Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = ducted fan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3534 KiB  
Article
Lift–Thrust Integrated Ducted-Grid Fusion Configuration Design for a Ducted Fan Tail-Sitter UAV
by Lei Liu and Baigang Mi
Appl. Sci. 2025, 15(14), 7687; https://doi.org/10.3390/app15147687 - 9 Jul 2025
Viewed by 246
Abstract
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced [...] Read more.
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced to expand through the grid channels, forming a significant force component difference with the non-grid side, thereby generating significant lift effects for the propeller of the ducted fan during level flight. Taking a ducted fan system as an example, a design method for embedding grids into the ducted wall is established. By using the sliding mesh technique to simulate propeller rotation, the effects of annular distribution angle, grid channel width, circumferential and flow direction grid quantity on its aerodynamic performance are evaluated. The results indicate that the ducted fan embedded in the grid can generate a lift about 22.16% of total thrust without significantly affecting thrust and power characteristics. The increase in circumferential distribution angle increases within a reasonable range and benefits the lift of the propeller. However, the larger the grid width, the more it affects the lip and tail of the duct. Ultimately, the overall effect actually deteriorates the performance. The number of circumferential grids has a relatively small impact. As the number of flow grids increases, the aerodynamic characteristics of the entire fusion configuration significantly improves, due to its favorable induction of airflow at the lip and tail of the duct, as well as blocking the dissipation of blade-tip vortices. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

21 pages, 4275 KiB  
Article
Novel Hybrid Aquatic–Aerial Vehicle to Survey in High Sea States: Initial Flow Dynamics on Dive and Breach
by Matthew J. Ericksen, Keith F. Joiner, Nicholas J. Lawson, Andrew Truslove, Georgia Warren, Jisheng Zhao and Ahmed Swidan
J. Mar. Sci. Eng. 2025, 13(7), 1283; https://doi.org/10.3390/jmse13071283 - 30 Jun 2025
Viewed by 358
Abstract
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive [...] Read more.
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive force to re-achieve flight. The novel design research examines the viability of a recoverable sonar-search child aircraft for maritime patrol, one which can overcome the prohibitive sea state limitations of all current HAAV designs in the research literature. This paper reports on the analysis from computational fluid dynamic (CFD) simulations of such an HAAV diving into static seawater at low speeds due to the reverse thrust of two retractable electric-ducted fans (EDFs) and its subsequent breach back into flight initially using a fast buoyancy engine developed for deep-sea research vessels. The HAAV model entered the water column at speeds around 10 ms−1 and exited at 5 ms−1 under various buoyancy cases, normal to the surface. Results revealed that impact force magnitudes varied with entry speed and were more acute according to vehicle mass, while a sufficient portion of the fuselage was able to clear typical wave heights during its breach for its EDF propulsors and wings to protract unhindered. Examining the medium transition dynamics of such a novel HAAV has provided insight into the structural, propulsive, buoyancy, and control requirements for future conceptual design iterations. Research is now focused on validating these unperturbed CFD dive and breach cases with pool experiments before then parametrically and numerically examining the effects of realistic ocean sea states. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 5263 KiB  
Article
Design and Analysis of an Adaptable Wheeled-Legged Robot for Vertical Locomotion
by Ernesto Christian Orozco-Magdaleno, Eduardo Castillo-Castañeda, Omar Rodríguez-Abreo and Giuseppe Carbone
Robotics 2025, 14(6), 79; https://doi.org/10.3390/robotics14060079 - 10 Jun 2025
Viewed by 725
Abstract
Most of the developed and studied service robots for vertical locomotion, as visual inspection, are made up by a rigid body with legs, wheels, or both. Thus, the robot can only displace over regular and/or flat surfaces since it is not able to [...] Read more.
Most of the developed and studied service robots for vertical locomotion, as visual inspection, are made up by a rigid body with legs, wheels, or both. Thus, the robot can only displace over regular and/or flat surfaces since it is not able to adapt to the irregularities and projections of the wall. Therefore, this paper presents the design and analysis of an adaptable robot for vertical locomotion service tasks, which has a body made up of four wheeled legs that can easily adapt to the different irregularities and projections of building facades. The robot uses an Electric Ducted Fan (EDF) as the vortex adhesion system. Each leg has a rubber cover, which allows a higher mechanical adaptability of the robot over different irregularities of the wall. Theoretical backgrounds and open issues are addressed by considering some challenging problems such as mechanical adaptability modeling as well as kinematic and static analysis. Laser sensors are mounted over the robot to measure the adaptability of the robot, between the legs and body, at each time of the experimental tests for vertical locomotion. Full article
(This article belongs to the Special Issue Legged Robots into the Real World, 2nd Edition)
Show Figures

