
symmetryS S

Article

Numerical Analysis of Fluid Forces for Flow Past
a Square Rod with Detached Dual Control Rods at
Various Gap Spacing

Raheela Manzoor 1, Abdul Ghaffar 2 , Dumitru Baleanu 3,4,5 and
Kottakkaran Sooppy Nisar 6,*

1 Mathematics Department, SBK Women’s University, Quetta 87300, Pakistan;
raheela_manzoor@sbkwu.edu.pk

2 Department of Mathematics, BUITEMS, Quetta 87300, Pakistan; abdulghaffar.jaffar@gmail.com
3 Department of Mathematics, Cankaya University, Anakara 06790, Turkey; dumitru@cankaya.edu.tr or

Baleanu@mail.cmuh.org.tw
4 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40447, Taiwan
5 Institute of Space Sciences, 077125 Magurele-Bucharest, Romania
6 Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University,

Wadi Aldawaser 11991, Saudi Arabia
* Correspondence: n.sooppy@psau.edu.sa

Received: 6 December 2019; Accepted: 6 January 2020; Published: 13 January 2020
����������
�������

Abstract: A two-dimensional numerical study was conducted for flow past a square rod in the
presence of two control rods. One is placed vertically in the upstream direction and the second one
is placed horizontally in the downstream direction of the square rod. The influence of gap spacing
was studied by taking g1 = 1–5 and g2 = 0.5–5 (where g1 is the gap between the upstream control
rod and the main rod, and g2 is the space between the main rod and the downstream control rod)
at Re = 160. The simulation results were obtained in the form of vorticity contour, drag and lift
coefficients, Strouhal number, and force statistics. Under the effect of gap spacing, three different
flow modes were found and named according to their behavior. It was found that the mean drag
coefficient showed decreasing behavior by increasing the value of g2 continually at a fixed value of g1.
The largest value of Cdmean was found at (g1, g2) = (1, 1) and the greatest percentage reduction in
Cdmean was obtained at (g1, g2) = (1, 3), which is 139.72%. The effect of thrust was also noticed for all
selected values of g1 and g2. Furthermore, it was noticed that the Strouhal number and the root mean
square values of the drag and lift coefficients smaller values than the single rod values, except for the
Clrms value of (g1, g2) = (1, 3) and (1, 4).

Keywords: control of vortex shedding; drag reduction; Lattice Boltzmann method; square rod;
dual control rods; passive control method

