Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = dual-fuel supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3478 KiB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 167
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

23 pages, 2711 KiB  
Systematic Review
Electro-Composting: An Emerging Technology
by Ahmad Shabir Hozad and Christian Abendroth
Fermentation 2025, 11(7), 401; https://doi.org/10.3390/fermentation11070401 - 14 Jul 2025
Viewed by 438
Abstract
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), [...] Read more.
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), and thermoelectric generators (TEGs). Apart from the main systems highlighted above, bioelectrochemically assisted anaerobic composting (AnCBE, III) is discussed as an underexplored system with the potential to improve the efficiency of anaerobic degradation. Each system is described in terms of key materials, composter design, operating conditions, temperature evolution, compost maturity, microbial community, and environmental outcomes. EAAC and EOAC systems accelerate organic matter decomposition by improving oxygen distribution and microbial activity, whereas MFC and TEG systems have dual functioning due to the energy generated alongside waste degradation. These innovative systems not only significantly improve composting efficiency by speeding up organic matter breakdown and increasing oxygen supply but also support sustainable waste management by reducing greenhouse gas emissions and generating bioelectricity or heat. Together, these systems overcome the drawbacks of conventional composting systems and promote future environmental sustainability solutions. Full article
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 322
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

30 pages, 3379 KiB  
Article
Greening of Inland and Coastal Ships in Europe by Means of Retrofitting: State of the Art and Scenarios
by Igor Bačkalov, Friederike Dahlke-Wallat, Elimar Frank, Benjamin Friedhoff, Alex Grasman, Justin Jasa, Niels Kreukniet, Martin Quispel and Florin Thalmann
Sustainability 2025, 17(11), 5154; https://doi.org/10.3390/su17115154 - 4 Jun 2025
Viewed by 745
Abstract
This paper analyzes the potential of retrofitting in “greening” of European inland vessels and coastal ships, which are normally not the focus of major international environmental policies aimed at waterborne transport. Therefore, greening of the examined fleets would result, for the most part, [...] Read more.
This paper analyzes the potential of retrofitting in “greening” of European inland vessels and coastal ships, which are normally not the focus of major international environmental policies aimed at waterborne transport. Therefore, greening of the examined fleets would result, for the most part, in additional emission reductions to the environmental targets put forth by the International Maritime Organization. By scoping past and ongoing pilot projects, the most prominent retrofit trends in the greening of inland and coastal ships are identified. Assuming a scenario in which the observed trends are scaled up to the fleet level, the possible emission abatement is estimated (both on the tank-to-wake and well-to-wake bases), as well as the capital and operational costs associated with the retrofit. Therefore, the paper shows what can be achieved in terms of greening if the current trends are followed. The results show that the term “greening” may take a significantly different meaning contingent on the approaches, perspectives, and targets considered. The total costs of a retrofit of a single vessel may be excessively high; however, the costs may significantly vary depending on the vessel power requirements, operational profile, and technology applied. While some trends are worth following (electrification of ferries and small inland passenger ships), others may be too cost-intensive and not satisfactorily efficient in terms of emissions reduction (retrofit of offshore supply vessels with dual-fuel methanol engines). Nevertheless, the assessment of different retrofit technologies strongly depends on the adopted criteria, including but not limited to the total cost of the retrofit of the entire fleet segment, cost of the retrofit of a single vessel, emission abatement achieved by the retrofit of a fleet segment, average emission abatement per retrofitted vessel, and cost of abatement of one ton of greenhouse gases, etc. Full article
Show Figures

