Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = dry tropical forest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1538 KiB  
Article
Soil Fungal Activity and Microbial Response to Wildfire in a Dry Tropical Forest of Northern Colombia
by Eliana Martínez Mera, Ana Carolina Torregroza-Espinosa, Ana Cristina De la Parra-Guerra, Marielena Durán-Castiblanco, William Zapata-Herazo, Juan Sebastián Rodríguez-Rebolledo, Fernán Zabala-Sierra and David Alejandro Blanco Alvarez
Diversity 2025, 17(8), 546; https://doi.org/10.3390/d17080546 - 1 Aug 2025
Viewed by 193
Abstract
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire [...] Read more.
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire in 2014. Twenty soil samples were collected for microbiological (10 cm depth) and physicochemical (30 cm) analysis. Basal respiration was measured using Stotzky’s method, nitrogen mineralization via Rawls’ method, and fungal diversity through culture-based identification and colony-forming unit (CFU) counts. Diversity was assessed using Simpson, Shannon–Weaver, and ACE indices. The soils presented low organic matter (0.70%) and nitrogen content (0.035%), with reduced biological activity as indicated by basal respiration (0.12 kg C ha−1 d−1) and mineralized nitrogen (5.61 kg ha−1). Four fungal morphotypes, likely from the genus Aspergillus, were identified. Simpson index indicated moderate dominance, while Shannon–Weaver values reflected low diversity. Correlation analysis showed Aspergillus-3 was positively associated with moisture, whereas Aspergillus-4 correlated negatively with pH and sand content. The species accumulation curve reached an asymptote, suggesting an adequate sampling effort. Although no control site was included, the findings provide a baseline characterization of post-fire soil microbial structure and function in a dry tropical ecosystem. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

29 pages, 4469 KiB  
Article
Assessment of Large Forest Fires in the Canary Islands and Their Relationship with Subsidence Thermal Inversion and Atmospheric Conditions
by Jordan Correa and Pedro Dorta
Geographies 2025, 5(3), 37; https://doi.org/10.3390/geographies5030037 - 1 Aug 2025
Viewed by 208
Abstract
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the [...] Read more.
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the Sahara, which frequently result in intense heatwaves. During the onset of the LFFs, the base of the subsidence thermal inversion layer—separating a lower layer of cool, moist air from an upper layer of warm, dry air—is typically located at an altitude of around 350 m above sea level, approximately 600 m below the usual average. Understanding these Saharan air advection events is crucial, as they significantly alter the vertical thermal structure of the atmosphere and create highly conducive conditions for wildfire ignition and spread in the forested mid- and high-altitude zones of the archipelago. Analysis of meteorological records from various weather stations reveals that the average maximum temperature on the first day of fire ignition is 30.3 °C, with mean temperatures of 27.4 °C during the preceding week and 28.9 °C throughout the fire activity period. Relative humidity on the ignition days averages 24.3%, remaining at around 30% during the active phase of the fires. No significant correlation has been found between dry or wet years and the occurrence of LFFs, which have been recorded across years with widely varying precipitation levels. Full article
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Variations in Fine-Root Traits of Pseudotsuga sinensis Across Different Rocky-Desertification Gradients
by Wangjun Li, Shun Zou, Dongpeng Lv, Bin He and Xiaolong Bai
Diversity 2025, 17(8), 533; https://doi.org/10.3390/d17080533 - 29 Jul 2025
Viewed by 164
Abstract
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, [...] Read more.
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, subtropical, and temperate forests, leaving a significant gap in comprehensive knowledge regarding fine-root responses in rocky-desertification habitats. This study investigates the fine roots of Pseudotsuga sinensis across varying degrees of rocky desertification (mild, moderate, severe, and extremely severe). By analyzing fine-root morphological and nutrient traits, we aim to elucidate the trait differences and correlations under different desertification intensities. The results indicate that root dry matter content increases significantly with escalating desertification severity. Fine roots in mild and extremely severe desertification exhibit notably higher root C, K, and Mg concentrations compared to those in moderate and severe desertification, while root Ca concentration shows an inverse trend. Our correlation analyses reveal a highly significant positive relationship between specific root length and specific root area, whereas root dry matter content demonstrates a significant negative correlation with elemental concentrations. The principal component analysis (PCA) further indicates that the trait associations adopted by the forest in mild- and extremely severe-desertification environments are different from those in moderate- and severe-desertification environments. This study did not account for soil nutrient dynamics, microbial diversity, or enzymatic activity—key factors influencing fine-root adaptation. Future research should integrate root traits with soil properties to holistically assess resource strategies in rocky-desertification ecosystems. This study can serve as a theoretical reference for research on root characteristics and adaptation strategies of plants in rocky-desertification habitats. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

