Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = dual control rods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2232 KiB  
Article
Dual-Closed-Loop Control System for Polysilicon Reduction Furnace Power Supply Based on Hysteresis PID and Predictive Control
by Shihao Li, Tiejun Zeng, Shan Jian, Guiping Cui, Ziwen Che, Genghong Lin and Zeyu Yan
Energies 2025, 18(14), 3707; https://doi.org/10.3390/en18143707 - 14 Jul 2025
Viewed by 163
Abstract
In the power system of a polysilicon reduction furnace, especially during the silicon rod growth process, the issue of insufficient temperature control accuracy arises due to the system’s nonlinear and time-varying characteristics. To address this challenge, a dual-loop control system is proposed, combining [...] Read more.
In the power system of a polysilicon reduction furnace, especially during the silicon rod growth process, the issue of insufficient temperature control accuracy arises due to the system’s nonlinear and time-varying characteristics. To address this challenge, a dual-loop control system is proposed, combining model-free adaptive control (MFAC) with an improved PID controller. The inner loop utilizes a hysteresis PID controller for dynamic current regulation, ensuring fast and accurate current adjustments. Meanwhile, the outer loop employs a hybrid MFAC-based improved PID algorithm to optimize the temperature tracking performance, achieving precise temperature control even in the presence of system uncertainties. The MFAC component is adaptive and does not require a system model, while the improved PID enhances stability and reduces the response time. Simulation results demonstrate that this hybrid control strategy significantly improves the system’s performance, achieving faster response times, smaller steady-state errors, and notable improvements in the uniformity of polysilicon deposition, which is critical for high-quality silicon rod growth. The proposed system enhances both efficiency and accuracy in industrial applications. Furthermore, applying the dual-loop model to actual industrial products further validated its effectiveness. The experimental results show that the dual-loop model closely approximates the polysilicon production model, confirming that dual-loop control can allow the system to rapidly and accurately reach the set values. Full article
Show Figures

Figure 1

22 pages, 7090 KiB  
Article
The Structural Design and Optimization of a Novel Independently Driven Bionic Ornithopter
by Mouhui Dai, Ruien Wu, Mingxuan Ye, Kai Gao, Bin Chen, Xinwang Tao and Zhijie Fan
Biomimetics 2025, 10(6), 401; https://doi.org/10.3390/biomimetics10060401 - 13 Jun 2025
Cited by 1 | Viewed by 423
Abstract
To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping [...] Read more.
To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping for enhanced environmental adaptability. The design integrates a two-stage reduction gear group to optimize torque transmission and an S1223 high-lift airfoil to improve aerodynamic efficiency. Multiphysics simulations combining computational fluid dynamics (CFD) and finite element analysis (FEA) demonstrate that, under flapping frequencies of 1–3.45 Hz and wind speeds of 1.2–3 m/s, the optimized model achieves 50% and 60% improvements in lift and thrust coefficients, respectively, compared to the baseline. Concurrently, peak stress in critical components (e.g., cam disks and wing rods) is reduced by 37% to 41 MPa, with significantly improved stress uniformity. These results validate the dual-motor system’s capability to dynamically adapt to turbulent airflow through the precise control of wing kinematics, offering innovative solutions for applications such as aerial inspection and precision agriculture. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
Design and Experiment of Pineapple Eye Removal Device Based on Machine Vision
by Manfeng Gong, Shuai Wang, Xingzao Ma, Hua Li, Chenglong Tu and Ziyi Guo
Machines 2025, 13(6), 479; https://doi.org/10.3390/machines13060479 - 3 Jun 2025
Viewed by 580
Abstract
The removal of pineapple eyes is a crucial step in pineapple processing. However, their irregularly distributed spiral arrangement presents a dual challenge for positioning accuracy and automated removal by the end-effector. In order to solve this problem, a pineapple eye removal device based [...] Read more.
The removal of pineapple eyes is a crucial step in pineapple processing. However, their irregularly distributed spiral arrangement presents a dual challenge for positioning accuracy and automated removal by the end-effector. In order to solve this problem, a pineapple eye removal device based on machine vision was designed. The device comprises a clamping mechanism, an eye removal end-effector, an XZ two-axis sliding table, a depth camera, and a control system. Taking the eye removal time and rotational angular velocity as variables, the relationship between the rod length of the prime mover and the contact force and gear torque during the eye removal process was simulated and analyzed using ADAMS (2020) software. Based on these simulations, the optimal length of the prime mover for the end-effector was determined to be 23.00 mm. The performance of various YOLOv5 models was compared in terms of accuracy, recall rate, mean detection error, and detection time. The YOLOv5s model was chosen for real-time pineapple eye detection, and the eye’s position was determined through coordinate transformation. The control system then actuated the XZ two-axis sliding table to position the eye removal end-effector for effective removal. The results indicated an average complete removal rate of 88.5%, an incomplete removal rate of 6.6%, a missed detection rate of 4.9%, and an average removal time of 156.7 s per pineapple. Compared with existing solutions, this study optimized the end-effector design for pineapple eye removal. Depth information was captured with a depth camera, and machine vision was combined with three-dimensional localization. These steps improved removal accuracy and increased production efficiency. Full article
(This article belongs to the Special Issue Advanced Agriculture Machines and Technologies in Smart Farming)
Show Figures

