabica. Bacillus subtilis KU710517 was able to produce a yellowish-brown pigment with wheat bran and [...] Read more.
A comparative study was performed between some waste materials to assess their ability to produce natural pigment from Bacillus subtilis KU710517 isolated from the marine sponge Pseudoceratina arabica. Bacillus subtilis KU710517 was able to produce a yellowish-brown pigment with wheat bran and molokhia stems in both water and synthetic media. Some factors affecting the pigment production by Bacillus subtilis KU710517 were studied. The pigments produced had been assessed for their use in dyeing wool fabrics (at a liquor ratio of 50:1 across various pH levels), and the color strength values of samples were examined. The highest color strength value of dyed wool fabrics was obtained when using water containing 6% molokhia stems (K/S 6.98) for 2 days at pH 9. Also, good fastness properties were obtained with molokhia stems. Therefore, the yellowish-brown pigment produced from Bacillus subtilis KU710517 is highly appropriate for dyeing and printing wool textiles and serves as a safe alternative to synthetic dyes that create environmental issues. Moreover, using waste materials and water in the production of dye is an economical and ecofriendly method. HPLC analysis of the pigment produced from molokhia stems in a water medium indicated the presence of rutin and syringic acid, which are responsible for the yellowish-brown color. The antimicrobial properties of the produced pigment were examined with the cup agar diffusion technique. Nutrient agar plates were inoculated with 0.1 mL of 105–106 cells/mL of yeast and bacteria. Czapek-Dox agar plates were heavily inoculated with 0.1 mL (106 cells/mL) of fungal culture. 100 microliters of the dye sample were added to each cup. The pigment showed considerable antimicrobial activity against bacteria, yeast, and fungi and displayed the strongest antimicrobial activity against E. coli (28 mm zone of inhibition). Therefore, the produced pigment can be used in the pharmaceutical field, especially in the dyeing of surgical dressings and clothing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

40 pages, 1988 KB  
Review
Environmental Applications of Chitosan Derivatives and Chitosan Composites
by Marián Lehocký
Polymers 2025, 17(19), 2583; https://doi.org/10.3390/polym17192583 - 24 Sep 2025
Cited by 4 | Viewed by 2404
Abstract
Chitosan, a naturally abundant and biodegradable biopolymer derived from chitin found in crustacean shells, has emerged as a promising material for addressing environmental challenges. Its reactive amino and hydroxyl groups enable diverse interaction mechanisms. This makes it effective for removing heavy metals, dyes, [...] Read more.
Chitosan, a naturally abundant and biodegradable biopolymer derived from chitin found in crustacean shells, has emerged as a promising material for addressing environmental challenges. Its reactive amino and hydroxyl groups enable diverse interaction mechanisms. This makes it effective for removing heavy metals, dyes, pharmaceuticals, and other contaminants from water. However, the limitations of native chitosan, such as poor solubility and mechanical strength, necessitate strategic modifications. This review comprehensively examines recent advances in chitosan derivatives and composites. It focuses on modern modification strategies, such as chemical, physical, and composite formation, that enhance stability, selectivity, and efficiency. It explores the design principles of high-performance composites. It also details the multifaceted mechanisms of pollutant removal, including adsorption, catalysis, membrane filtration, and flocculation. Critical practical challenges are critically assessed. These include scalability, regeneration, lifecycle sustainability, and real-world implementation. Furthermore, emerging trends are highlighted. These integrate circular economy principles, seafood waste valorization, and digital optimization through the use of artificial intelligence. By consolidating current knowledge, this review aims to bridge the gap between laboratory innovations and large-scale environmental applications. It guides the development of intelligent, scalable, and ecologically responsible solutions based on this remarkable biopolymer. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