1. Introduction

A passive control method is a numerical technique adopted to control flow and thus save energy
by modifying the shape and size of an object or by attaching/detaching some additional tools such
as control rods or cylinders with the main object [1–3]. This method is simple and cheap compared
to an active control method, in which energy is externally supplied to control the flow. When flow
interacts with an object, a damaging of the structure occurs with a loss of energy. Therefore, it is
essential to control flow and save energy. A limited number of stationary object studies have been
conducted with the passive control method in order to reduce the fluid forces and to suppress vortex
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shedding (see [4–8] and so on). In the passive control method, the control rods/cylinders can be placed
horizontally or vertically either upstream or downstream of the main rod. Many experimental and
numerical studies based on these types of arrangements are available in the literature. A numerical
study of fluid past a square rod detached from a thin rod placed downstream was conducted by
Alam et al. [9] at Re = 56, 000. Tsutsui and Igrashi [10] used the passive control method using a control
rod placed upstream of the main rod by considering Re = 104. They observed a 63% drag reduction
along with two different types of flow modes. Turki [11] numerically simulated the flow structure
mechanism past a square rod attached with a controlling rod by taking Re = 110 − 200 using a control
volume finite element method. The author noted two different phenomena for Strouhal number (St)
values: firstly, for Re < 150, the value of St reduces and approaches a local minima at control rod
length h = 0.6 and then increases afterward; for Re ≥ 150, the values of St increase by increasing the
length of the rod. A numerical investigation of drag and lift coefficients on a square rod detached from
a control rod through a finite volume code was performed by Malikzadeh and Sohankar [12] with a
Reynolds number ranging from 50 to 200. The highest reduction in fluid forces was found at g = 3 and
Re = 160. Furthermore, they obtained three types of flow modes. In the first two modes, the vortex
shedding was suppressed completely. Islam et al. [13] numerically studied the influence of gap spacing
for flow past a main rod detached from a horizontal control rod. They obtained optimum spacing
values at g = 2–2.5. A study of fluid force reduction using two controlling rods was conducted by
Vamsee et al. [14]. One rod was placed upstream and the second one was placed downstream of the
main rod. They found a 27% reduction in drag force using the upstream controlling rod and a 35%
drag reduction by fixing the upstream controlling rod and varying the gap between the main rod and
the downstream controlling rod. A numerical examination of flow past a square rod detached from an
upstream controlling rod at the low value of Re was performed by Islam et al. [15]. They focused on
the effect of gap spacing with a g = 1–7 and an Re = 80–200, and the size of the controlling rod (h)
ranged from 0.1 d to 1 d. They obtained a maximum reduction in Cdmean of 142 at (h, g) = (20, 1) for
Re = 160. De Araujo et al. [16] numerically investigated the flow behavior over a square rod detached
from a controlling rod considering Re = 1250, and the length of the controlling rod varied up to twice
the size of the square rod. The flow simulation over a single circular rod in the presence of a controlling
rod was performed by Vu et al. [17] to study the effect of the length of the controlling rod and the Re on
the flow structure mechanism. It was reported that flow was suppressed completely when the length
of the controlling rod was greater than its critical value, which is proportional to Reynolds number.
Furthermore, they observed two different types of flow mode. Another numerical study based on flow
past a square rod with an upstream detached circular bar and a downstream horizontal splitter rod
was carried out by Yuan et al. [18]. They considered an Re = 100 where the diameter (d) of the circular
bar was in the range d = 1–5, gap spacing g = 0–7, and the splitter rod length l = 1–5. The maximum
reduction found in Cdmean was 68.7% at (D, g, l) = (2.5, 0, 3). Gupta [19] also numerically studied
vortex shedding suppression around a square rod at Re = 100 and observed a 10–15% drag reduction
using a small control rod downstream of the main rod. A comparative study for weakly compressible
(WCSPH) and incompressible smoothed particle hydro dynamics (ISPH) method was conducted by
Shadloo et al. [20] for a numerical solution of fluid flows over an airfoil and a square obstacle. They
used improved WCSPH and ISPH techniques to solve flow problems generated by the flow past these
two bluff bodies. The comparison of WCSPH and ISPH methods indicated that a weakly compressible
method produces numerical results as accurate and reliable as those of the incompressible smoothed
particle method. Numerical simulations for flow over an airfoil and a square obstacle using the ISPH
method with an improved solid boundary treatment approach such as the multiple boundary tangents
(MBT) method were performed by Shadloo et al. [21], and they found that the MBT boundary treatment
technique is very effective for tackling the boundaries of complex shapes. Furthermore, the usage of
the repulsive component of the Lennard-Jones potential (LJP) in the advection equation for repairing
particle fractures occurring in the SPH method has also been proposed and examined, and the ISPH
method was found to be is effective at naturally capturing the complex physics of bluff-body flows.
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The numerical Lattice Boltzmann method was used to solve the complex fluid flow problems. Such
flows are single-phase or multi-phase. This method is effective and can easily handle the problem.
Many studies are available in literature that are based on complex flow problems and have been solved
by the lattice Boltzmann method. The laminar-forced convection heat transfer of water–Cu nano-fluids
in a micro channel was studied by D’Orazio et al. [22] using the double population thermal lattice
Boltzmann method (TLBM). Simulations were performed for nanoparticle volume fractions equal
to 0.00, 0.02, and 0.04% and slip coefficients equal to 0.001, 0.01, and 0.1. The selected values of the
Reynolds number were 1, 10, and 50. It was found that a micro channel performs better heat transfers
at higher Reynolds number values. Meanwhile, for all selected values of Re, the average Nusselt
number increases slightly as the solid volume fraction increases and the slip coefficient increases.
The nano-scale lattice Boltzmann method was developed to predict the fluid flow and heat transfer of
air through the inclined lid-driven 2-D cavity, considering a large heat source by Goodarzi et al. [23].
Pure natural convection at Grashof numbers from 400 to 4,000,000 and mixed convection at Richardson
numbers from 0.1 to 10 at various cavity inclination angles were considered, and it was observed that
the present LBM model is appropriately able to simulate the supposed domain. Moreover, the effects
of inclination angle are more important at higher Richardson number values.