Figure 1

22 pages, 6063 KiB  
Article
A Hybrid Strategy for Forward Kinematics of the Stewart Platform Based on Dual Quaternion Neural Network and ARMA Time Series Prediction
by Jie Tao, Huicheng Zhou and Wei Fan
Actuators 2025, 14(4), 159; https://doi.org/10.3390/act14040159 - 21 Mar 2025
Viewed by 578
Abstract
The forward kinematics of the Stewart platform is crucial for precise control and reliable operation in six-degree-of-freedom motion. However, there are some shortcomings in practical applications, such as calculation precision, computational efficiency, the capacity to resolve singular Jacobian matrix and real-time predictive performance. [...] Read more.
The forward kinematics of the Stewart platform is crucial for precise control and reliable operation in six-degree-of-freedom motion. However, there are some shortcomings in practical applications, such as calculation precision, computational efficiency, the capacity to resolve singular Jacobian matrix and real-time predictive performance. To overcome those deficiencies, this work proposes a hybrid strategy for forward kinematics in the Stewart platform based on dual quaternion neural network and ARMA time series prediction. This method initially employs a dual-quaternion-based back-propagation neural network (DQ-BPNN). The DQ-BPNN is partitioned into real and dual parts, composed of parameters such as driving-rod lengths, maximum and minimum lengths, to extract more features. In DQ-BPNN, a residual network (ResNet) is employed, endowing DQ-BPNN with the capacity to capture deeper-level system characteristics and enabling DQ-BPNN to achieve a better fitting effect. Furthermore, the combined modified multi-step-size factor Newton downhill method and the Newton–Raphson method (C-MSFND-NR) are employed. This combination not only enhances computational efficiency and ensures global convergence, but also endows the method with the capability to resolve a singular matrix. Finally, a traversal method is adopted to determine the order of the autoregressive moving average (ARMA) model according to the Bayesian information criterion (BIC). This approach efficiently balances computational efficiency and fitting accuracy during real-time motion. The simulations and experiments demonstrate that, compared with BPNN, the R2 value in DQ-BPNN increases by 0.1%. Meanwhile, the MAE, MAPE, RMSE, and MSE values in DQ-BPNN decrease by 8.89%, 21.85%, 6.90%, and 3.3%, respectively. Compared with five Newtonian methods, the average computing time of C-MSFND-NR decreases by 59.82%, 83.81%, 15.09%, 79.82%, and 78.77%. Compared with the linear method, the prediction accuracy of the ARMA method increases by 14.63%, 14.63%, 14.63%, 14.46%, 16.67%, and 13.41%, respectively. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