20 pages, 3151 KB  
Article
Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents
by Maryam Bin Hammad, Sameer Al-Asheh and Mohamed Abouleish
Water 2025, 17(17), 2656; https://doi.org/10.3390/w17172656 - 8 Sep 2025
Cited by 1 | Viewed by 1635
Abstract
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm [...] Read more.
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm to aquatic life. This study introduces a sustainable “waste-to-treat-waste” approach that utilizes discarded white chicken eggshells as a low-cost biosorbent for removing ciprofloxacin, a common antibiotic. Unlike previous eggshell-based adsorption studies that primarily targeted dyes or heavy metals, this work demonstrates the first comprehensive evaluation of both untreated and chemically/thermally modified eggshells for antibiotic removal from real pharmaceutical wastewater. Batch adsorption experiments under optimized conditions showed removal efficiencies of 85% for raw eggshells, 91% after HCl activation, and 96% after thermal conversion to CaO. Batch adsorption experiments under optimized conditions (pH 7, 25 °C, 625 µm particle size, 3 g/100 mL dose, 90 min contact time) showed maximum adsorption capacities of 23.75 mg/g for untreated ES, 4.08 mg/g after HCl activation, and 1.82 mg/g after thermal conversion to CaO, with removal efficiencies of 85%, 91%, and 96%, respectively. The simplicity of preparation, use of an abundant waste material, and high removal efficiency highlight the potential for scalable cost-effective applications in industrial wastewater treatment systems. Full article
Show Figures

Figure 1

35 pages, 2094 KB  
Review
The Use of Biosorbents in Water Treatment
by Mothusi Molebatsi, Bonang Nkoane, Ngonye Keroletswe, Samuel Chigome and Moses Tlhabologo Kabomo
Environments 2025, 12(9), 302; https://doi.org/10.3390/environments12090302 - 29 Aug 2025
Cited by 6 | Viewed by 5063
Abstract
Biosorbents are materials of biological origin (microbial, biomass-derived waste, or industrial by-products) used to adsorb or absorb pollutants. They have been used to remove various contaminants, including heavy metals, dyes, and pharmaceuticals. Their effectiveness is due to the different functional groups that interact [...] Read more.
Biosorbents are materials of biological origin (microbial, biomass-derived waste, or industrial by-products) used to adsorb or absorb pollutants. They have been used to remove various contaminants, including heavy metals, dyes, and pharmaceuticals. Their effectiveness is due to the different functional groups that interact with pollutants, including hydroxyl, amino, carboxyl, and phosphate groups. This review explores the various kinds of biosorbents (classification), mechanisms, and factors influencing biosorption, such as biomass content, time, temperature, pH, and concentration of pollutants, synthesis methods of biosorbents, and the current state of research on biosorbents. The review highlights the advantages of biosorbents, along with the challenges encountered, such as difficulty in regeneration and variability in performance. Finally, the review identifies research gaps and future directions, including exploration of modified/synthetic biosorbents for the removal of multi-component pollutants. Full article
Show Figures

Graphical abstract

20 pages, 1759 KB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 1084
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

25 pages, 2616 KB  
Article
Bio-Fabricated Aluminum Oxide Nanoparticles Derived from Waste Pharmaceutical Packages: Insight into Characterization and Applications
by Jamilah M. Al-Ahmari, Reem M. Alghanmi and Ragaa A. Hamouda
Biomolecules 2025, 15(7), 984; https://doi.org/10.3390/biom15070984 - 10 Jul 2025
Cited by 2 | Viewed by 1284
Abstract
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica [...] Read more.
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica) as reducing and stabilizing agents and that was characterized by XRD, EDX, SEM, TEM, and zeta potential. Batch biosorption studies were performed to assess the effectiveness of P/Al2O3-NPs in removing CR dye from aqueous solutions. The results demonstrate that the particle sizes range from 58.63 to 86.70 nm and morphologies vary from spherical to elliptical. FTIR analysis revealed Al–O lattice vibrations at 988 and 570 cm−1. The nanoparticles displayed a negative surface charge (−13 mV) and a pHzpc of 4.8. Adsorption experiments optimized parameters for CR dye removal, achieving 97.81% efficiency under native pH (6.95), with a dye concentration of 30 mg/L, an adsorbent dosage of 0.1 g/L, and a contact time of 30 min. Thermodynamic studies confirmed that the process is exothermic and spontaneous. Kinetic data fit well with the pseudo-second-order model, while equilibrium data aligned with the Langmuir isotherm. The adsorption mechanism involved van der Waals forces, hydrogen bonding, and π–π interactions, as supported by the influence of pH, isotherm data, and FTIR spectra. Overall, the study demonstrates the potential of eco-friendly P/Al2O3-NPs to efficiently remove CR dye from aqueous solutions. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