Figure 1

16 pages, 8471 KiB  
Article
Study on Purge Strategy of Hydrogen Supply System with Dual Ejectors for Fuel Cells
by Yueming Liang and Changqing Du
Energies 2025, 18(9), 2168; https://doi.org/10.3390/en18092168 - 23 Apr 2025
Viewed by 588
Abstract
The exhaust purge on the anode side is a critical step in the operation of fuel cell systems, and optimizing the exhaust interval time is essential for enhancing stack efficiency and hydrogen utilization. This paper proposed a method to determine the purge strategy [...] Read more.
The exhaust purge on the anode side is a critical step in the operation of fuel cell systems, and optimizing the exhaust interval time is essential for enhancing stack efficiency and hydrogen utilization. This paper proposed a method to determine the purge strategy of hydrogen supply system based on theoretical and simulation analysis. To investigate the impact of anode purge strategy on the performance of automotive fuel cells, a model of a 100 kW fuel cell stack and a dual-ejector hydrogen supply system was developed in MATLAB/Simulink(R2022b) using principles of fluid dynamics, simulation, and experimental data. This model effectively captures the accumulation and exhaust of hydrogen, nitrogen, and vapor within the anode. Simulations were conducted under seven different exhaust interval times at varying current densities to study the effect of exhaust interval on the performance of the fuel cell. The results indicate that for a 100 kW fuel cell, the exhaust interval time should be controlled within 25 s and should decrease as the current density increases. At low current density, increasing the exhaust interval has a more significant effect on improving hydrogen utilization. At high current density, reducing the exhaust interval helps maintain a stable hydrogen excess ratio and shortens the time required for the output voltage to reach a stable state. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy and Fuel Cell Technologies)
Show Figures

Figure 1

28 pages, 5001 KiB  
Article
System Dynamics Simulation of Policy Synergy Effects: How Tradable Green Certificates and Carbon Emission Trading Shape Electricity Market Sustainability
by Lihong Li, Kun Song, Weimao Xu, Xue Jiang and Chunbing Guo
Appl. Sci. 2025, 15(8), 4086; https://doi.org/10.3390/app15084086 - 8 Apr 2025
Viewed by 686
Abstract
With the rapid growth of global energy demand, the fossil fuel-dominated electric power industry has led to serious environmental problems. Tradable green certificates (TGC) and carbon emission trading (CET) have become key mechanisms for promoting sustainable development of the electricity market by serving [...] Read more.
With the rapid growth of global energy demand, the fossil fuel-dominated electric power industry has led to serious environmental problems. Tradable green certificates (TGC) and carbon emission trading (CET) have become key mechanisms for promoting sustainable development of the electricity market by serving as market-oriented policy tools. To deeply analyze the impact of TGC and CET on the sustainable development of China’s electricity market and provide a scientific basis for policymakers. This study uses system dynamics (SD) methods to construct a policy synergy analysis framework for TGC and CET. It explores the impact mechanism of dual policy incentives on the sustainable development of the electricity market. Firstly, the current application status of TGC and CET in China was reviewed. Based on the literature analysis, identify key factors that affect the sustainable development of the electricity market. Then, by deconstructing the interaction between TGC policy and CET policy, an SD model was established that includes multidimensional feedback such as policy, technology, funding, and market, and the dynamic functional relationships in the SD model were quantified. Finally, Vensim PLE software 7.3.2 was used to simulate the evolution of sustainable development in the electricity market under different policy scenarios. The research results indicate that (1) the adjustment of the TGC quota ratio can change the supply and demand mechanism to form a price leverage effect, effectively stimulate the growth of renewable energy generation capacity, and accelerate the low-carbon transformation of power enterprises; and (2) the CET market changes the cost structure of power generation through carbon price signals. When the carbon emission cap target tightens, CET prices quickly rise, leading to a significant trend of carbon reduction in the electricity market; (3) the application of policy combinations can significantly promote the sustainable development of the electricity market, but the unreasonable setting of policy parameters can trigger market risks. Therefore, policy design should focus on flexibility and implement appropriate policy combinations at different stages of electricity market development to promote green transformation while ensuring smooth market operation. This study innovatively reveals the synergistic effect of TGC and CET in the sustainable development of the electricity market from a systems theory perspective. The research results provide a scientific basis for decision-makers to formulate policy adjustment plans and have essential reference value for achieving the dual goals of energy structure transformation and electricity market stability. Full article
Show Figures

