Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = dye contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3020 KiB  
Review
Fabrication of Cellulose-Based Hydrogels Through Ionizing Radiation for Environmental and Agricultural Applications
by Muhammad Asim Raza
Gels 2025, 11(8), 604; https://doi.org/10.3390/gels11080604 - 2 Aug 2025
Viewed by 146
Abstract
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a [...] Read more.
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a viable source for hydrogel preparation. Ionizing radiation, using electron-beam (EB) or gamma (γ) irradiation, provides a promising approach for synthesizing hydrogels. This study reviews recent advancements in cellulose-based hydrogels, focusing on cellulose and its derivatives, brief information regarding ionizing radiation, comparison between EB and γ-irradiation, synthesis and modification through ionizing radiation technology, and their environmental and agricultural applications. For environmental remediation, these hydrogels have demonstrated significant potential in water purification, particularly in the removal of heavy metals, dyes, and organic contaminants. In agricultural applications, cellulose-based hydrogels function as soil conditioners by enhancing water retention and serving as carriers for agrochemicals. Full article
Show Figures

Graphical abstract

36 pages, 9312 KiB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 246
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 209
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

40 pages, 4663 KiB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 280
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

15 pages, 2927 KiB  
Article
Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
by Xiaoyu Du, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma and Boyu Du
Nanomaterials 2025, 15(15), 1157; https://doi.org/10.3390/nano15151157 - 26 Jul 2025
Viewed by 288
Abstract
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red [...] Read more.
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red dye removal capabilities remains a substantial challenge. In this study, a stable linear polymer network structure was constructed on the surface of melamine sponges via an in situ polymerization strategy based on the Schiff base reaction mechanism. Characterization analyses reveal that the modified sponge not only retained the original porous skeleton structure but also significantly enhanced the density of surface active sites. Experimental data demonstrate that the modified sponge exhibited excellent adsorption performance for Congo red dye, with the adsorption process conforming to the pseudo-second-order kinetic model and achieving a practical maximum adsorption capacity of 380.4 mg/g. Notably, the material also displayed favorable cyclic stability. This study provides an efficient adsorbent for Congo red dye-contaminated wastewater treatment through the development of a novel surface-functionalized sponge material while also offering new solutions for advancing the practical applications of melamine-based porous materials and environmental remediation technologies. Full article
Show Figures

Figure 1

13 pages, 1428 KiB  
Article
Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
by Mei Xiong, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li and Ping Xiang
Toxics 2025, 13(8), 622; https://doi.org/10.3390/toxics13080622 - 25 Jul 2025
Viewed by 348
Abstract
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk [...] Read more.
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk assessment models to evaluate dermal exposure risks. Results reveal that 80% of samples exceeded OEKO-TEX Class I limits for As (mean 1.01 mg/kg), Cd (max 0.25 mg/kg), and Cr (max 4.32 mg/kg), with infant clothing showing unacceptable hazard indices (HI = 1.13) due to Cd (HQ = 1.12). Artificial sweat extraction demonstrated high bioaccessibility for Cr (37.8%) and Ni (28.5%), while keratinocyte exposure triggered oxidative stress (131% ROS increase) and dose-dependent cytotoxicity (22–59% viability reduction). Dark-colored synthetic fabrics exhibited elevated metal loads, linking industrial dye practices to health hazards. These findings underscore systemic gaps in textile safety regulations, particularly for low- and middle-income countries reliant on cost-effective apparel. We propose three policy levers: (1) tightening infant textile standards for Cd/Cr, (2) incentivizing non-toxic dye technologies, and (3) harmonizing global labeling requirements. By bridging toxicological evidence with circular economy principles, this work advances strategies to mitigate heavy metal exposure while supporting Sustainable Development Goals (SDGs) 3 (health), 12 (responsible consumption), and 12.4 (chemical safety). Full article
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 338
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