The above-mentioned literature shows limited knowledge about vortex shedding suppression
and force reduction through the passive control method using controlling rods at different positions.
Therefore, the present study sought to determine the influence of dual detached controlling rods with
different gap spacing at a fixed Reynolds number value, i.e., Re = 160.

The structure of this paper is based on the following sections. The lattice Boltzmann method (LBM)
is discussed shortly in the next section. The formulation of the problem and boundary conditions
are discussed in Section 3. The effects of the computation domain, the code validation, and the grid
independence study are described in Section 4. The obtained results are explained in Section 5, focusing
on the effect of gap spacing in the flow structure mechanism. Finally, important conclusions are
presented in Section 6.

2. The Lattice Boltzmann Method

In this study, the lattice Boltzmann approach was applied particularly for a 2-D viscous and
incompressible flow (Chen and Doolen [24]). The flow field for an unsteady and incompressible flow
was determined by continuity and momentum equations that are given below:

∇.ρu = 0. (1)

ρ

(
∂u
∂t

+ (u.∇)u
)
= −∇p + ρ∇2u (2)

where u, p, and ρ represent the velocity of flow, density, and pressure at certain intervals of time.
By applying the Chapman–Enskog expansion (Muhammad [25]) and Taylor’s series in Equations (1)
and (2), at a small Mach number

(
Ma = U∞

cs
<< 1

)
, a discrete form of the lattice Boltzmann equation

can be acquired (Rossi [26]):

hi(x + ei∆t, t + ∆t) = hi(x, t) −
hi − heq

i
τ

(3)

where hi is a distribution function that describes the position and velocity of a particle at a certain
period of time, τ = 3ν+ 1

2 is the stability parameter used to control the flow, ∆t is the time
increment, cs = 0.5780 is the speed of sound in a non-dimensionalized form, and heq

i is the equilibrium
distribution function related to the density distribution function, which is defined in Equation (4)
(d’Humières et al. [27]):

heq
i = ξiρ[1 + 3(ei.u)/c2 + 4.5(ei.u)

2/c4
− 1.5u2/c2

]
(4)
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where ξi is the weighting coefficient in the coupled form of the set of velocities.

ξ0 =
4
9

, (5)

ξ1 = ξ2 = ξ3 = ξ4 =
1
9

, (6)

ξ5 = ξ6 = ξ7 = ξ8 =
1

36
. (7)

The velocity vectors in the component form for the D2Q9 model are shown in Figure 1
(Qian et al. [28]).

ei =
[
eix, eiy

]
eix = (0, 1, 0,−1, 1, −1,−1, 1), (8)

eiy = (0, 0, 1, 0,−1, 1, 1,−1,−1). (9)

The kinematic viscosity, pressure, and density can be obtained through the following equations:

ν = 1/3(τ− 0.5), (10)

p = ρc2
s , (11)

ρ =
8∑

i = 0

hi, (12)

ρu = 1/ρ
8∑

i = 0

hi. (13)