Figure 1

17 pages, 3814 KiB  
Article
Static Aero-Propulsion Experiment of an Electric Ducted Fan
by Hoang-Quan Chu, Quang-Ngoc Dinh, Thai-Son Vu, Van-Yen Pham, Van-Trung Bui, Nhat-Minh Hoang, Trung-Kien Nguyen, Dong Nguyen, Gia-Diem Pham and Cong-Truong Dinh
Aerospace 2025, 12(6), 509; https://doi.org/10.3390/aerospace12060509 - 4 Jun 2025
Viewed by 1071
Abstract
Electric ducted fans are gaining prominence in aviation due to their compact size, low noise, and zero emissions compared to conventional gas turbines. This study presents an experimental test system for a 390 mm electric Ducted Propulsion Fan developed by the Aerospace Propulsion [...] Read more.
Electric ducted fans are gaining prominence in aviation due to their compact size, low noise, and zero emissions compared to conventional gas turbines. This study presents an experimental test system for a 390 mm electric Ducted Propulsion Fan developed by the Aerospace Propulsion Systems group at Hanoi University of Science and Technology. The carbon fiber composite thruster, driven by a centrally located BLDC motor, was mounted on a test stand equipped with force and rotational speed (rpm) sensors. Power was supplied through two battery configurations, eight-pack and nine-pack, with voltage and current monitored and controlled via an ESC module. Experiments conducted from 2000 to 7000 rpm explored the relationship between electrical inputs and aero-propulsive outputs. The results revealed that input power, current, and sound pressure level (SPL) amplified meaningfully with rpm, while the voltage slightly declined. The maximum rpm reached 6500 rpm for the eight-pack and 7000 rpm for the nine-pack configurations. When greater than 6000 rpm, the SPL reaches close to 120 dB. The eight-pack configuration provided higher thrust per volt, whereas the nine-pack offered better thrust per ampere and improved starting power. Although dimensionless indices, including power coefficient (CP), thrust coefficient (CT), and figure of merit (FM), reduced with rpm, the FM remained between 0.7 and 0.75 at medium speeds, demonstrating effective energy conversion. Full article
Show Figures

Figure 1

22 pages, 11671 KiB  
Article
CFD-Based Flow Field Characteristics of Air-Assisted Sprayer in Citrus Orchards
by Xiangfei Huang, Yunwu Li, Lang Chen and Kechao Wang
Agriculture 2025, 15(10), 1103; https://doi.org/10.3390/agriculture15101103 - 20 May 2025
Cited by 1 | Viewed by 537
Abstract
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted [...] Read more.
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted sprayer and analyzed its airflow characteristics and droplet deposition effects based on CFD simulation technology. The reliability of the simulation results was verified through air speed boundary tests, revealing that the maximum effective boundaries of the integrated air duct and the independent air duct in different directions were 18.4 cm and 17.2 cm, respectively, providing a reference for the spatial arrangement of the air duct. The study indicates that properly matching the fan speed, spray pressure, and spray distance could optimize droplet deposition, enhance spray uniformity, and improve pesticide utilization. However, excessively high fan speeds (>6000 r/min) or spray pressures (>0.8 MPa) may reduce droplet transport efficiency. This research provides theoretical support for the design and parameter optimization of sprayers in hilly citrus orchards. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