16 pages, 8845 KiB  
Article
Cu-MOF-Decorated 3D-Printed Scaffolds for Infection Control and Bone Regeneration
by Ting Zhu, Qi Ni, Wenjie Wang, Dongdong Guo, Yixiao Li, Tianyu Chen, Dongyang Zhao, Xingyu Ma and Xiaojun Zhang
J. Funct. Biomater. 2025, 16(3), 83; https://doi.org/10.3390/jfb16030083 - 1 Mar 2025
Cited by 1 | Viewed by 1507
Abstract
Infection control and bone regeneration remain critical challenges in bone defect treatment. We developed a 3D-printed scaffold incorporating copper-based metal–organic framework-74 (Cu-MOF-74) within a polycaprolactone/hydroxyapatite composite. The synthesized Cu-MOF-74 exhibited a well-defined crystalline structure and rod-like morphology, as confirmed by TEM, EDS, FTIR, [...] Read more.
Infection control and bone regeneration remain critical challenges in bone defect treatment. We developed a 3D-printed scaffold incorporating copper-based metal–organic framework-74 (Cu-MOF-74) within a polycaprolactone/hydroxyapatite composite. The synthesized Cu-MOF-74 exhibited a well-defined crystalline structure and rod-like morphology, as confirmed by TEM, EDS, FTIR, and XRD analyses. The scaffolds exhibited hierarchical pores (100–200 μm) and demonstrated tunable hydrophilicity, as evidenced by the water contact angles decreasing from 103.3 ± 2.02° (0% Cu-MOF-74) to 63.60 ± 1.93° (1% Cu-MOF-74). A biphasic Cu2+ release profile was observed from the scaffolds, reaching cumulative concentrations of 98.97 ± 3.10 ppm by day 28. Antimicrobial assays showed concentration-dependent efficacy, with 1% Cu-MOF-74 scaffolds achieving 90.07 ± 1.94% and 80.03 ± 2.17% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Biocompatibility assessments using bone marrow-derived mesenchymal stem cells revealed enhanced cell proliferation at Cu-MOF-74 concentrations ≤ 0.2%, while concentrations ≥ 0.5% induced cytotoxicity. Osteogenic differentiation studies highlighted elevated alkaline phosphatase activity and mineralization in scaffolds with 0.05–0.2% Cu-MOF-74 scaffolds, particularly at 0.05% Cu-MOF-74 scaffolds, which exhibited the highest calcium deposition and upregulation of bone sialoprotein and osteopontin expression. These findings demonstrate the dual functional efficacy of Cu-MOF-74/PCL/HAp scaffolds in promoting both infection control and bone regeneration. These optimized Cu-MOF-74 concentrations (0.05–0.2%) effectively balance antimicrobial and osteogenic properties, presenting a promising strategy for bone defect repair in clinical applications. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

24 pages, 6972 KiB  
Article
Efficient and High-Precision Method of Calculating Maximum Singularity-Free Space in Stewart Platform Based on K-Means Clustering and CNN-LSTM-Attention Model
by Jie Tao, Huicheng Zhou and Wei Fan
Actuators 2025, 14(2), 74; https://doi.org/10.3390/act14020074 - 6 Feb 2025
Cited by 1 | Viewed by 717
Abstract
The determination of maximum singularity-free space is critical to structural design and motion control strategy in the Stewart platform. Nevertheless, in practical applications, there exist several limitations such as computational efficiency, calculation precision, and the reliability of computational results. To overcome those shortcomings, [...] Read more.
The determination of maximum singularity-free space is critical to structural design and motion control strategy in the Stewart platform. Nevertheless, in practical applications, there exist several limitations such as computational efficiency, calculation precision, and the reliability of computational results. To overcome those shortcomings, this work proposes an efficient and high-precision method for computing the maximum singularity-free space within the Stewart platform. Firstly, apply K-Means clustering to group the variables, including the range, mean, and standard deviation of driving rod lengths, and the clustering centroids and extreme rod lengths collectively form a set of scenarios to avoid large-scale searching. An additional sorting methodology with a specific parameter is proposed for sorting the aforementioned scenarios in descending order and detecting singular-prone cases. Secondly, compute the initial solution for maximum singularity-free length without gimbal lock through an analytical solution formula, enabling reduction in the search scope. Thirdly, introduce a novel scaling factor to resolve the problem of dimensional inconsistency between rotation and translation within the Jacobian matrix using dual quaternions, and determine the singularity based on the determinant of the newly proposed Jacobian matrix. Finally, employ a CNN-LSTM-Attention model for a secondary verification procedure, specifically targeting the challenge of singularities encountered when solving the forward kinematics of the Stewart platform using zero-position values. The experiments demonstrate that the accelerated discretization method for maximum singularity-free joint space and workspace is applicable to devices with diverse geometric configurations. For two practical Stewart platforms, compared with two conventional methods, this method improves computational efficiency and precision significantly. The computation time of the first platform is reduced by 97.54% and 98.07% respectively, while that of the second platform is cut by 80.84% and 81.80% respectively. In terms of precision, the first platform demonstrates 95.83% and 78% improvement respectively, and the second platform attains 99.99% improvement over two conventional methods. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