Basically, the lattice Boltzmann method is based on two main steps: (i) streaming and (ii) collisions
(Succi [29]). The collisions take place between particles at each time step, and their velocities change
their directions, but the net mass and momentum are conserved. The initial boundary conditions are
applied after the streaming step, and the entire process is solved iteratively until the convergence is
ensured by the following relation:


∑

l, m [u(k+1)
l, m − u(k)

l, m]
2

∑
l, m [u(k+1)

l, m ]
2


1/2

≤ 1× 10−6. (14)

In the above equation, k represents the number of iterations. The LBM has several merits as
compared to other techniques, such as the finite volume or finite element methods. For example,
the streaming and collisions are local in nature, which provides an opportunity for parallel computing
(Mohammad [25]). It is explicit in nature and conditionally stable. The non-linear term in the
Navier–Stokes equation (Wolf-Gladrow [30] can easily be handled through this method. There is
no need to solve Laplace’s equation at each time step for the calculation of pressure, as it can be
obtained by solving the equation of state, and it is second-order accurate in both space and time
(Wolf-Gladrow [30] and Sukop [31]). In this study, a two-dimensional nine-velocity (D2Q9, where D is
the space dimensions, and Q is the number of particles) model, used in a standard Boltzmann equation,
was adopted [25,30,32].
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Figure 1. The D2Q9 lattice structure.

3. Problem Statements and Boundary Conditions

The computational domain was based on a square rod of size ‘d’ detached from two controlling
rods between a (2-D) plane channel having an upstream distance Lu = 8.0 d, a downstream length
Ld = 33.0 d, and a height H = 8.0 d (see Figure 2). The upstream controlling rod is placed in
a vertical form and the downstream rod is placed in a horizontal form with respect to the main
rod. L is the length of the channel, whereas l is the length and h the height of the controlling
rod. The parabolic velocity profile (u = 1.5 U∞(1− (y/H)2); v = 0) with speed U∞(= 0.0438595)
(where y is the vertical distance from the centreline, and U∞ is entrance velocity of the flow, and u and
v are the components of velocity vectors) was used for the inlet position of the channel. We used the
bounce back boundary conditions on the main and controlling rods as well as on the upper and lower
walls of the channel (Guo et al. [32]). Furthermore, we applied convective boundary conditions at the
exit of the computational domain (Sukop and Throne [31]). The momentum exchange method was
applied for the calculation of fluid forces. The important parameters regarding this flow problem are
as follows:

Reynolds number : Re =
u∞d
ν

, (15)

Strouhal number St =
fsd
u∞

, (16)

Drag coefficient : Cd =
2Fd

ρu2
∞d

, (17)

Lift coefficient : Cl =
2Fl

ρu2
∞d

, (18)

where fs , Fd , Fl, and ρ represent the vortex shedding frequency, the drag and lift forces, and the fluid
density, respectively.
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4. Computational Domain, Grid Independence and Code Validation Study

To study the effect of the grid points, we selected three different values of Lu , Ld, and H for g1 = 1
and g2 = 2 at a fixed value of Re = 160 and calculated the values of Cdmean, Clrms, and St (see Table 1).
The Cdmean consists of negative values for all selected cases and all values are approximately the same,
except for the result obtained from Lu = 8.0 d, Ld = 33.0 d, andH = 9.0 d. The obtained results in terms
of Cdmean, Clrms, and St for Cases II, IV, and V are similar. If Lu = 8.0 d, Ld = 35.0 d, and H = 8.0 d
from three cases with a similar result, it takes more time due to the maximum grid points. Therefore,
we simulate our results by using Lu = 8.0 d, Ld = 33.0 d, and H = 8.0 d.

Table 1. Physical parameters for different computational domains at g1 = 1, g2 = 2, and Re = 160.