Figure 1

33 pages, 371 KiB  
Article
Preliminary Aircraft Design for Hybrid Electric Propulsion Architectures: A Focus on Critical Loss of Thrust
by Jonas Mangold and Andreas Strohmayer
Aerospace 2025, 12(4), 275; https://doi.org/10.3390/aerospace12040275 - 25 Mar 2025
Viewed by 923
Abstract
Hybrid electric propulsion architectures offer a promising solution for reducing fuel consumption and emissions in aviation. However, the introduction of dual-energy carriers adds complexity to preliminary aircraft design, particularly in terms of power distribution, failure analysis, and compliance with operational regulations. Key challenges [...] Read more.
Hybrid electric propulsion architectures offer a promising solution for reducing fuel consumption and emissions in aviation. However, the introduction of dual-energy carriers adds complexity to preliminary aircraft design, particularly in terms of power distribution, failure analysis, and compliance with operational regulations. Key challenges include defining failure cases, which requires refining conventional constraint analysis for hybrid electric aircraft and integrating failure scenarios into mission analysis to meet certification specifications and regulatory requirements. This study presents a unified methodology that combines an analytical constraint analysis with a higher-fidelity numerical design loop implemented in the SUAVE framework to address these challenges. Key innovations include the introduction of new parameters—such as the supplied shaft power ratio—and the ability to assess failure scenarios through the definition of the critical loss of thrust, thereby extending the analysis beyond conventional one-engine-inoperative cases. The methodology also integrates an energy management strategy that dynamically allocates power between the primary and secondary energy carriers, thereby capturing the interaction between energy (mission analysis) and power (constraint analysis) requirements. The results from both the constraint and mission analyses, including en-route alternate aerodrome scenarios, demonstrate that employing batteries as the secondary energy carrier can reduce the oversizing of primary power sources. However, their effective utilization is highly sensitive and may necessitate adjustments in energy sizing. These findings underscore the importance of incorporating dual-energy carrier considerations early in the design process and highlight the impact of critical loss of thrust conditions on hybrid electric aircraft configurations, ultimately benefiting researchers and engineers. Full article
Show Figures

Figure 1

19 pages, 6177 KiB  
Article
Influence of Engine Oils on Pre-Ignition Tendency in a Hydrogen–Kerosene Dual-Fuel Engine
by Christian Reitmayr, Peter Hofmann and Paul Howarth
Lubricants 2025, 13(3), 126; https://doi.org/10.3390/lubricants13030126 - 16 Mar 2025
Viewed by 841
Abstract
Reducing CO2 emissions is an increasingly important goal in general aviation. The dual-fuel hydrogen–kerosene combustion process has proven to be a suitable technology for use in small aircraft. This robust and reliable technology significantly reduces CO2 emissions due to the carbon-free [...] Read more.
Reducing CO2 emissions is an increasingly important goal in general aviation. The dual-fuel hydrogen–kerosene combustion process has proven to be a suitable technology for use in small aircraft. This robust and reliable technology significantly reduces CO2 emissions due to the carbon-free combustion of hydrogen during operation, while pure kerosene or sustainable aviation fuel (SAF) can be used in safety-critical situations or in the event of fuel supply issues. Previous studies have demonstrated the potential of this technology in terms of emissions, performance, and efficiency, while also highlighting challenges related to abnormal combustion phenomena, such as knocking and pre-ignition, which limit the maximum achievable hydrogen energy share. However, the causes of such phenomena—especially regarding the role of lubricating oils—have not yet been sufficiently investigated in hydrogen engines, making this a crucial area for further development. In this paper, investigations at the TU Wien, Institute of Powertrain and Automotive Technology, concerning the role of different engine oils in influencing pre-ignition tendencies in a hydrogen–kerosene dual-fuel engine are described. A specialized test procedure was developed to account for the unique combustion characteristics of the dual-fuel process, along with a detailed purge procedure to minimize oil carryover. Multiple engine oils with varying compositions were tested to evaluate their influence on pre-ignition tendencies, with a particular focus on additives containing calcium, magnesium, and molybdenum, known for their roles in detergent and anti-wear properties. Additionally, the study addressed the contribution of particles to pre-ignition occurrences. The results indicate that calcium and magnesium exhibit no notable impact on pre-ignition behavior; however, the addition of molybdenum results in a pronounced reduction in pre-ignition events, which could enable a higher hydrogen energy share and thus decrease CO2 emissions in the context of hydrogen dual-fuel aviation applications. Full article
Show Figures