14 pages, 799 KB  
Review
Polysaccharide Films/Membranes for Food and Industrial Applications
by Isabel Coelhoso
Polysaccharides 2025, 6(2), 48; https://doi.org/10.3390/polysaccharides6020048 - 7 Jun 2025
Cited by 4 | Viewed by 1826
Abstract
Membrane processes are extensively employed in a range of industrial and food applications. Due to growing environmental concerns and the introduction of regulatory measures, it is imperative to develop innovative membrane materials that can effectively replace petrochemical-based polymers, in line with the principles [...] Read more.
Membrane processes are extensively employed in a range of industrial and food applications. Due to growing environmental concerns and the introduction of regulatory measures, it is imperative to develop innovative membrane materials that can effectively replace petrochemical-based polymers, in line with the principles of a circular economy. The focus of this review is the use of polysaccharides for obtaining films/membranes for food and industrial applications using selected case studies. Besides the polysaccharides extracted from biomass, the valorization of agrifood residues and the use of plants adapted to arid lands (i.e., cactus) to produce polysaccharide films for food packaging is addressed. Moreover, microbial polysaccharides produced using renewable resources present a significant alternative to commercial hydrophilic membranes for gases and ethanol dehydration. To meet industry requirements, the mechanical and barrier properties of the films can be improved by the inclusion of inert impermeable fillers and/or the chemical modification of the polysaccharides. The adsorption of proteins, dyes, and pharmaceutical compounds using a cellulose-based polymer is discussed. Despite their unique characteristics, polysaccharide production costs are still higher than most synthetic polymers. This is a challenge that can be overcome by scaling up the production and by valorizing agro-industrial wastes and by-products to make the application of polysaccharide membranes/films in the food and industry sectors more widespread. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

29 pages, 3334 KB  
Review
Vetiver, Vetiveria zizanioides (L.) Nash: Biotechnology, Biorefineries, and the Production of Volatile Phytochemicals
by Ian G. C. Barcellos-Silva, Filipe K. F. dos Santos, Harsha Kharkwal, Subhash Chander, Amit C. Kharkwal, Rajendra Awasthi, Neerupma Dhiman, Bhupesh Sharma, Giriraj T. Kulkarni, Harold Larssen, Jôsy M. L. Silva, Márcio A. de Souza, William N. Setzer and Valdir F. Veiga-Junior
Plants 2025, 14(10), 1435; https://doi.org/10.3390/plants14101435 - 10 May 2025
Cited by 6 | Viewed by 6121
Abstract
This current review study covers the applications of vetiver essential oil (VEO) in phytoremediation, emphasizing its remedial capabilities in the cleaning of environmental pollutants like pesticides, fertilizers, fungicides, herbicides, heavy metals, dyes, and other industrial wastes such as chemical, mining, pharmaceutical, and other [...] Read more.
This current review study covers the applications of vetiver essential oil (VEO) in phytoremediation, emphasizing its remedial capabilities in the cleaning of environmental pollutants like pesticides, fertilizers, fungicides, herbicides, heavy metals, dyes, and other industrial wastes such as chemical, mining, pharmaceutical, and other radioactive wastes. The review also emphasizes the pharmacological potential of vetiver essential oil for different applications, such as antioxidant, anti-inflammatory, antifungal, antibacterial, antitubercular, antihyperglycemic, antidepressant, hepatoprotective, and nephroprotective uses. The commercial potential of vetiver essential oil in diverse sectors, including global perspectives, is also illustrated along with demand scenarios in different sectors like food, beverage, fragrance, cosmetic and aromatherapy, hygiene, and pharmaceutical sectors. The main constituents of vetiver oil, their relative proportion, and the key findings of pharmacological studies performed using VEOs or their constituents are also summarized in this review article, with special emphasis on activity against phytopathogens. Full article
Show Figures