Cases Cdmean Clrms St

(I) Lu = 7.0 d; Ld = 33.0 d; H = 8.0 d −0.425 0.1099 0.102

(II) Lu = 8.0 d; Ld = 33.0 d; H = 8.0 d −0.426 0.1095 0.096

(III) Lu = 9.0 d; Ld = 33.0 d; H = 11.0 d −0.427 0.1091 0.096

(IV) Lu = 8.0 d; Ld = 30.0 d; H = 8.0 d −0.426 0.1097 0.099

(V) Lu = 8.0 d; Ld = 35.0 d; H = 8.0 d −0.426 0.1096 0.102

(VI) Lu = 8.0 d; Ld = 33.0 d; H = 7.0 d −0.422 0.0609 0.099

(VII) Lu = 8.0 d; Ld = 33.0 d; H = 9.0 d −0.492 0.3623 0.108

The choice of grid is more important for any numerical simulation to achieve
accurate results. All computational results depend on it. In this regard, we took
three different grid points (10.0d, 20.0d, 30.0d, and 40.0d) comprised of the following:
(Xmax, Ymax) = (421.0, 81.0), (841.0, 161.0), (1261.0, 241.0), and (1681.0, 321.0). We calculated
the values of force statistics at these selected grid points, shown in Table 2. All values of the force
statistics are higher at d = 10.0 and minimum at d = 20.0 . We did not select d = 10.0 for the
present simulation. At d = 30.0 and 40.0, the grid points along the x- and y-axes are greater compared
to d = 10.0 and 20.0, but this would be computationally costly because it requires a great amount of
time to complete the simulation. Therefore, we selected d = 20.0 grid points for the present problem.
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Table 2. Grid independence study for flow over a square rod.

Cases Cdmean Cdrms Clrms St

d = 10.0 1.5932 0.0285 0.3688 0.3197

d = 20.0 1.5272 0.0229 0.3152 0.1712

d = 30.0 1.5458 0.0428 0.3033 0.2106

d = 40.0 1.5528 0.5921 0.3104 0.2193

To validate the present numerical method, different force coefficients such as Cdmean, St, Cdrms,
and Clrms for a single square rod at Reynolds number Re = 100 were calculated. The present results are
compared with previous published experimental and computational results in Table 3. The comparison
shows good agreement with previous published results.

Table 3. Comparison of Cdmean, St, Cdrms, and Clrms for flow past a single square cylinder at Re = 200.

Re = 200 Cdmean St

Saha et al. [33] 1.670 0.163

Sohankar et al. [34] 1.424 0.165

Okajima [35] 1.480 0.138

Norberg [36] 1.450 0.152

Abograis and Alshayji [37] 1.488 0.153

Present 1.519 0.155

Re = 200 Cdrms Clrms

Sohankar et al. [34] 0.012 0.012

Abograis and Alshayji [37] 0.027 0.027

Present 0.038 0.038

The uniform inflow velocity has a great impact on flow behavior and affects the iteration time.
Comparison between different uniform inflow velocities is shown in Figure 3a–c. The value of velocity
U∞ = 0.05383556 and 0.0438596 yields a faster convergence compared to U∞ = 0.03456217 .
The computational time for U∞ = 0.05383556 and 0.0438596 is the same. Therefore, we used
U∞ = 0.0438596 thereafter.
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Figure 3. Comparison of different uniform inflow velocities at (a) U∞ = 0.03456217, (b) 0.0438596,
and (c) 0.05383556.

5. Results and Discussion

In this section, we will study the effect of g and Re on flow behavior and its characteristics in
presence of two controlling rods. The gap between upstream vertical rod to square rod and square rod
to downstream horizontal controlling rod is taken from g1 = 1–5 and g2 = 0.5–5 at fixed Re = 160 .
The results are acquired in terms of vorticity, Cdrms, Clrms, St and force coefficients. In plot of vorticity
contour, the positive and negative vortices are shown through solid and dotted lines, respectively.