18 pages, 4939 KiB  
Article
Design and Evaluation of an Innovative Thermoelectric-Based Dehumidifier for Greenhouses
by Xiaobei Han, Tianxiang Liu, Yuliang Cai, Dequn Wang, Xiaoming Wei, Yunrui Hai, Rongchao Shi and Wenzhong Guo
Agronomy 2025, 15(5), 1194; https://doi.org/10.3390/agronomy15051194 - 15 May 2025
Viewed by 602
Abstract
Crops in greenhouses located in cold climates are frequently affected by high relative humidity (RH). This study presents the design, testing, and analysis of a dehumidifier based on thermoelectric cooling. Thermoelectric dehumidifiers (TEDs) are capable of dehumidifying greenhouses in cold regions while recovering [...] Read more.
Crops in greenhouses located in cold climates are frequently affected by high relative humidity (RH). This study presents the design, testing, and analysis of a dehumidifier based on thermoelectric cooling. Thermoelectric dehumidifiers (TEDs) are capable of dehumidifying greenhouses in cold regions while recovering heat for indoor air heating. The design of a TED is based on the specific characteristics of thermoelectric coolers (TECs). A TED consists of a cabinet, four heat exchangers, a duct fan, a water pump, and auxiliary components. The TED performance was evaluated in a Chinese solar greenhouse (CSG) with a volume of approximately 160 m3. The input voltage of the TECs, fan airflow rate, and cold-side fin area affected the TED performance, with their influence varying in magnitude. The radar chart results show that the optimal operating parameters are as follows: a fan airflow rate of 300 m3/h, a TEC input voltage of 15 V, and a cold-side fin area of 0.15 m2. With the TED running for 120 min under the optimal parameters, the RH in the CSG decreased by 25.5%, while the air temperature increased by 3.4 °C. The installation of the TED at the bottom of the CSG improved the growing environment of the crops, particularly in the vertical range between 0.2 m and 1.5 m height inside the greenhouse. These findings provide a valuable reference for applying thermoelectric cooling technology in the greenhouse field. Full article
Show Figures

Figure 1

25 pages, 3850 KiB  
Article
Fundamentals of Innovative Aircraft Heat Exchanger Integration for Hydrogen–Electric Propulsion
by Bernhard Gerl, Matthias Ronovsky-Bodisch, Niccoló Ferrari and Martin Berens
Aerospace 2025, 12(4), 320; https://doi.org/10.3390/aerospace12040320 - 9 Apr 2025
Cited by 2 | Viewed by 2318
Abstract
The potential of utilizing the rejected heat of a fuel cell system to improve the aircraft propulsive efficiency is discussed for various flight conditions. The thermodynamic background of the process and the connection of power consumption in the fan of the ducted propulsor [...] Read more.
The potential of utilizing the rejected heat of a fuel cell system to improve the aircraft propulsive efficiency is discussed for various flight conditions. The thermodynamic background of the process and the connection of power consumption in the fan of the ducted propulsor and fuel cell heat are given, and a link between these two components is presented. A concept that goes beyond the known ram heat exchanger is discussed, which outlines the potential benefits of integrating a fan upstream of the heat exchanger. The influence of the fan pressure ratio, flight speed, and altitude, as well as the temperature level of the available fuel cell heat on the propulsive efficiency, is presented. A correlation between the fan pressure ratio, flight speed, and exchangeable fuel cell heat is established, providing a simplified computational approach for evaluating feasible operating conditions within this process. This paper identifies the challenges of heat exchanger integration at International Standard Atmosphere sea level conditions and its benefits for cruise flight conditions. The results show that for a flight Mach number of 0.8 and a fan pressure ratio of 1.5 at a cruising altitude of 11,000 m, the propulsion efficiency increases by approximately 8 percentage points compared to a ducted propulsor without heat utilization. Under sea-level conditions, the concept does not offer any performance advantages over a ducted propulsor. Instead, it exhibits either comparable or reduced propulsive efficiency. Full article
Show Figures

