Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,334)

Search Parameters:
Keywords = dual training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 337 KiB  
Article
State-by-State Review: The Spread of Law Enforcement Accountability Policies
by Hossein Zare, Danielle R. Gilmore, Khushbu Balsara, Celina Renee Pargas, Rebecca Valek, Andrea N. Ponce, Niloufar Masoudi, Michelle Spencer, Tatiana Y. Warren and Cassandra Crifasi
Soc. Sci. 2025, 14(8), 483; https://doi.org/10.3390/socsci14080483 - 5 Aug 2025
Abstract
Purpose: Following George Floyd’s death, the push for law enforcement accountability policies has intensified. Despite robust legislative action, challenges in enacting and implementing meaningful reforms persist. This study analyzes police accountability policies (PAP) in the U.S. from 2020 to 2022, identifying barriers and [...] Read more.
Purpose: Following George Floyd’s death, the push for law enforcement accountability policies has intensified. Despite robust legislative action, challenges in enacting and implementing meaningful reforms persist. This study analyzes police accountability policies (PAP) in the U.S. from 2020 to 2022, identifying barriers and facilitators through expert perspectives in enforcement oversight, policy advocacy, and community engagement. Methods: The study used a dual approach: analyzing 226 police accountability bills from all 50 U.S. states, D.C., and Puerto Rico via the National Conference of State Legislatures database, and categorizing them into six key areas such as training, technology use, and certification. Additionally, a survey was conducted among experts to identify the challenges and drivers in passing police accountability legislation. Findings: A legislative analysis showed that although 48 states passed police accountability laws, California, New Jersey, Oklahoma, and Colorado have made significant strides by passing multiple pieces of legislation aimed at enhancing law enforcement accountability and ensuring better policing practices. The most common policies focused on training and technology, enacted by 16 and 12 states, respectively. However, crucial certification and decertification policies were adopted in just 13 states, highlighting the inconsistent implementation of measures critical for police accountability and transparency. The survey identified several barriers to passing PAP, including inadequate support from local governments (72.7%). Structural exclusion of poor and minority communities from policing resources was also a significant barrier (54.5%). Facilitators included community support (81.8%) and a cultural shift in policing towards viewing officers as “guardians” rather than “warriors” (63.6%). Conclusions: While some progress has been made in passing PAP, considerable gaps remain, particularly in enforcement and comprehensive reform. Resistance from law enforcement institutions, lack of community support, and structural inequalities continue to impede the adoption of effective PAP. Full article
27 pages, 11710 KiB  
Article
Assessing ResNeXt and RegNet Models for Diabetic Retinopathy Classification: A Comprehensive Comparative Study
by Samara Acosta-Jiménez, Valeria Maeda-Gutiérrez, Carlos E. Galván-Tejada, Miguel M. Mendoza-Mendoza, Luis C. Reveles-Gómez, José M. Celaya-Padilla, Jorge I. Galván-Tejada and Antonio García-Domínguez
Diagnostics 2025, 15(15), 1966; https://doi.org/10.3390/diagnostics15151966 - 5 Aug 2025
Abstract
Background/Objectives: Diabetic retinopathy is a leading cause of vision impairment worldwide, and the development of reliable automated classification systems is crucial for early diagnosis and clinical decision-making. This study presents a comprehensive comparative evaluation of two state-of-the-art deep learning families for the task [...] Read more.
Background/Objectives: Diabetic retinopathy is a leading cause of vision impairment worldwide, and the development of reliable automated classification systems is crucial for early diagnosis and clinical decision-making. This study presents a comprehensive comparative evaluation of two state-of-the-art deep learning families for the task of classifying diabetic retinopathy using retinal fundus images. Methods: The models were trained and tested in both binary and multi-class settings. The experimental design involved partitioning the data into training (70%), validation (20%), and testing (10%) sets. Model performance was assessed using standard metrics, including precision, sensitivity, specificity, F1-score, and the area under the receiver operating characteristic curve. Results: In binary classification, the ResNeXt101-64x4d model and RegNetY32GT model demonstrated outstanding performance, each achieving high sensitivity and precision. For multi-class classification, ResNeXt101-32x8d exhibited strong performance in early stages, while RegNetY16GT showed better balance across all stages, particularly in advanced diabetic retinopathy cases. To enhance transparency, SHapley Additive exPlanations were employed to visualize the pixel-level contributions for each model’s predictions. Conclusions: The findings suggest that while ResNeXt models are effective in detecting early signs, RegNet models offer more consistent performance in distinguishing between multiple stages of diabetic retinopathy severity. This dual approach combining quantitative evaluation and model interpretability supports the development of more robust and clinically trustworthy decision support systems for diabetic retinopathy screening. Full article
Show Figures