16 pages, 1285 KiB  
Article
The Physiological Cost of Being Hot: High Thermal Stress and Disturbance Decrease Energy Reserves in Dragonflies in the Wild
by Eduardo Ulises Castillo-Pérez, Angélica S. Ensaldo-Cárdenas, Catalina M. Suárez-Tovar, José D. Rivera-Duarte, Daniel González-Tokman and Alex Córdoba-Aguilar
Biology 2025, 14(8), 956; https://doi.org/10.3390/biology14080956 - 29 Jul 2025
Viewed by 218
Abstract
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due [...] Read more.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due to increased metabolic demands and physiological stress. We evaluated thermal stress in 16 insect dragonfly species during two sampling periods (2019 and 2022) in preserved and disturbed sites within a tropical dry forest in western Mexico. Also, we compared energetic condition (lipid and protein content) and thoracic mass for the seven most abundant species between both habitat types. In preserved sites, insects showed higher thermal stress at lower maximum temperatures, which decreased as temperatures increased. Dragonflies in disturbed sites maintained consistent levels of thermal stress across the temperature gradient. Thermal stress was linked to lower lipid and protein content, and individuals from disturbed sites had reduced energy reserves. We also found a weak but consistent positive relationship between mean ambient temperature and protein content. In preserved sites, thoracic mass increased with thermal stress, but only at high mean temperatures. These findings suggest that although species can persist in disturbed environments, their energetic condition may be compromised, potentially affecting their performance and fitness. Preserving suitable habitats is essential for preserving both biodiversity and ecological function. Full article
Show Figures

Figure 1

14 pages, 3033 KiB  
Article
An Overlooked New Endemic Species of Renonus DeLong, 1959 (Hemiptera: Cicadellidae: Deltocephalinae: Athysanini) from the Seasonally Dry Forest of Western Mexico
by J. Adilson Pinedo-Escatel
Taxonomy 2025, 5(3), 37; https://doi.org/10.3390/taxonomy5030037 - 18 Jul 2025
Viewed by 272
Abstract
The leafhopper genus Renonus is one of the rarest genera in the leafhopper tribe Athysanini. The Mexican endemic monotypic species, Renonus rubraviridis DeLong, is historically known from few localities, and since the original description, no additional data has been provided. During an ongoing [...] Read more.
The leafhopper genus Renonus is one of the rarest genera in the leafhopper tribe Athysanini. The Mexican endemic monotypic species, Renonus rubraviridis DeLong, is historically known from few localities, and since the original description, no additional data has been provided. During an ongoing survey conducted in western Mexico over the Seasonally Dry Tropical Forests, including the surroundings of the Estación de Biología Chamela (IB-UNAM), specimens of R. rubraviridis and others that do not morphologically fit with previously described species were collected. Herein, a new endemic species to Mexico, Renonus cuixmalensis sp. nov., is described and illustrated in detail. In addition, morphological notes of R. rubraviridis, the key to species, a map of distribution, a habitat description, and a discussion about the strong influence on distribution through the Seasonally Tropical Dry Forest are given. Full article
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
by Lilisbeth Rodríguez-Castro, Adriel M. Sierra, Juan Carlos Villarreal Aguilar and Kristin Saltonstall
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Viewed by 264
Abstract
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during [...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems. Full article
Show Figures