Figure 1

27 pages, 18159 KiB  
Article
Numerical Analysis of the Effect of S-Shaped Duct Key Geometry Parameters on the Inlet Distortion of Distributed Ducted Fans
by Wei Jia, Guanghui Li, Tao Liu, Qingguo Kong and Shuiting Ding
Aerospace 2025, 12(4), 316; https://doi.org/10.3390/aerospace12040316 - 7 Apr 2025
Viewed by 640
Abstract
Distributed propulsion systems are strategically placed along the aircraft wingspan to ingest the fuselage boundary layer, thereby enhancing propulsion efficiency. However, the aerodynamic effects of S-shaped duct geometry on a distributed propulsion system are not fully understood. The impact of the S-shaped duct [...] Read more.
Distributed propulsion systems are strategically placed along the aircraft wingspan to ingest the fuselage boundary layer, thereby enhancing propulsion efficiency. However, the aerodynamic effects of S-shaped duct geometry on a distributed propulsion system are not fully understood. The impact of the S-shaped duct inlet aspect ratio and centerline offset on the inlet distortion of ducted fans was numerically investigated using a method based on the circumferential body force model. The results show that the most severe inlet distortion occurs when a large centerline offset is combined with a small aspect ratio. For an S-shaped duct with a substantial centerline offset, increasing the aspect ratio mitigates the distortion level in the edge fans. Specifically, increasing the aspect ratio from 6 to 10 reduces the total pressure and swirl distortion index in the edge fan by up to 80.1% and 84.2%, respectively. In an S-shaped duct with a small aspect ratio, decreasing the centerline offset from 1.75 times to 0.75 times the ducted fan diameter lowers the total pressure and swirl distortion index in the edge fan by up to 75.2% and 87.5%, respectively. These insights provide valuable information for the integrated design and optimization of the S-shaped duct in distributed propulsion systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 9694 KiB  
Article
Orthogonal Experimental Study on Layout Parameters of Ventilation Equipment in Tunnel Construction Based on TOPSIS Theory
by Guofeng Wang, Fayi Deng, Kaifu Ren, Yongqiao Fang, Bo Wang and Heng Zhang
Buildings 2025, 15(7), 1151; https://doi.org/10.3390/buildings15071151 - 1 Apr 2025
Viewed by 302
Abstract
Based on the Daozhen–Wulong Zimuyan tunnel, the distance from the outlet of the air duct to the tunnel face and the diameter of the air duct are studied through an orthogonal experimental design. Aiming at the influence of the position of the air [...] Read more.
Based on the Daozhen–Wulong Zimuyan tunnel, the distance from the outlet of the air duct to the tunnel face and the diameter of the air duct are studied through an orthogonal experimental design. Aiming at the influence of the position of the air duct of the axial flow fan in the tunnel on the ventilation flow field, the improved TOPSIS theory is adopted for detailed data analysis, and the flow field characteristics are thoroughly checked to identify the optimal working condition configuration. The results show that with the increase in the distance between the air duct and the tunnel face, the local CO concentration will first decrease and then increase, indicating that too large or too small a distance will weaken the effective CO emission ability of the tunnel face, and the distance between the air duct outlet and the tunnel face is the best scheme; by combining the TOPSIS theory, entropy weight method, and analytic hierarchy process, the optimization scheme is obtained. When the distance between the outlet of the air duct and the working face is 15 m, the side wall of the air duct is 4 m away from the air, the diameter of the air duct is 1.8 m, the flow field in the tunnel shows a high degree of stability, the wind speed is significantly increased, and the vortex area that may hinder the air flow is effectively eliminated. The ventilation efficiency is greatly improved and the overall stability of the tunnel is enhanced. Full article
Show Figures