Figure 1

23 pages, 1391 KiB  
Systematic Review
Dual-Task Training Interventions for Cerebral Palsy: A Systematic Review and Meta-Analysis of Effects on Postural Balance and Walking Speed
by Irene Cortés-Pérez, María de los Ángeles Castillo-Pintor, Rocío Barrionuevo-Berzosa, Marina Piñar-Lara, Esteban Obrero-Gaitán and Héctor García-López
Medicina 2025, 61(8), 1415; https://doi.org/10.3390/medicina61081415 - 5 Aug 2025
Abstract
Background and Objectives: Dual-task training (DTT) is an innovative therapeutic approach that involves the simultaneous application of two tasks, which can be motor, cognitive, or a combination of both. Children with cerebral palsy (CP) often exhibit impairments in balance, motor skills, and [...] Read more.
Background and Objectives: Dual-task training (DTT) is an innovative therapeutic approach that involves the simultaneous application of two tasks, which can be motor, cognitive, or a combination of both. Children with cerebral palsy (CP) often exhibit impairments in balance, motor skills, and gait, conditions that may be amenable to improvement through DTT. The aim of this study was to determine the effectiveness of DTT in enhancing balance, walking speed, and gross motor function-related balance in children with CP. Materials and Methods: In accordance with PRISMA guidelines, a comprehensive systematic review with meta-analysis (SRMA) was conducted. Electronic databases like PubMed Medline, Scopus, Web of Science, CINAHL, and PEDro were searched up to March 2025, with no language or publication date restrictions. Only randomized controlled trials (RCTs) examining the effectiveness of DTT on balance, gross motor function, and walking speed in children with CP were included. The methodological quality and risk of bias of the included RCTs were assessed using the PEDro scale. Pooled effects were calculated using Cohen’s standardized mean difference (SMD) and its 95% confidence interval (95% CI) within random-effects models. Results: Eight RCTs, providing data from 216 children, were included. Meta-analyses suggested that DTT was more effective than conventional therapies for increasing functional (SMD = 0.65; 95% CI 0.18 to 1.13), dynamic (SMD = 0.61; 95% CI 0.15 to 1.1), and static balance (SMD = 0.46; 95% CI 0.02 to 0.9), as well as standing (SMD = 0.75; 95% CI 0.31 to 1.18; p = 0.001) and locomotion dimensions (SMD = 0.65; 95% CI 0.22 to 1.08) of the Gross Motor Function Measure (GMFM) and walking speed (SMD = 0.46; 95% CI 0.06 to 0.87). Subgroup analyses revealed that a motor–cognitive dual task is better than a motor single task for functional, dynamic, and static balance and standing and locomotion dimensions for the GMFM. Conclusions: This SRMA, including the major number of RCTs to date, suggests that DTT is effective in increasing balance, walking and gross motor function-related balance in children with CP. Full article
(This article belongs to the Special Issue New Insights into Neurodevelopmental Biology and Disorders)
Show Figures

Figure 1

20 pages, 2316 KiB  
Article
Detection of Dental Anomalies in Digital Panoramic Images Using YOLO: A Next Generation Approach Based on Single Stage Detection Models
by Uğur Şevik and Onur Mutlu
Diagnostics 2025, 15(15), 1961; https://doi.org/10.3390/diagnostics15151961 - 5 Aug 2025
Abstract
Background/Objectives: The diagnosis of pediatric dental conditions from panoramic radiographs is uniquely challenging due to the dynamic nature of the mixed dentition phase, which can lead to subjective and inconsistent interpretations. This study aims to develop and rigorously validate an advanced deep [...] Read more.
Background/Objectives: The diagnosis of pediatric dental conditions from panoramic radiographs is uniquely challenging due to the dynamic nature of the mixed dentition phase, which can lead to subjective and inconsistent interpretations. This study aims to develop and rigorously validate an advanced deep learning model to enhance diagnostic accuracy and efficiency in pediatric dentistry, providing an objective tool to support clinical decision-making. Methods: An initial comparative study of four state-of-the-art YOLO variants (YOLOv8, v9, v10, and v11) was conducted to identify the optimal architecture for detecting four common findings: Dental Caries, Deciduous Tooth, Root Canal Treatment, and Pulpotomy. A stringent two-tiered validation strategy was employed: a primary public dataset (n = 644 images) was used for training and model selection, while a completely independent external dataset (n = 150 images) was used for final testing. All annotations were validated by a dual-expert team comprising a board-certified pediatric dentist and an experienced oral and maxillofacial radiologist. Results: Based on its leading performance on the internal validation set, YOLOv11x was selected as the optimal model, achieving a mean Average Precision (mAP50) of 0.91. When evaluated on the independent external test set, the model demonstrated robust generalization, achieving an overall F1-Score of 0.81 and a mAP50 of 0.82. It yielded clinically valuable recall rates for therapeutic interventions (Root Canal Treatment: 88%; Pulpotomy: 86%) and other conditions (Deciduous Tooth: 84%; Dental Caries: 79%). Conclusions: Validated through a rigorous dual-dataset and dual-expert process, the YOLOv11x model demonstrates its potential as an accurate and reliable tool for automated detection in pediatric panoramic radiographs. This work suggests that such AI-driven systems can serve as valuable assistive tools for clinicians by supporting diagnostic workflows and contributing to the consistent detection of common dental findings in pediatric patients. Full article
Show Figures