Figure 1

20 pages, 5689 KiB  
Article
The Pyrogeography of the Gran Chaco’s Dry Forest: A Comparison of Clustering Algorithms and the Scale of Analysis
by María Cecilia Naval-Fernández, Mario Elia, Vincenzo Giannico, Laura Marisa Bellis, Sandra Josefina Bravo and Juan Pablo Argañaraz
Forests 2025, 16(7), 1114; https://doi.org/10.3390/f16071114 - 5 Jul 2025
Viewed by 485
Abstract
(1) Background: Changes in the spatial, temporal, and magnitude-related patterns of fires caused by humans are expected to exacerbate with climate change, significantly impacting ecosystems and societies worldwide. However, our understanding of fire regimes in many regions remains limited, largely due to the [...] Read more.
(1) Background: Changes in the spatial, temporal, and magnitude-related patterns of fires caused by humans are expected to exacerbate with climate change, significantly impacting ecosystems and societies worldwide. However, our understanding of fire regimes in many regions remains limited, largely due to the inherent complexity of fire as an ecological process. Pyrogeography, combined with unsupervised learning methods and the availability of long-term satellite data, offers a robust framework for approaching this problem. The purpose of the study is to identify the pyroregions of the Argentine Gran Chaco, the world’s largest continuous tropical dry forest region. (2) Methods: Using globally available fire occurrence datasets, we computed five fire metrics, related to the extent, frequency, intensity, size, and seasonality of fires at three spatial scales (5, 10, and 25 km). In addition, we tested two widely used cluster algorithms, the K-means algorithm and the Gaussian Mixture Model (GMM). (3) Results and Discussion: The identification of pyroregions was dependent on the clustering algorithm and scale of analysis. The GMM algorithm at a 25 km scale ultimately demonstrated more coherent ecological and spatial distributions. GMM identified six pyroregions, which were labeled based on three metrics in the following order: annual burned area (categorized in low, regular or high), interannual variability of fire (rare, occasional, frequent), and fire intensity (low, moderate, intense). The values were as follows: LRM (22% of study area), ROI (19%), ROM (14%), LOM (10%), ROL (9%), and HFL (4%). (4) Conclusions: Our study provides the most comprehensive delineation of the Argentine Gran Chaco’s Dry Forest pyroregions to date, and highlights both the importance of determining the optimal scale of analysis and the critical role of clustering algorithms in efforts to accurately characterize the diverse attributes of fire regimes. Furthermore, it emphasizes the importance of integrating fire ecology principles and fire management perspectives into pyrogeographic studies to ensure a more comprehensive and meaningful characterization of fire regimes. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

24 pages, 8390 KiB  
Article
Impact of Permanent Preservation Areas on Water Quality in a Semi-Arid Watershed
by Fernanda Helena Oliveira da Silva, Fernando Bezerra Lopes, Bruno Gabriel Monteiro da Costa Bezerra, Noely Silva Viana, Isabel Cristina da Silva Araújo, Nayara Rochelli de Sousa Luna, Michele Cunha Pontes, Raí Rebouças Cavalcante, Francisco Thiago de Alburquerque Aragão and Eunice Maia de Andrade
Environments 2025, 12(7), 220; https://doi.org/10.3390/environments12070220 - 27 Jun 2025
Viewed by 561
Abstract
Water is scarce in semi-arid regions due to environmental limitations; this situation is aggravated by changes in land use and land cover (LULC). In this respect, the basic ecological functions of Permanent Preservation Areas (PPAs) help to maintain water resources. The aim of [...] Read more.
Water is scarce in semi-arid regions due to environmental limitations; this situation is aggravated by changes in land use and land cover (LULC). In this respect, the basic ecological functions of Permanent Preservation Areas (PPAs) help to maintain water resources. The aim of this study was to evaluate the relationship between the LULC and water quality in PPAs in a semi-arid watershed, from 2009 to 2016. The following limnological data were analyzed: chlorophyll-a, transparency, total nitrogen and total phosphorus. The changes in LULC were obtained by classifying images from Landsat 5, 7 and 8 into three types: Open Dry Tropical Forest (ODTF), Dense Dry Tropical Forest (DDTF) and Exposed Soil (ES). Spearman correlation and principal component analysis were applied to evaluate the relationships between the parameters. There was a significant positive correlation between DDTF and the best limnological conditions. However, ES showed a significant negative relationship with transparency and a positive relationship with chlorophyll-a, indicating a greater input of sediments and nutrients into the water. The PCA corroborated the results of the correlation. It is therefore essential to prioritize the preservation and restoration of the vegetation in these sensitive areas to ensure the sustainability of water resources. Future studies should assess the impact of specific human activities, such as agriculture, deforestation and livestock farming, on water quality in the PPAs. Full article
Show Figures