Figure 1

21 pages, 8873 KiB  
Article
Research on the Aerodynamic–Propulsion Coupling Characteristics of a Distributed Propulsion System
by Xiaojun Yang, Tao Liu and Wei Jia
Appl. Sci. 2025, 15(7), 3536; https://doi.org/10.3390/app15073536 - 24 Mar 2025
Viewed by 420
Abstract
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic [...] Read more.
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic performance of the ducted fan. To investigate the influence of the internal and external flow interaction on the aerodynamic–propulsion coupling characteristics of the distributed propulsion system, an over-wing symmetric configuration with five distributed ducted fans was constructed, and numerical simulations were performed using a method based on the body force model. Results show that as the flight Mach number increases, the lift obtained by the wing increases, while the stall angle of attack decreases, and the stall angle of attack at a Mach number of 0.5 is reduced by 15° compared with a Mach number of 0.2. At large angles of attack, the edge fans have the strongest ability to resist airflow separation, while the middle fan has the weakest ability to resist airflow separation, and its fan performance index drops the fastest. When the Mach number is 0.4, the mass flow rate and thrust of the middle fan are reduced by 16% and 28%, respectively, compared with those when the Mach number is 0.2. The higher the flight Mach number, the larger the intake distortion degree of the ducted fans. The middle fan is most affected by total pressure distortion and least affected by swirl distortion, whereas the edge fans are least affected by total pressure distortion and most affected by swirl distortion. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

18 pages, 9580 KiB  
Article
Development and Implementation of an Autonomous Control System for a Micro-Turbogenerator Installed on an Unmanned Aerial Vehicle
by Tiberius-Florian Frigioescu, Daniel-Eugeniu Crunțeanu, Maria Căldărar, Mădălin Dombrovschi, Gabriel-Petre Badea and Alexandra Nistor
Electronics 2025, 14(6), 1212; https://doi.org/10.3390/electronics14061212 - 19 Mar 2025
Cited by 1 | Viewed by 463
Abstract
The field of unmanned aerial vehicles (UAVs) has experienced substantial growth, with applications expanding across diverse domains. Missions increasingly demand higher autonomy, reducing human intervention and relying more on advanced onboard systems. However, integrating hybrid power sources, especially micro-turboprop engines, into UAVs poses [...] Read more.
The field of unmanned aerial vehicles (UAVs) has experienced substantial growth, with applications expanding across diverse domains. Missions increasingly demand higher autonomy, reducing human intervention and relying more on advanced onboard systems. However, integrating hybrid power sources, especially micro-turboprop engines, into UAVs poses significant challenges due to their complexity, hindering the development of effective power management control systems. This research aims to design a control algorithm for dynamic power allocation based on UAV operational needs. A fuzzy logic-based control algorithm was implemented on the Single-Board Computer (SBC) of a micro-turbogenerator test bench, which was previously developed in an earlier study. After implementing and testing the algorithm, voltage stabilization was achieved at improved levels by tightening the membership function constraints of the fuzzy logic controller. Automating the throttle control of the Electric Ducted Fan (EDF), the test platform’s primary power consumer, enabled the electric generator’s maximum capacity to be reached. This result indicates the necessity of replacing the current electric motor with one that is capable of higher power outputs to support the system’s enhanced performance. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