5.1. Vorticity Contours Visualization, Time-History Analysis of Drag and Lift Coefficients, and Energy Spectra
Analysis of the Lift Coefficient

In the present simulation, three different types of flow modes were obtained under the effects
of g1 = 1–5 and g2 = 0.5–5, and these flow modes were named according to the behavior of the
shed vortices near the main rod and the controlling rod and far downstream of the channel. The first
flow mode was found at g1 = 1 for g2 = 0.5–2, g1 = 2 for g2 = 0–5, g1 = 3 for g2 = 0–5,
and g1 = 4, 5 for g2 = 1.5–5 (see Figure 4a–c). In this flow mode, the shear layer emerging from the
upper and lower corners of the upstream vertical controlling rod reattach directly to the main rod and
the downstream controlling rod without any flow passing within the gap at g2 = 0–2 for all chosen
g1 values. When g2 > 2, symmetric behavior is observed between the main rod and the downstream
controlling rod due to its sufficient gap spacing. No vortex shedding was noticed within the gap in
this flow mode. Flow approaches the end of the downstream controlling rod, and due to its rotational
motion, vortices then start to appear at the downstream location throughout the channel. This type
of flow mode is named the shear layer reattachment (SLR). The strength of the vortices changes due
to the increasing value of g1 and g2. The weak vortex shedding is observed for g1 ≥ 3 and g2 ≥ 2,
respectively shown in Figure 4c.
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Figure 4. (a–e) Vorticity contour visualization of the shear layer reattachment (SLR) flow mode. (f–k)
Time trace analysis of drag and lift coefficients for the SLR flow mode. (l–n) Energy spectrum analyses
of lift coefficients for the SLR flow mode.

The Cd and Cl for the SLR flow mode are shown in Figure 4f–k. Cd represents the modulated
behavior due to an alternate vortex shedding throughout the channel, while Cl shows periodicity
due to an alternate trend of positive and negative shed vortices. The frequency of Cd increases with
increasing values of g1 for a fixed value of g2. The lift coefficient represents increasing and decreasing
behavior with increments in value of g1.

The energy spectra analysis of Cl for SLR flow mode is shown in Figure 4l–n. There is a single,
sharp peak for all cases discussed in this flow mode. The magnitude of the energy spectrum decreases
with increasing values of g2 for fixed values of g1. This is because, by increasing the value of gap
spacing, weak vortex shedding occurs (see Figure 4c,d). Therefore, the magnitude of the energy
spectrum reduces due to the increment in the upstream gap spacing. On the contrary, at a fixed value
of g1, by varying the values of g2, the length of the energy spectrum increases. The reason for this is
that the downstream horizontal controlling rod plays a vital role in generating vortices, as compared to
the upstream one.

The second existing flow characteristic is called the steady flow, which was examined at larger
values of g1 (g1 = 3–5) and smaller values of g2, i.e g2 = 1 (see Figure 5a–c). In this flow mode,
no shed vortices were observed within either gap, nor at the downstream location of the channel.
The flow remains steady throughout the channel, since in steady flow mode, the magnitude of Cd and
Cl contains constant values. Therefore, we cannot compute the Strouhal number values.
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Figure 5. (a–c) Vorticity contour visualization of the steady flow mode.

The third and last existing flow mode is only obtained at g1 = 1 for g2 = 3–5 (see Figure 6a,c).
In this flow mode, due to sufficient spacing between the main rod and the downstream controlling rod,
the flow rolls up in between the gaps. These shed vortices move towards the downstream location and
mix up with vortices that are formed behind the horizontal downstream controlling rod. The size and
strength of shed vortices are affected by changing the value to g2 from 3–5 at a fixed value of g1 = 1.
There was no flow between the gap of the upstream controlling rod to the main rod due to insufficient
space for vortex shedding generation. The vortices only generate in the second gap. Because of this,
we named this flow characteristic as semi-developed vortex shedding (SDVS).
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Figure 6. (a–c) Vorticity contour visualization of the SDVS flow mode. (d–i) Time trace analysis of drag
and lift coefficients for the SDVS flow mode. (j–l) Energy spectrum analyses of lift coefficients for the
SDVS flow mode.