16 pages, 2948 KiB  
Article
Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities
by Catherine Doyle, Diego Combita, Matthew J. Dunlop and Marya Ahmed
Polymers 2025, 17(15), 2007; https://doi.org/10.3390/polym17152007 - 22 Jul 2025
Viewed by 345
Abstract
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, [...] Read more.
Microbial contamination is a global concern with impacts on a variety of industries ranging from marine to biomedical applications. Recent research on hydrophilic polymer-based coatings is focused on combining antifouling polymers with nanomaterials to enhance mechanical, optical, and stimuli-responsive properties, yielding colour changing, self-healing, and super hydrophilic materials. This study combines the hydrophilic and antifouling properties of vitamin B5 analogous methacrylamide (B5AMA)-based polymers with stimuli-responsive anthocyanin-dye-loaded cellulose nanocrystals (CNCs) to develop antifouling materials with colour changing capabilities upon bacterial contamination. Poly(B5AMA)-grafted CNCs were prepared through surface-initiated photoiniferter reversible addition fragmentation chain transfer (SP-RAFT) polymerization and characterized through proton nuclear magnetic resonance (1H-NMR), transmission electron microscopy (SEM/TEM), and X-ray photon spectroscopy (XPS) to confirm the formation of surface-grafted polymer chains. The bare CNCs and poly(B5AMA)-grafted CNCs were loaded with anthocyanin dye and evaluated for pH-dependent colour changing capabilities. Interestingly, anthocyanin-loaded CNCs demonstrated vibrant colour changes in both solution and dried film form upon bacterial contamination; however, limited colour changing capabilities of the composites, specifically in dried film form, were attributed to the enhanced dispersibility and antifouling capabilities of the polymer-coated CNCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 320
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 428
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

25 pages, 5867 KiB  
Article
Color-Sensitive Sensor Array Combined with Machine Learning for Non-Destructive Detection of AFB1 in Corn Silage
by Daqian Wan, Haiqing Tian, Lina Guo, Kai Zhao, Yang Yu, Xinglu Zheng, Haijun Li and Jianying Sun
Agriculture 2025, 15(14), 1507; https://doi.org/10.3390/agriculture15141507 - 13 Jul 2025
Viewed by 279
Abstract
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance [...] Read more.
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance spectra collected using a portable spectrometer. Spectral data were optimized through seven preprocessing methods, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first-order derivative (1st D), second-order derivative (2nd D), wavelet denoising, and their combinations. Key variables were selected using five feature selection algorithms: Competitive Adaptive Reweighted Sampling (CARS), Principal Component Analysis (PCA), Random Forest (RF), Uninformative Variable Elimination (UVE), and eXtreme Gradient Boosting (XGBoost). Five machine learning models were constructed: Light Gradient Boosting Machine (LightGBM), XGBoost, Support Vector Regression (SVR), RF, and K-Nearest Neighbor (KNN). The results demonstrated significant AFB1-responsive characteristics in three dyes: (2,3,7,8,12,13,17,18-octaethylporphynato)chloromanganese(III) (Mn(OEP)Cl), Bromocresol Green, and Cresol Red. The combined 1st D-PCA-KNN model showed optimal prediction performance, with determination coefficient (Rp2 = 0.87), root mean square error (RMSEP = 0.057), and relative prediction deviation (RPD = 2.773). This method provides an efficient solution for silage AFB1 monitoring. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 284
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