19 pages, 18271 KiB  
Article
Active Flow Control Technology Based on Simple Droop Devices and a Co-Flow Jet for Lift Enhancement
by Jin Jiao, Cheng Chen, Bo Wang, Pei Ying, Qiong Wei and Shengyang Nie
Aerospace 2025, 12(3), 198; https://doi.org/10.3390/aerospace12030198 - 28 Feb 2025
Viewed by 896
Abstract
The missions of modern aircraft require multiple abilities, such as highly efficient taking-off and landing, fast arrival, and long-endurance hovering. It is difficult to achieve all technical objectives using traditional aircraft design technology. The active flow control technology using the concept of a [...] Read more.
The missions of modern aircraft require multiple abilities, such as highly efficient taking-off and landing, fast arrival, and long-endurance hovering. It is difficult to achieve all technical objectives using traditional aircraft design technology. The active flow control technology using the concept of a co-flow jet (CFJ) is a flow control method without a mass source that does not require air from the engine. It has strong flow control ability in low-speed flow, can greatly improve the stall angle of the aircraft, and can obtain large lift enhancement. At transonic conditions, it can lead to a larger lift–drag ratio with a small expense. CFJ technology has great application potential for aircraft due to its flexible control strategy and remarkable control effect. In this paper, the concept of a combination of CFJ and variable camber technology is proposed which realizes the change of airfoil camber to meet different task requirements with the movable droop head. By using the built-in ducted fan, air is blown and sucked in the jet channel so as to realize CFJ flow control. In a state of high-speed flight, complete geometric restoration is achieved by closing the channel and retracting the droop head. In this paper, the design and aerodynamic analysis of a CFJ device with variable camber based on a supercritical airfoil with small camber and a small leading-edge radius are carried out using the computational fluid dynamics (CFD) method. Comparative studies are conducted for different schemes on the taking off and landing performances, and discussions are had on core technical parameters such as power consumption. The results indicate that by utilizing the CFJ technology with more than 10 degrees of droop device, the maximum lift coefficient of a supercritical airfoil with a small camber and leading-edge radius, which is suitable for transonic flight, can be increased to a value larger than 4.0. Full article
Show Figures

Figure 1

17 pages, 2442 KiB  
Article
On the Aerodynamic Performance of a Blended-Wing-Body, Low-Mach Number Unmanned Aerial Vehicle
by Nikolaos Lampropoulos, Alexandros Vouros, Ioannis Templalexis and Theodoros Lekas
Fluids 2025, 10(3), 54; https://doi.org/10.3390/fluids10030054 - 20 Feb 2025
Viewed by 1232
Abstract
A study on aerodynamic design studies of a blended wing–body (BWB) unmanned aerial vehicle (UAV) operating at low Mach numbers is presented. First, a parametric investigation based on analytical equations is carried out to identify the range of the necessary wetted area for [...] Read more.
A study on aerodynamic design studies of a blended wing–body (BWB) unmanned aerial vehicle (UAV) operating at low Mach numbers is presented. First, a parametric investigation based on analytical equations is carried out to identify the range of the necessary wetted area for the UAV to maximize endurance at a Mach number close to 0.1. A base-of-reference configuration is designed, and its aerodynamic performance is evaluated by utilizing a panel method in Xflr5. An optimization algorithm is then incorporated to trim the UAV and produce the ‘clean’ configuration. Computational fluid dynamics (CFD) simulations are performed within the OpenFoam environment to produce first the updated drag polars, and then, to analyze the integration of the nacelle and the pair of electric ducted fans (EDFs) used for the propulsion system. In particular, when examining the integration of the nacelle with a spinning electric ducted fan (EDF) standing as the propulsion system of the vehicle, a rotating, sliding mesh computational approach is adopted. Results indicate that the clean configuration is characterized by strong longitudinal stability so that the UAV has the potential to fly trimmed at very low speeds. Mounting EDFs on the back of the fuselage is conducive to higher loading with minimal drag penalty. An increased lift-to-drag ratio is achieved. Reduced wake mixing due to the EDF’s jet flow is observed. The spanwise flow that is conducive to pitch brake and loss of stability is also weak, as the suction produced by the EDF diverts the flow inboard. Full article
Show Figures

Figure 1

20 pages, 3395 KiB  
Article
Development and Optimization of a Novel Damper Control Strategy Integrating DCV and Duct Static Pressure Setpoint Reset for Energy-Efficient VAV Systems
by Pasidu Dharmasena and Nabil Nassif
Buildings 2025, 15(4), 518; https://doi.org/10.3390/buildings15040518 - 8 Feb 2025
Cited by 1 | Viewed by 1007
Abstract
Climate change and the need to reduce greenhouse gas emissions have made energy efficiency in modern building operations more critical than ever. This study presents an improved damper control strategy for VAV systems, combined with techniques like DCV and duct static pressure adjustments, [...] Read more.
Climate change and the need to reduce greenhouse gas emissions have made energy efficiency in modern building operations more critical than ever. This study presents an improved damper control strategy for VAV systems, combined with techniques like DCV and duct static pressure adjustments, to optimize fan energy consumption. Using energy simulations and mathematical models, the research evaluates traditional HVAC operating methods against the proposed novel control approach across diverse climates. Findings show that the refined control integrations effectively adjust ventilation air volumes during low occupancy and achieve up to 47% savings in fan energy, cost, and CO2 savings annually. While DCV alone had minimal impact on fan energy, it significantly reduced the amount of outdoor air that required conditioning, thereby lowering cooling and heating demands. This research highlights the importance of integrating an advanced control strategy in building mechanical systems to reduce operational costs and environmental impact, contributing to sustainability and carbon reduction goals. Full article
(This article belongs to the Collection Sustainable Buildings in the Built Environment)
Show Figures