Figure 1

19 pages, 2479 KiB  
Article
Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage
by Xunwen Zhao, Hailin Mu, Nan Li, Xue Kong and Xunpeng Shi
Energies 2025, 18(5), 1151; https://doi.org/10.3390/en18051151 - 26 Feb 2025
Cited by 2 | Viewed by 903
Abstract
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy [...] Read more.
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy demands of residential communities. The system also incorporates hydrogen production for fuel cell vehicles. A dual-objective optimization model was developed, minimizing both economic costs and CO2 emissions. The system’s performance was evaluated using data from a case study in Dalian, which showed that the IES successfully reduced the annual total cost and CO2 emissions compared to conventional systems. The key findings showed that PV electrolysis for hydrogen production provides both economic and environmental advantages. The system’s integration of solar thermal energy offers higher economic efficiency, while PV energy supplies enhance coordination. Additionally, carbon trading prices effectively reduce emissions, but excessively high prices do not always lead to better emission outcomes. This study introduces a comprehensive, multi-energy approach for optimizing the energy supply, contributing novel insights to the field of sustainable energy systems. Full article
Show Figures

Figure 1

16 pages, 3072 KiB  
Article
Research on Hydrogen Production from Ammonia Decomposition by Pulsed Plasma Catalysis
by Yuze He, Neng Zhu and Yunkai Cai
Molecules 2025, 30(5), 1054; https://doi.org/10.3390/molecules30051054 - 25 Feb 2025
Viewed by 951
Abstract
Driven by dual-carbon targets, marine engines are accelerating their transition towards low-carbon and zero-carbon. Ammonium–hydrogen fusion fuel is considered to be one of the most promising fuels for ship decarbonization. Using non-thermal plasma (NTP) catalytic ammonia on-line hydrogen production technology to achieve hydrogen [...] Read more.
Driven by dual-carbon targets, marine engines are accelerating their transition towards low-carbon and zero-carbon. Ammonium–hydrogen fusion fuel is considered to be one of the most promising fuels for ship decarbonization. Using non-thermal plasma (NTP) catalytic ammonia on-line hydrogen production technology to achieve hydrogen supply is one of the most important means to guarantee the safety and effectiveness of hydrogen energy in the storage and transportation process. However, the efficiency of ammonia catalytic hydrogen production can be influenced to some extent by the presence of several factors, and the reaction mechanism is complex under the conditions of ship engine temperature emissions. This makes it difficult to realize the precise control of plasma catalytic hydrogen production from ammonia technology under temperature emission conditions, thus restricting an improvement in the ammonia conversion rate. In this study, a kinetic model of hydrogen production from ammonia catalyzed by NTP was established. The influencing factors (reaction temperature, pressure, N2/NH3 ratio in the feed gas) and mechanism path of hydrogen production from ammonia decomposition were explored. The results show that the increase in reaction temperature will lead to an increase in the ammonia conversion rate, while the ammonia conversion rate will decrease with the increase in reaction pressure and N2/NH3 ratio. When the reaction temperature is 300 K, the pressure is 1 bar, the feed gas is 98%N2/2%NH3, and the ammonia conversion rate is 16.7%. The reason why the addition of N2 is conducive to the hydrogen production from NH3 decomposition is that the reaction N2(A3) + NH3 => N2 + NH2 + H, triggered by the electron excited-state N2(A3), is the main reaction for NH3 decomposition. Full article
Show Figures

Graphical abstract

35 pages, 11162 KiB  
Review
Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts
by Yunong Zhang, Yuxin Liu, Andreas Offenhäusser and Yulia Mourzina
Biosensors 2025, 15(2), 124; https://doi.org/10.3390/bios15020124 - 19 Feb 2025
Cited by 2 | Viewed by 2110
Abstract
The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical [...] Read more.
The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical reactions, directly generating an analytical signal. Unlike conventional (amperometric, voltammetric, and impedimetric) sensors, no external energy in the form of an applied potential is required for the redox detection reactions to occur. SPESs therefore have several important advantages over conventional electrochemical sensors. They do not require a power supply and modulation system, which saves energy and costs. The devices also offer greater simplicity and are therefore more compatible for applications in wearable sensor devices as well as in vivo and in situ use. Due to the dual redox properties of hydrogen peroxide, it is possible to develop membraneless fuel cells and fuel-cell-based hydrogen peroxide SPESs, in which hydrogen peroxide in the analyzed sample is used as the only source of energy, as both an oxidant and a reductant (fuel). This also suppresses the dependence of the devices on the availability of oxygen. Electrode catalyst materials for different hydrogen peroxide reaction pathways at the cathode and the anode in a one-compartment cell are a key technology for the implementation and characteristics of hydrogen peroxide SPESs. This article provides an overview of the operating principle and designs of H2O2–H2O2 fuel cells and H2O2 fuel-cell-based SPESs, focusing on biomimetic and nanozyme catalysts, and highlights recent innovations and prospects of hydrogen-peroxide-based SPESs for (bio)electrochemical analysis. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