21 pages, 3506 KiB  
Article
Biofunctional Magnetic Carbon Nanohybrid for Fast Removal of Methyl Blue from Synthetic Laboratory Effluent
by Juan A. Ramos-Guivar, Melissa-Alisson Mejía-Barraza, Renzo Rueda-Vellasmin and Edson C. Passamani
Materials 2025, 18(13), 3168; https://doi.org/10.3390/ma18133168 - 3 Jul 2025
Viewed by 458
Abstract
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with [...] Read more.
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with maghemite (γ-Fe2O3) nanoparticles biosynthesized using Eucalyptus globulus extract (denoted MWNT-NPE) is reported. The material was thoroughly characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Vibrating Sample Magnetometer (VSM), and Fourier-Transform Infrared (FTIR) techniques, revealing high crystallinity, mesoporosity, and superparamagnetic behavior. The MWNT-NPE exhibited exceptional MB adsorption performance under optimized conditions (pH 6, 0.8 g L−1 dose, 40 min equilibrium), achieving a maximum adsorption capacity of 92.9 mg g−1. Kinetic analysis indicated chemisorption and physisorption regimes depending on MB concentration, with the pseudo-second-order and Freundlich isotherm models providing the best fits of experimental data. FTIR spectroscopy demonstrated that the removal mechanism involves π–π stacking, hydrogen bonding, and electrostatic interactions between MB molecules and the composite’s surface functional groups. Notably, the magnetic nanohybrid retained over 98% removal efficiency across five regeneration cycles and successfully removed MB from synthetic effluents with efficiencies exceeding 91%. These findings highlight the synergistic adsorption and magnetic recovery capabilities of the bio-functionalized hybrid system, presenting a sustainable, reusable, and scalable solution for industrial dye remediation. Full article
Show Figures

Figure 1

12 pages, 1652 KiB  
Article
Catalytic Degradation of Methylene Blue Using Cellulose Acetate Composite Membrane Fabricated with Nickel Nanoparticles
by Saud Bawazeer
Catalysts 2025, 15(7), 642; https://doi.org/10.3390/catal15070642 - 30 Jun 2025
Viewed by 356
Abstract
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni [...] Read more.
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni was synthesized and characterized using FTIR and SEM, confirming its successful incorporation into the cellulose acetate matrix and uniform distribution across the membrane. UV-Vis spectrophotometry was employed to monitor the catalytic degradation of MB, revealing a significant decrease in absorbance at 665 nm over 28 min, indicating 68% degradation efficiency. Kinetic analysis showed that the degradation followed pseudo-first-order kinetics, with an apparent rate constant of 0.0348 min−1 and an R2 value of 0.9851, confirming excellent catalytic performance. The effects of temperature and pH on MB degradation were investigated, with the highest efficiency observed at 35 °C and a pH of 7. A room temperature (25 °C) and acidic conditions (pH 5) reduced the degradation rate to 52%. In comparison, a higher temperature (45 °C) and an alkaline pH (pH 9) resulted in a slight decline to 55%, likely due to changes in catalyst efficiency and MB solubility. These findings highlight the potential of Ni NP-stabilized membranes for wastewater treatment applications, providing a scalable and efficient approach to dye removal. Full article
Show Figures

Figure 1

22 pages, 23349 KiB  
Article
Ag/AgCl-Decorated Layered Lanthanum/Niobium Oxide Microparticles as Efficient Photocatalysts for Azo Dye Remediation and Cancer Cell Inactivation
by Elmuez Dawi and Mohsen Padervand
Catalysts 2025, 15(7), 638; https://doi.org/10.3390/catal15070638 - 30 Jun 2025
Viewed by 401
Abstract
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), [...] Read more.
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) techniques were used to illustrate the physicochemical properties of the materials. The photoactivity was evaluated for the degradation of Acid Blue 92 (AB92) azo dye, a typical organic contaminant from the textile industry, and U251 cancer cell inactivation. According to the results, Nb2O5–Ag/AgCl was able to remove >99% of AB92 solution in 35 min with the rate constant of 0.12 min−1, 2.4 times higher than that of La2O3–Ag/AgCl. A pH of 3 and a catalyst dosage of 0.02 g were determined as the optimized factors to reach the highest degradation efficiency under solar energy at noon, which was opted to have the highest sunlight intensity over the reactor. Also, 0.02 mg/mL of Nb2O5–Ag/AgCl was determined to be of great potential to reduce cancer cell viability by more than 50%, revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and mitochondrial membrane potential (MMP) examinations. The mechanism of degradation was also discussed, considering the key role of Ag0 nanoparticles in inducing a plasmonic effect and improving the charge separation. This work provides helpful insights to opt for an efficient rare metal oxide with good biocompatibility as support for the plasmonic photocatalysts with the goal of environmental purification under sunlight. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

Back to TopTop