Figure 1

25 pages, 3310 KiB  
Article
Real-Time Signal Quality Assessment and Power Adaptation of FSO Links Operating Under All-Weather Conditions Using Deep Learning Exploiting Eye Diagrams
by Somia A. Abd El-Mottaleb and Ahmad Atieh
Photonics 2025, 12(8), 789; https://doi.org/10.3390/photonics12080789 (registering DOI) - 4 Aug 2025
Abstract
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual [...] Read more.
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual Network (Wide ResNet) algorithms to perform regression tasks that predict received signal quality metrics such as the Quality Factor (Q-factor) and Bit Error Rate (BER) from the received eye diagram. These models are evaluated using Mean Squared Error (MSE) and the coefficient of determination (R2 score) to assess prediction accuracy. Additionally, a custom CNN-based classifier is trained to determine whether the BER reading from the eye diagram exceeds a critical threshold of 104; this classifier achieves an overall accuracy of 99%, correctly detecting 194/195 “acceptable” and 4/5 “unacceptable” instances. Based on the predicted signal quality, the framework activates a dual-amplifier configuration comprising a pre-channel amplifier with a maximum gain of 25 dB and a post-channel amplifier with a maximum gain of 10 dB. The total gain of the amplifiers is adjusted to support the operation of the FSO system under all-weather conditions. The FSO system uses a 15 dBm laser source at 1550 nm. The DL models are tested on both internal and external datasets to validate their generalization capability. The results show that the regression models achieve strong predictive performance, and the classifier reliably detects degraded signal conditions, enabling the real-time gain control of the amplifiers to achieve the quality of transmission. The proposed solution supports robust FSO communication under challenging atmospheric conditions including dry snow, making it suitable for deployment in regions like Northern Europe, Canada, and Northern Japan. Full article
Show Figures