Figure 1

29 pages, 1445 KB  
Review
Algal-Based Carbonaceous Materials for Environmental Remediation: Advances in Wastewater Treatment, Carbon Sequestration, and Biofuel Applications
by Lázaro Adrián González Fernández, Nahum Andrés Medellín Castillo, Manuel Sánchez Polo, Amado Enrique Navarro Frómeta and Javier Ernesto Vilasó Cadre
Processes 2025, 13(2), 556; https://doi.org/10.3390/pr13020556 - 16 Feb 2025
Cited by 14 | Viewed by 3281
Abstract
Water pollution from industrial, municipal, and agricultural sources is a pressing global concern, necessitating the development of sustainable and efficient treatment solutions. Algal biomass has emerged as a promising feedstock for the production of carbonaceous adsorbents due to its rapid growth, high photosynthetic [...] Read more.
Water pollution from industrial, municipal, and agricultural sources is a pressing global concern, necessitating the development of sustainable and efficient treatment solutions. Algal biomass has emerged as a promising feedstock for the production of carbonaceous adsorbents due to its rapid growth, high photosynthetic efficiency, and ability to thrive in wastewater. This review examines the conversion of algal biomass into biochar and hydrochar through pyrolysis and hydrothermal processes, respectively, and evaluates their potential applications in wastewater treatment, carbon sequestration, and biofuel production. Pyrolyzed algal biochars typically exhibit a moderate to high carbon content and a porous structure but require activation treatments (e.g., KOH or ZnCl2) to enhance their surface area and adsorption capabilities. Hydrothermal carbonization, conducted at lower temperatures (180–260 °C), produces hydrochars rich in oxygenated functional groups with enhanced cation exchange capacities, making them effective for pollutant removal. Algal-derived biochars and hydrochars have been successfully applied for the adsorption of heavy metals, dyes, and pharmaceutical contaminants, with adsorption capacities significantly increasing through post-treatment modifications. Beyond wastewater treatment, algal biochars serve as effective carbon sequestration materials due to their stable structure and high carbon retention. Their application as soil amendments enhances long-term carbon storage and improves soil fertility. Additionally, algal biomass plays a key role in biofuel production, particularly for biodiesel synthesis, where microalgae’s high lipid content facilitates bio-oil generation. Hydrochars, with energy values in the range of 20–26 MJ/kg, are viable solid fuels for combustion and co-firing, supporting renewable energy generation. Furthermore, the integration of these materials into bioenergy systems allows for waste valorization, pollution control, and energy recovery, contributing to a sustainable circular economy. This review provides a comprehensive analysis of algal-derived biochars and hydrochars, emphasizing their physicochemical properties, adsorption performance, and post-treatment modifications. It explores their feasibility for large-scale wastewater remediation, carbon capture, and bioenergy applications, addressing current challenges and future research directions. By advancing the understanding of algal biomass as a multifunctional resource, this study highlights its potential for environmental sustainability and energy innovation. Full article
Show Figures

Figure 1

23 pages, 2426 KB  
Review
Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review
by Rongrong Xie, Blessing Danso, Jianzhong Sun, Majid Al-Zahrani, Mudasir A. Dar, Rania Al-Tohamy and Sameh S. Ali
Insects 2024, 15(11), 908; https://doi.org/10.3390/insects15110908 - 20 Nov 2024
Cited by 4 | Viewed by 2288
Abstract
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production [...] Read more.
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing. Full article
(This article belongs to the Special Issue Ecologically Important Symbioses in Insects)
Show Figures

Figure 1

20 pages, 2087 KB  
Review
Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations
by Bandana Padhan, Wanki Ryoo, Madhumita Patel, Jatis Kumar Dash and Rajkumar Patel
Polymers 2024, 16(20), 2938; https://doi.org/10.3390/polym16202938 - 20 Oct 2024
Cited by 7 | Viewed by 3173
Abstract
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite [...] Read more.
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite membrane for the elimination of antibiotics and dye contaminants from water and food, without the use of toxic additives. The potential of cellulose-based membranes in reducing the impact on water quality and promoting environmental sustainability is emphasized. Additionally, the benefits of using biobased cellulose membranes in membrane biological reactors for the removal of antibiotics from pharmaceutical waste and milk are explored, presenting an innovative approach to achieving a circular economy. This review provides recent and comprehensive insights into membrane bioreactor technology, making it a valuable resource for researchers seeking efficient methods to break down antibiotics in industrial wastewater, particularly in the pharmaceutical and dairy industries. Full article
(This article belongs to the Special Issue Biobased Polymer Membranes for Energy and Environmental Applications)
Show Figures