11 pages, 5070 KiB  
Communication
Glueless Multiple Input Multiple Output Dielectric Resonator Antenna with Improved Isolation
by Sumer Singh Singhwal, Ladislau Matekovits and Binod Kumar Kanaujia
Electronics 2023, 12(5), 1125; https://doi.org/10.3390/electronics12051125 - 25 Feb 2023
Cited by 2 | Viewed by 1634
Abstract
In this dissemination, a glueless compact dual port dielectric resonator antenna (DRA) is proposed for X-band applications. A prototype has been fabricated with RT Duroid substrate and Eccostock (ϵr = 10)-made DRA. The ring shaped DRA is excited by aperture coupled [...] Read more.
In this dissemination, a glueless compact dual port dielectric resonator antenna (DRA) is proposed for X-band applications. A prototype has been fabricated with RT Duroid substrate and Eccostock (ϵr = 10)-made DRA. The ring shaped DRA is excited by aperture coupled feeds maintaining symmetry between both the ports. Four cylindrical copper rods with four strips have been used to fix the DRA on the substrate and provide additional mechanical stability. Eight copper strips are used to provide impedance matching and impedance bandwidth (IBW) widening. The measured IBW of dual port DRA is 10.5% (8.05–8.95 GHz) and maximum gain of radiator is 6.2 dBi. The proposed antenna becomes compact when the net volume of DRA is approximately 3.5 cm3 and the volume of the substrate is 2.88 cm3, with a surface area of 36 cm2 and operating in X-band, which finds applications in satellite communication, weather radar, synthetic aperture radar, and telemetry tracking and control. Full article
(This article belongs to the Special Issue Disruptive Antenna Technologies Making 5G a Reality)
Show Figures

Figure 1

19 pages, 5318 KiB  
Article
Numerical Analysis of Fluid Forces for Flow Past a Square Rod with Detached Dual Control Rods at Various Gap Spacing
by Raheela Manzoor, Abdul Ghaffar, Dumitru Baleanu and Kottakkaran Sooppy Nisar
Symmetry 2020, 12(1), 159; https://doi.org/10.3390/sym12010159 - 13 Jan 2020
Cited by 7 | Viewed by 3573
Abstract
A two-dimensional numerical study was conducted for flow past a square rod in the presence of two control rods. One is placed vertically in the upstream direction and the second one is placed horizontally in the downstream direction of the square rod. The [...] Read more.
A two-dimensional numerical study was conducted for flow past a square rod in the presence of two control rods. One is placed vertically in the upstream direction and the second one is placed horizontally in the downstream direction of the square rod. The influence of gap spacing was studied by taking g1 = 1–5 and g2 = 0.5–5 (where g1 is the gap between the upstream control rod and the main rod, and g2 is the space between the main rod and the downstream control rod) at Re = 160. The simulation results were obtained in the form of vorticity contour, drag and lift coefficients, Strouhal number, and force statistics. Under the effect of gap spacing, three different flow modes were found and named according to their behavior. It was found that the mean drag coefficient showed decreasing behavior by increasing the value of g2 continually at a fixed value of g1. The largest value of C d m e a n was found at (g1, g2) = (1, 1) and the greatest percentage reduction in C d m e a n was obtained at (g1, g2) = (1, 3), which is 139.72%. The effect of thrust was also noticed for all selected values of g1 and g2. Furthermore, it was noticed that the Strouhal number and the root mean square values of the drag and lift coefficients smaller values than the single rod values, except for the Clrms value of (g1, g2) = (1, 3) and (1, 4). Full article
(This article belongs to the Special Issue Fluid Mechanics Physical Problems and Symmetry)
Show Figures

Figure 1

Back to TopTop