Figure 1

40 pages, 3207 KiB  
Article
Assessment of Indoor Thermo-Hygrometric Conditions and Energy Demands Associated to Filters and Dampers Faults via Experimental Tests of a Typical Air-Handling Unit During Summer and Winter in Southern Italy
by Antonio Rosato, Mohammad El Youssef, Rita Mercuri, Armin Hooman, Marco Savino Piscitelli and Alfonso Capozzoli
Energies 2025, 18(3), 618; https://doi.org/10.3390/en18030618 - 29 Jan 2025
Cited by 1 | Viewed by 788
Abstract
Faults of heating, ventilation, and air-conditioning (HVAC) systems can cause significant consequences, such as negatively affecting thermal comfort of occupants, energy demand, indoor air quality, etc. Several methods of fault detection and diagnosis (FDD) in building energy systems have been proposed since the [...] Read more.
Faults of heating, ventilation, and air-conditioning (HVAC) systems can cause significant consequences, such as negatively affecting thermal comfort of occupants, energy demand, indoor air quality, etc. Several methods of fault detection and diagnosis (FDD) in building energy systems have been proposed since the late 1980s in order to reduce the consequences of faults in heating, ventilation, and air-conditioning (HVAC) systems. All the proposed FDD methods require laboratory data, or simulated data, or field data. Furthermore, the majority of the recently proposed FDD methods require labelled faulty and normal data to be developed. Thus, providing reliable ground truth data of HVAC systems with different technical characteristics is of great importance for advances in FDD methods for HVAC units. The primary objective of this study is to examine the operational behaviour of a typical single-duct dual-fan constant air volume air-handling unit (AHU) in both faulty and fault-free conditions. The investigation encompasses a series of experiments conducted under Mediterranean climatic conditions in southern Italy during summer and winter. This study investigates the performance of the AHU by artificially introducing seven distinct typical faults: (1) return air damper kept always closed (stuck at 0%); (2) fresh air damper kept always closed (stuck at 0%); (3) fresh air damper kept always opened (stuck at 100%); (4) exhaust air damper kept always closed (stuck at 0%); (5) supply air filter partially clogged at 50%; (6) fresh air filter partially clogged at 50%; and (7) return air filter partially clogged at 50%. The collected data from the faulty scenarios are compared to the corresponding data obtained from fault-free performance measurements conducted under similar boundary conditions. Indoor thermo-hygrometric conditions, electrical power and energy consumption, operation time of AHU components, and all key operating parameters are measured for all the aforementioned faulty tests and their corresponding normal tests. In particular, the experimental results demonstrated that the exhaust air damper stuck at 0% significantly reduces the percentage of time with indoor air relative humidity kept within the defined deadbands by about 29% (together with a reduction in the percentage of time with indoor air temperature kept within the defined deadbands by 7.2%) and increases electric energy consumption by about 13% during winter. Moreover, the measured data underlined that the effects on electrical energy demand and indoor thermo-hygrometric conditions are minimal (with deviations not exceeding 5.6% during both summer and winter) in the cases of 50% clogging of supply air filter, fresh air filter, and return air filter. The results of this study can be exploited by researchers, facility managers, and building operators to better recognize root causes of faulty evidences in AHUs and also to develop and test new FDD tools. Full article
Show Figures

Figure 1

Back to TopTop