The drag (Cd) and lift (Cl) coefficients for the SDVS flow mode are shown in Figure 6d–i.
The magnitude of Cd contains negative values with periodic behavior, and its magnitude decreases
as the values of g2 increase, while the lift coefficient has periodic behavior for all chosen cases.
The magnitude of the lift coefficient for g1 = 1 and g2 = 3 is greater than that for g1 = 1 at g2 = 4
and 5. This is because the shed vortices for the case of g1 = 1 and g2 = 3 are stronger and greater in
size as compared to g1 = 1 at g2 = 4, 5.

The energy spectrum analysis for the SDVS flow mode contains a sharp, single, broad-banded
peak because of an alternate, regular vortex shedding at the downstream location of the channel (see
Figure 6j-l). The magnitude of energy spectrum decreases by increasing the value of g2 at a fixed value
of g1.

The complete description of all existing flow modes at different values of g1 and g2 is discussed in
Table 4.

Table 4. Existing flow modes at g1 = 1–5 and g2 = 0–5 at Re = 160.

Flow Modes (g1, g2)

Shear Layer Reattachment
(1, 0.5), (1, 1), (1, 1.5), (1, 2), (2, 0), (2, 0.5), (2, 1), (2, 1.5), (2, 2), (2, 3), (2,
4), (2, 5), (3, 0), (3, 1.5), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1.5), (4, 2), (4, 3), (4,

4), (4, 5), (5, 1.5), (5, 2), (5, 3), (5, 4), (5, 5)
Steady (3, 0.5), (3, 1), (4, 0), (4, 0.5), (4, 1), (5, 0), (5, 0.5), (5, 1)

Semi-Developed Vortex Shedding (1, 3), (1, 4), (1, 5)

5.2. Physical Parameters

The effects of the spacing ratio (g1 = 1–5 and g2 = 0–5) of the upstream and downstream
control rods to the main rod at a fixed Reynolds number Re = 160 in terms of force statistics such
as Cdmean, Cdrms, Clrms, and St are shown in Figure 7a–d. The value of Cdmean against g2 at fixed
values of g1 is drawn in Figure 7a, and for comparison, single rod data are also included. Cdmean
contains smaller values than the single rod (SC) values, and these values decrease when increasing the
values of g2 for all selected values of g1. The largest value of Cdmean was found at (g1, g2) = (1, 1),
i.e., −0.3956, where the flow mode is SLR. The reason for the largest Cdmean value at (g1, g2) = (1, 1)
is that, at a small values of gap spacing, both control rods are closed to the main rod and strongly affect
the flow when it is past over the main rod. Therefore, the Cdmean value increases at that gap spacing,
while the smallest Cdmean value was obtained at (g1, g2) = (1, 3) i.e., −0.4893, where the existing flow
mode is SDVS. In this flow mode, vortices are partially generated in a single gap.
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Figure 7. (a–e) The effect of the spacing ratio (g1 = 1–5, g2 = 0–5) of the upstream and downstream
control rods to the main rod at a fixed Re = 160 in terms of statistics force and percentage reduction in
Cdmean.