Figure 1

27 pages, 10110 KB  
Article
Sustainable Napier Grass (Pennisetum purpureum) Biochar for the Sorptive Removal of Acid Orange 7 (AO7) from Water
by Anand Kumar Yadav, Abhishek Kumar Chaubey, Shivang Kapoor, Tej Pratap, Brahmacharimayum Preetiva, Vineet Vimal and Dinesh Mohan
Processes 2024, 12(6), 1115; https://doi.org/10.3390/pr12061115 - 28 May 2024
Cited by 9 | Viewed by 4537
Abstract
The unregulated discharge of synthetic dyes from various anthropogenic and industrial activities has resulted in the contamination of different environmental compartments. These dyes can contaminate water bodies, soil, and even the air, resulting in many environmental and health issues. True colors may persist [...] Read more.
The unregulated discharge of synthetic dyes from various anthropogenic and industrial activities has resulted in the contamination of different environmental compartments. These dyes can contaminate water bodies, soil, and even the air, resulting in many environmental and health issues. True colors may persist for long periods, thereby affecting the aesthetics and ecology of dye-contaminated areas. Furthermore, they pose potential risks to aquatic life and human health through the ingestion or absorption of dye-contaminated water or food. Acid orange 7 (AO7) is a synthetic azo dye used in the textile, tanning, food, pharmaceutical, paint, electronics, cosmetics, and paper and pulp industries. AO7 can have various human health implications, such as dermatitis, nausea, severe headache, respiratory tract irritation, and bone marrow depletion, due to its high toxicity, mutagenicity, and carcinogenicity. Efforts to regulate and mitigate dye pollution (AO7) are crucial for environmental sustainability and public health. Therefore, this study aimed to remove AO7 from water using sustainable biochar. This objective was accomplished by pyrolyzing dried Napier grass at 700 °C to develop affordable and sustainable Napier grass biochar (NGBC700). The developed biochar was characterized for its surface morphology, surface functional groups, surface area, and elemental composition. The yield, moisture content, and ash content of the NGBC700 were approximately 31%, 6%, and 21%, respectively. The NGBC700’s BET (Brunauer–Emmett–Teller) surface area was 108 m2 g−1. Batch sorption studies were carried out at different pH levels (2–10), biochar dosages (1, 2, 3, and 4 g L−1), and AO7 concentrations (10, 20, and 30 mg L−1). The kinetic data were better fitted to the pseudo-second-order (PSO) equation (R2 = 0.964–0.997) than the pseudo-first-order (PFO) equation (R2 = 0.789–0.988). The Freundlich isotherm equation (R2 = 0.965–0.994) fitted the sorption equilibrium data better than the Langmuir equation (R2 = 0.788–0.987), suggesting AO7 sorption on heterogenous NGBC700. The maximum monolayer AO7 adsorption capacities of the NGBC700 were 14.3, 12.7, and 8.4 mg g−1 at 10, 25, and 40 °C, respectively. The column AO7 sorption capacity was 4.4 mg g−1. Fixed-bed AO7 sorption data were fitted to the Thomas and Yoon–Nelson column models. The NGBC700 efficiently removed AO7 from locally available dye-laden wastewater. NGBC700 was regenerated using different NaOH concentrations. Possible interactions contributing to AO7 sorption on NGBC700 include hydrogen bonding, electrostatic interactions, and π–π electron donor–acceptor attractions. The estimated total preparation cost of NGBC700 was US$ 6.02 kg−1. The developed sustainable NGBC700 is potentially cost-effective and environmentally friendly, and it utilizes waste (Napier grass) to eliminate fatal AO7 dye from aqueous media. Full article
(This article belongs to the Special Issue Application of Biochar in Environmental Research)
Show Figures