12 pages, 6085 KiB  
Article
Demonstration of Polyethylene Nitrous Oxide Catalytic Decomposition Hybrid Thruster with Dual-Catalyst Bed Preheated by Hydrogen Peroxide
by Seungho Lee, Vincent Mario Pierre Ugolini, Eunsang Jung and Sejin Kwon
Aerospace 2025, 12(2), 158; https://doi.org/10.3390/aerospace12020158 - 18 Feb 2025
Viewed by 740
Abstract
Although various studies on nitrous oxide as a prospective green propellant have been recently explored, a polyethylene nitrous oxide catalytic decomposition hybrid thruster was barely demonstrated due to an inordinately high catalyst preheating time of a heater, which led to the destruction of [...] Read more.
Although various studies on nitrous oxide as a prospective green propellant have been recently explored, a polyethylene nitrous oxide catalytic decomposition hybrid thruster was barely demonstrated due to an inordinately high catalyst preheating time of a heater, which led to the destruction of components. Therefore, hydrogen peroxide was used as a preheatant, a substance to preheat, with a dual-catalyst bed. The thruster with polyethylene (PE) as a fuel, N2O as an oxidizer, H2O2 as the preheatant, Ru/Al2O3 as a catalyst for the oxidizer, and Pt/Al2O3 as a catalyst for the preheatant was arranged. A preheatant supply time of 10 s with a maximum catalyst bed temperature of more than 500 °C and without combustion and an oxidizer supply time of 20 s with a burning time of approximately 15 s were decided. Because the catalyst bed upstream part for decomposing the preheatant was far from the post-combustion chamber, the post-combustion chamber pressure increased and the preheatant mass flow rate decreased after a hard start during the preheatant supply time. Moreover, because the catalyst bed upstream part primarily contributed to preheating, the maximum catalyst bed temperature was less than the decomposition temperature of the preheatant during the preheatant supply time. Additionally, because the catalyst bed downstream part for decomposing the oxidizer was far from the post-combustion chamber, the post-combustion chamber pressure decreased and then increased during a transient state in the oxidizer supply time. Full article
(This article belongs to the Special Issue Green Propellants for In-Space Propulsion)
Show Figures

Figure 1

22 pages, 12535 KiB  
Article
Numerical Modelling Assessment of the Impact of Hydrogen on the Energy and Environmental Performance of a Car Using Dual Fuel (Gasoline–Hydrogen)
by Saugirdas Pukalskas, Tadas Vipartas, Alfredas Rimkus, Donatas Kriaučiūnas, Justas Žaglinskis, Saulius Stravinskas, Andrius Ušinskas, Romualdas Juknelevičius, Gabrielius Mejeras, Vidas Žuraulis, Vilius Mejeras and Aleksas Narkevičius
Appl. Sci. 2025, 15(4), 1939; https://doi.org/10.3390/app15041939 - 13 Feb 2025
Cited by 1 | Viewed by 985
Abstract
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore, its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents [...] Read more.
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore, its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents energy and environmental performance indicators analyses of a Nissan Qashqai J10 engine during the Worldwide Harmonised Light Vehicles Test Cycle (WLTC), replacing conventional fossil gasoline with dual-fuel (D-F) gasoline and hydrogen. Numerical modelling was conducted using AVL Cruise™ (Version R2022.2) software, utilizing the torque, fuel consumption, and environmental performance data of the HR16DE engine obtained through experimental testing across a wide range of loads and speeds on an engine test bench. The experimental investigation was carried out in two stages: using pure gasoline (G100); injecting a hydrogen additive into the intake air, constituting 5% of the gasoline mass (G95H5). Following similar stages, numerical modelling was conducted using the vehicle’s technical specifications to calculate engine load and speed throughout the WLTC range. Instant fuel consumption and pollutant emissions (CO, CH, NOx) were determined for various driving modes using experimental data maps. CO2 emissions were calculated considering fuel composition and consumption. By integrating the instant values, the total and specific fuel consumption and emissions were calculated. As a result, this study identified the effect of a 5% hydrogen additive in improving engine energy efficiency, reducing incomplete combustion products and lowering greenhouse gas (CO2) emissions under various driving modes. Finally, the results were compared with the requirements of EU standards. Full article
Show Figures