The Cdrms and Clrms values against g2 are shown in Figure 7b,c. Both Cdrms and Clrms have
minimum values that are lower than the single rod values at all chosen g1 values, except for some
values of Clrms obtained at (g1, g2) = (1, 3) and (1, 4), where Clrms values are greater than the
single rod values. By increasing the value of g2, Cdrms and Clrms showed fluctuating behavior,
which was sometimes increasing and sometimes decreasing. The maximum and minimum values
of Cdrms occurred at (g1, g2) = (5, 2) and (5, 0). The flow mode for the maximum and minimum
values of Cdrms are SLR and SF modes, respectively. The maximum value of Clrms was examined
at (g1, g2) = (1, 3), and it was 0.2910. At these values of g1 and g2, a strong vortex shedding is
observed within the second gap as well as downstream of the channel. As a result, the lift coefficient
increases and approaches its maximum value (see Figure 7c). The St graph against g2 is plotted in
Figure 7d for a fixed value of g1. It has smaller values than the St value of the single rod, except when
(g1, g2) = (2, 0.5), whose St value is approximately equal to the single rod St value. A sudden jump
in Strouhal number is also visualized at g1 = 1 for g2 = 0.5–1. After that, small changes in terms
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of increasing and decreasing behavior of St were observed until g2 = 5. The greatest value of St was
obtained at (g1, g2) = (2, 0.5), and this value is 0.1258. The detail in the percentage reduction of
Cdmean is shown in Figure 7e and Table 5. There are mixed trends that are increasing or decreasing
until g2 = 2, after which the percentage reduction in Cdmean increases as the values of g2 increase.
The maximum reduction in the Cdmean was obtained at (g1, g2) = (1, 3), and this value is 139.72%,
and the minimum reduction was acquired at (g1, g2) = (1, 1), and this value is 132.1%.

Table 5. Percentage reduction in Cdmean at g1 = 1–5 and g2 = 0–5 for Re = 160.

% Reduction Cdmean g2 = 0.5 g2 = 1 g2 = 1.5 g2 = 2 g2 = 3 g2 = 4 g2 = 5

g1 = 1 135.21 132.11 135.06 134.58 139.72 139.22 139.22

g1 = 2 137.11 136.94 137.58 139.09 139.37 139.03 138.85

g1 = 3 137.31 137.45 137.64 137.82 138.08 137.88 137.65

g1 = 4 136.52 136.57 136.58 135.91 136.39 136.62 136.63

g1 = 5 134.30 134.36 133.87 132.79 134.21 134.60 134.53

6. Conclusions

Numerical investigations were performed through the LBM method to study the main impact of
g for flow past a square rod detached from two controlling rods, placed in the up- and downstream
directions. Re = 160 was fixed, and gap spacing (g1, g2) between the upstream control rod and the
main rod and between the main rod and the downstream control rod was varied, i.e. where g1 = 1–5
and g2 = 0.5–5. First, we checked the validity of the present code by comparing the obtained results
with available data in the literature. After validation, we performed simulations for the present
problem and obtained the following:

(i) Three different types of flow modes were found and were named (a) shear layer reattachment
(SLR), (b) steady flow mode (SF), and (c) semi-developed vortex shedding (SDVS).

(ii) The Cdmean values were negative for all selected combinations of g1 and g2 due to the effect
of trust.

(iii) The values of Cdmean decreased by increasing the gap spacing. The maximum value of Cdmean
was obtained at

(
g1, g2

)
= (1, 1)i.e.,−0.3956.

(iv) The values of Cdrms and Clrms increased by increasing the value of g2 at fixed values of g1. The
maximum values of Cdrms and Clrms were obtained at 0.0084 and 0.2910, respectively.

(v) The greatest reduction in Cdmean was obtained at
(
g1, g2

)
= (1, 3), and this value was 139.72%.

(vi) The minimum reduction was acquired at
(
g1, g2

)
= (1, 1), and this value was 132.1%.
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Nomenclature

Cd Drag
Cl Lift
Cdmean Mean drag force
Cdrms Root-mean-square value of drag force
Clrms Root-mean-square value of lift force
Cs Speed of sound
h Height of the control rods
d Size of the main rod
l Length of the control rods
ei Velocities direction
Fd Horizontal component of force
F1 Transverse component of force
fs Vortex shedding
hi Density distribution function
hi
(eq) Equilibrium distribution function

Lu Upstream position
Ld Downstream position
Q Number of particles
Re Reynolds number
St Strouhal number
U∞ Uniform inflow velocity
SF Steady flow
SLR Shear layer reattachment
SDVS Semi developed vortex shedding
SR Single rod
Greek Symbols
ν Kinematic viscosity
ρ Fluid density
ξ Weighting coefficients
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