Graphical abstract

20 pages, 5130 KB  
Review
Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters
by Athanasia K. Tolkou, Konstantinos N. Maroulas, Dimitrios Theologis, Ioannis A. Katsoyiannis and George Z. Kyzas
C 2024, 10(1), 22; https://doi.org/10.3390/c10010022 - 3 Mar 2024
Cited by 17 | Viewed by 8190
Abstract
Wastewater treatment has attracted much attention in recent years as a potential source of water, and there are some concerns about its safety for human use. Eco-friendly and cost-effective adsorbent materials were successfully synthesized from several peels, such as orange, banana, pomegranate, avocado, [...] Read more.
Wastewater treatment has attracted much attention in recent years as a potential source of water, and there are some concerns about its safety for human use. Eco-friendly and cost-effective adsorbent materials were successfully synthesized from several peels, such as orange, banana, pomegranate, avocado, kiwi, etc., and were used as natural adsorbents or as activated carbons derived from these peels for water and wastewater treatment. In this review, the latest research focusing on the effective modification of these peels for the removal of several pollutants found in wastewaters are summarized and compared, such as pharmaceuticals, dyes, heavy metals, and anions that are released in waste and have a negative impact on human and animal health. In this review, focus is given to activated carbon produced from fruit peels. Moreover, fruit peels as adsorbent materials, without previously being converted to activated carbon, are of limited use in the recent literature. Full article
(This article belongs to the Special Issue Adsorption on Carbon-Based Materials)
Show Figures

Figure 1

16 pages, 4756 KB  
Article
Adsorptive Elimination of a Cationic Dye and a Hg (II)-Containing Antiseptic from Simulated Wastewater Using a Metal Organic Framework
by Nilanjan Roy, Chanchal Das, Mohuya Paul, Jungkyun Im and Goutam Biswas
Molecules 2024, 29(4), 886; https://doi.org/10.3390/molecules29040886 - 17 Feb 2024
Cited by 4 | Viewed by 2309
Abstract
Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports [...] Read more.
Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants. We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27% (for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real wastewater containing natural ions (Na+, K+, F, Cl, SO42−, PO43−, Mg2+, and Ca2+) and other molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin O and merbromin, respectively) because of the presence of other ions and molecules. A plausible mechanism for the removal of these pollutants using MOF-5 was proposed. Full article
(This article belongs to the Special Issue Metal Organic Frameworks: Synthesis and Application II)
Show Figures

Graphical abstract

15 pages, 2093 KB  
Article
The Influence of the Production Stages of Cardboard Pharmaceutical Packaging on the Circular Economy
by Mia Klemenčić, Ivana Bolanča Mirković and Nenad Bolf
Sustainability 2023, 15(24), 16882; https://doi.org/10.3390/su152416882 - 15 Dec 2023
Cited by 4 | Viewed by 3116
Abstract
Packaging appearance is important in a competitive market. Designers strive to create products that attract customers and often use laminated packaging, due to the attractive appearance and quality characteristics of the material. The circular economy in the recycling of cardboard packaging helps to [...] Read more.
Packaging appearance is important in a competitive market. Designers strive to create products that attract customers and often use laminated packaging, due to the attractive appearance and quality characteristics of the material. The circular economy in the recycling of cardboard packaging helps to reduce waste, saves natural resources and increases the quality of the environment. All of the above contributes to sustainable production, but the quality and properties of the obtained recycled paper materials should not be ignored. Recycling of laminated cardboard packaging often has a negative impact on the quality of recycled paper, due to the formation of sticky particles that can affect the optical properties of recycled paper and the efficiency of the recycling process. This article provides insight into the influence of each stage of production of packaging intended for pharmaceutical products on the properties and characteristics of recycled paper. The standard INGEDE 11 deinking method was used to remove dyes and other impurities from the pulp. The obtained optical results of the characteristics of recycled laboratory sheets obtained from laminated and non-laminated cardboard samples were compared in order to determine the impact of each stage of box production on the quality of the paper pulp. The acquired knowledge can be applied in the design phase of a more sustainable product, and laminated materials can be used in luxury products or to increase the functionality of the packaging. Designing for recycling will contribute to an increase in the quality of the obtained paper mass, which is directly related to an increase in the productivity of recycling and the sustainability of the packaging production process. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

Back to TopTop