Figure 1

28 pages, 8838 KiB  
Article
An End-to-End Particle Gradation Detection Method for Earth–Rockfill Dams from Images Using an Enhanced YOLOv8-Seg Model
by Yu Tang, Shixiang Zhao, Hui Qin, Pan Ming, Tianxing Fang and Jinyuan Zeng
Sensors 2025, 25(15), 4797; https://doi.org/10.3390/s25154797 - 4 Aug 2025
Abstract
Rockfill particle gradation significantly influences mechanical performance in earth–rockfill dam construction, yet on-site screening is often time-consuming, labor-intensive, and structurally invasive. This study proposes a rapid and non-destructive detection method using mobile-based photography and an end-to-end image segmentation approach. An enhanced YOLOv8-seg model [...] Read more.
Rockfill particle gradation significantly influences mechanical performance in earth–rockfill dam construction, yet on-site screening is often time-consuming, labor-intensive, and structurally invasive. This study proposes a rapid and non-destructive detection method using mobile-based photography and an end-to-end image segmentation approach. An enhanced YOLOv8-seg model with an integrated dual-attention mechanism was pre-trained on laboratory images to accurately segment densely stacked particles. Transfer learning was then employed to retrain the model using a limited number of on-site images, achieving high segmentation accuracy. The proposed model attains a mAP50 of 97.8% (base dataset) and 96.1% (on-site dataset), enabling precise segmentation of adhered and overlapped particles with various sizes. A Minimum Area Rectangle algorithm was introduced to compute the gradation, closely matching the results from manual screening. This method significantly contributes to the automation of construction workflows, cutting labor costs, minimizing structural disruption, and ensuring reliable measurement quality in earth–rockfill dam projects. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 9010 KiB  
Article
Dual-Branch Deep Learning with Dynamic Stage Detection for CT Tube Life Prediction
by Zhu Chen, Yuedan Liu, Zhibin Qin, Haojie Li, Siyuan Xie, Litian Fan, Qilin Liu and Jin Huang
Sensors 2025, 25(15), 4790; https://doi.org/10.3390/s25154790 - 4 Aug 2025
Abstract
CT scanners are essential tools in modern medical imaging. Sudden failures of their X-ray tubes can lead to equipment downtime, affecting healthcare services and patient diagnosis. However, existing prediction methods based on a single model struggle to adapt to the multi-stage variation characteristics [...] Read more.
CT scanners are essential tools in modern medical imaging. Sudden failures of their X-ray tubes can lead to equipment downtime, affecting healthcare services and patient diagnosis. However, existing prediction methods based on a single model struggle to adapt to the multi-stage variation characteristics of tube lifespan and have limited modeling capabilities for temporal features. To address these issues, this paper proposes an intelligent prediction architecture for CT tubes’ remaining useful life based on a dual-branch neural network. This architecture consists of two specialized branches: a residual self-attention BiLSTM (RSA-BiLSTM) and a multi-layer dilation temporal convolutional network (D-TCN). The RSA-BiLSTM branch extracts multi-scale features and also enhances the long-term dependency modeling capability for temporal data. The D-TCN branch captures multi-scale temporal features through multi-layer dilated convolutions, effectively handling non-linear changes in the degradation phase. Furthermore, a dynamic phase detector is applied to integrate the prediction results from both branches. In terms of optimization strategy, a dynamically weighted triplet mixed loss function is designed to adjust the weight ratios of different prediction tasks, effectively solving the problems of sample imbalance and uneven prediction accuracy. Experimental results using leave-one-out cross-validation (LOOCV) on six different CT tube datasets show that the proposed method achieved significant advantages over five comparison models, with an average MSE of 2.92, MAE of 0.46, and R2 of 0.77. The LOOCV strategy ensures robust evaluation by testing each tube dataset independently while training on the remaining five, providing reliable generalization assessment across different CT equipment. Ablation experiments further confirmed that the collaborative design of multiple components is significant for improving the accuracy of X-ray tubes remaining life prediction. Full article
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 - 3 Aug 2025
Viewed by 56
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
Show Figures

Figure 1

30 pages, 2928 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 - 2 Aug 2025
Viewed by 116
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 - 1 Aug 2025
Viewed by 192
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

13 pages, 3776 KiB  
Article
Focused View CT Urography: Towards a Randomized Trial Investigating the Relevance of Incidental Findings in Patients with Hematuria
by Tim E. Sluijter, Christian Roest, Derya Yakar and Thomas C. Kwee
Diseases 2025, 13(8), 242; https://doi.org/10.3390/diseases13080242 - 1 Aug 2025
Viewed by 116
Abstract
Background: Computed tomography urography (CTU) is routinely used to evaluate the upper urinary tract in patients with hematuria. CTU may detect incidental findings outside the urinary tract, but it remains unclear if this adds value. This study aimed to develop a deep learning [...] Read more.
Background: Computed tomography urography (CTU) is routinely used to evaluate the upper urinary tract in patients with hematuria. CTU may detect incidental findings outside the urinary tract, but it remains unclear if this adds value. This study aimed to develop a deep learning algorithm that automatically segments and selectively visualizes the urinary tract on CTU. Methods: The urinary tract (kidneys, ureters, and urinary bladder) was manually segmented on 2 mm dual-phase CTU slices of 111 subjects. With this dataset, a deep learning-based AI was trained to automatically segment and selectively visualize the urinary tract on CTU scans (including accompanying unenhanced CT scans), which we dub “focused view CTU”. Focused view CTU was technically optimized and tested in 39 subjects with hematuria. Results: The technically optimized focused view CTU algorithm provided complete visualization of 97.4% of kidneys, 80.8% of ureters, and 94.9% of urinary bladders. All urinary tract organs were completely visualized in 66.6% of cases. In these cases (excluding 33.3% of cases with incomplete visualization), focused view CTU intrinsically achieved a sensitivity, specificity, positive predictive value, and negative predictive value of 100.0%, 92.3%, 92.9%, and 100.0% for lesions in the urinary tract compared to unmodified CT, although interrater agreement was moderate (κ = 0.528). All incidental findings were successfully hidden by focused view CTU. Conclusions: Focused view CTU provides adequate urinary tract segmentation in most cases, but further research is needed to optimize the technique (segmentation does not succeed in about one-third of cases). It offers selective urinary tract visualization, potentially aiding in assessing relevance and cost-effectiveness of detecting incidental findings in hematuria patients through a prospective randomized trial. Full article
Show Figures