Figure 1

18 pages, 672 KiB  
Article
Energy Conservation Strategy Driven by Optimizing Waste Heat Supply Chain
by Jing Yang, Juan He, Zhiyong Zhang, Ming Hong, Tao Xu, Zhidong Li and Fuyu Qin
Energies 2025, 18(3), 497; https://doi.org/10.3390/en18030497 - 22 Jan 2025
Cited by 1 | Viewed by 714
Abstract
Subject to pressures from resource exhaustion and environmental pollution, many countries have aimed to replace fossil fuels with renewable energy as part of their decarbonization strategy. In the post-pandemic era, countries are making efforts to explore a sustainable mode of economic development that [...] Read more.
Subject to pressures from resource exhaustion and environmental pollution, many countries have aimed to replace fossil fuels with renewable energy as part of their decarbonization strategy. In the post-pandemic era, countries are making efforts to explore a sustainable mode of economic development that features low resource consumption and less environmental pollution. Consumers are increasingly concerned about the environmental friendliness of energy products. In this study, we formulated four solutions for energy-saving optimization and control of the waste heat supply chain to conserve energy and compared the impact of a profit-as-incentive energy efficiency strategy and an energy efficiency incentive strategy on energy efficiency in the waste heat supply chain. Government agencies and enterprises can adopt a suitable strategy with the best current social and economic benefits to manage waste heat recovery. The profit-as-incentive energy efficiency strategy is more favorable for enterprises in the early stage of development. Under dual pressures of social attention to green energy and environmental protection, government agencies may adjust energy conservation policy to encourage enterprises to choose an energy efficiency incentive strategy to increase energy conservation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

35 pages, 2056 KiB  
Review
Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas
by Dhruv Singh, Piero Sirini and Lidia Lombardi
Energies 2025, 18(1), 15; https://doi.org/10.3390/en18010015 - 24 Dec 2024
Cited by 3 | Viewed by 3537
Abstract
The growing challenges of climate change, the depletion of fossil fuel reserves, and the urgent need for carbon-neutral energy solutions have intensified the focus on renewable energy. In this perspective, the generation of green hydrogen from renewable sources like biogas/landfill gas (LFG) offers [...] Read more.
The growing challenges of climate change, the depletion of fossil fuel reserves, and the urgent need for carbon-neutral energy solutions have intensified the focus on renewable energy. In this perspective, the generation of green hydrogen from renewable sources like biogas/landfill gas (LFG) offers an intriguing option, providing the dual benefits of a sustainable hydrogen supply and enhanced waste management through energy innovation and valorization. Thus, this review explores the production of green hydrogen from biogas/LFG through four conventional reforming processes, specifically dry methane reforming (DMR), steam methane reforming (SMR), partial oxidation reforming (POX), and autothermal reforming (ATR), focusing on their mechanisms, operating parameters, and the role of catalysts in hydrogen production. This review further delves into both the environmental aspects, specifically GWP (CO2 eq·kg−1 H2) emissions, and the economic aspects of these processes, examining their efficiency and impact. Additionally, this review also explores hydrogen purification in biogas/LFG reforming and its integration into the CO2 capture, utilization, and storage roadmap for net-negative emissions. Lastly, this review highlights future research directions, focusing on improving SMR and DMR biogas/LFG reforming technologies through simulation and modeling to enhance hydrogen production efficiency, thereby advancing understanding and informing future research and policy initiatives for sustainable energy solutions. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 3rd Edition)
Show Figures

Figure 1

Back to TopTop