Figure 1

24 pages, 23817 KiB  
Article
Dual-Path Adversarial Denoising Network Based on UNet
by Jinchi Yu, Yu Zhou, Mingchen Sun and Dadong Wang
Sensors 2025, 25(15), 4751; https://doi.org/10.3390/s25154751 - 1 Aug 2025
Viewed by 197
Abstract
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a [...] Read more.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

27 pages, 968 KiB  
Article
Factors Influencing Generative AI Usage Intention in China: Extending the Acceptance–Avoidance Framework with Perceived AI Literacy
by Chenhui Liu, Libo Yang, Xinyu Dong and Xiaocui Li
Systems 2025, 13(8), 639; https://doi.org/10.3390/systems13080639 - 1 Aug 2025
Viewed by 224
Abstract
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat [...] Read more.
In the digital era, understanding the intention to use generative AI is critical, as it enhances productivity, transforms workflows, and enables humans to focus on higher-value tasks. Drawing upon the unified theory of acceptance and use of technology (UTAUT) and the technology threat avoidance theory (TTAT), this research integrates perceived AI literacy into the AI acceptance–avoidance framework as a central variable. This study gathered 583 valid survey responses from China and validated its model using a dual-phase, combined method that integrates structural equation modeling and artificial neural networks. Research findings indicate that the model explains 51.6% of the variance in generative AI usage intention. Except for social influence, all variables within the extended framework significantly impact the usage intention, with perceived AI literacy being the strongest predictor (β = 0.33, p < 0.001). Additionally, perceived AI literacy mitigates the adverse effect of perceived threats on the intention to use AI. Practical implications suggest that enterprises adopt a tiered strategy, as follows: maximize perceived benefits by integrating AI skills into reward systems and providing task-automation training; minimize perceived costs through dedicated technical support and transparent risk mitigation plans; and cultivate AI literacy via progressive learning paths, advancing from data analysis to innovation. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
Show Figures

Figure 1

48 pages, 5229 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Viewed by 228
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
Show Figures

Figure 1

14 pages, 372 KiB  
Article
Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players
by Bettina Béres, István Györe, Annamária Zsákai, Tamas Dobronyi, Peter Bakonyi and Tamás Szabó
Sports 2025, 13(8), 252; https://doi.org/10.3390/sports13080252 - 31 Jul 2025
Viewed by 127
Abstract
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal [...] Read more.
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal exercise, with limited exploration of deficit dynamics. The present study aimed to analyze the behavior of oxygen deficit in young female handball players (N = 42, age: 15.4 ± 1.3 years) during graded exercise. Oxygen deficit was estimated using the American College of Sports Medicine (ACSM) algorithm, restricted to subanaerobic threshold segments of a quasi-ramp exercise protocol. Cardiorespiratory parameters were measured with the spiroergometry test on treadmills, and body composition was assessed via Dual Energy X-ray Absorptiometry (DEXA). Cluster and principal component analyzes revealed two distinct athlete profiles with statistically significant differences in both morphological and physiological traits. Cluster 2 showed significantly higher relative VO2 peak (51.43 ± 3.70 vs. 45.70 ± 2.87 mL·kg−1·min−1; p < 0.001; Cohen’s d = 1.76), yet also exhibited a greater oxygen deficit per kilogram (39.03 ± 16.71 vs. 32.56 ± 14.33 mL·kg−1; p = 0.018; d = 0.80). Cluster 1 had higher absolute body mass (69.67 ± 8.13 vs. 59.66 ± 6.81 kg; p < 0.001), skeletal muscle mass (p < 0.001), and fat mass (p < 0.001), indicating that body composition strongly influenced oxygen deficit values. The observed differences in oxygen deficit profiles suggest a strong influence of genetic predispositions, particularly in cardiovascular and muscular oxygen utilization capacity. Age also emerged as a critical factor in determining the potential for adaptation. Oxygen deficit during submaximal exercise appears to be a multifactorial phenomenon shaped by structural and physiological traits. While certain influencing factors can be modified through training, others especially those of genetic origin pose inherent limitations. Early development of cardiorespiratory capacity may offer the most effective strategy for long-term optimization. Full article
Show Figures

Figure 1

Back to TopTop