Figure 1

13 pages, 1834 KiB  
Article
Ancient Lineages of the Western and Central Palearctic: Mapping Indicates High Endemism in Mediterranean and Arid Regions
by Şerban Procheş, Syd Ramdhani and Tamilarasan Kuppusamy
Diversity 2025, 17(7), 444; https://doi.org/10.3390/d17070444 - 23 Jun 2025
Viewed by 350
Abstract
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start [...] Read more.
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start of a continuum from temperate to tropical forest groups and leading to Indo-Malay endemics. In contrast, western Palearctic endemics are typically associated with arid or seasonally dry (Mediterranean) climates and vegetation. Those lineages occurring in the central Palearctic are typically of western origin. Here, we use phylogenetic age (older than 34 million years (My)) to define a list of tetrapod and vascular plant lineages endemic to the western and central Palearctic, map their distributions at the ecoregion scale, and combine these maps to illustrate and understand lineage richness and endemism patterns. Sixty-three ancient lineages were recovered, approximately half of them reptiles, with several herbaceous and shrubby angiosperms, amphibians, and rodents, and single lineages of woody conifers, insectivores, and birds. Overall, we show high lineage richness in the western Mediterranean, eastern Mediterranean, and Iran, with the highest endemism values recorded in the western Mediterranean (southern Iberian Peninsula, southern France). This paints a picture of ancient lineage survival in areas of consistently dry climate since the Eocene, but also in association with persistent water availability (amphibians in the western Mediterranean). The almost complete absence of ancient endemic bird lineages is unusual and perhaps unique among the world’s biogeographic regions. The factors accounting for these patterns include climate since the end of the Eocene, micro-habitats and micro-climates (of mountain terrain), refugia, and patchiness and isolation (of forests). Despite their aridity adaptations, some of the lineages listed here may be tested under anthropogenic climatic change, although some may extend into the eastern Palearctic. We recommend using these lineages as flagships for conservation in the study region, where their uniqueness and antiquity deserve greater recognition. Full article
Show Figures

Figure 1

13 pages, 5333 KiB  
Brief Report
Fungal Diversity in the Dry Forest and Salt Flat Ecosystems of Reserva Ecologica Arenillas, El Oro, Ecuador
by Débora Masache, Fausto López, Ángel Benítez, Teddy Ochoa and Darío Cruz
Diversity 2025, 17(6), 422; https://doi.org/10.3390/d17060422 - 15 Jun 2025
Viewed by 674
Abstract
Fungi are a diverse and essential group that play crucial ecological roles. However, they remain understudied in tropical countries like Ecuador in terms of their forest or protected areas, particularly across diverse ecosystem zones such as seasonal forests and salt flats. This study [...] Read more.
Fungi are a diverse and essential group that play crucial ecological roles. However, they remain understudied in tropical countries like Ecuador in terms of their forest or protected areas, particularly across diverse ecosystem zones such as seasonal forests and salt flats. This study aimed to inventory fungal diversity in two specific zones: the dry forest (DF) and the salt flat (SF) within the Reserva Ecologica Arenillas (REAR), located in El Oro, Ecuador. The results recorded 162 specimens representing 47 species belonging to 34 genera, identified morphologically. Although statistically significant, the difference in species richness and abundance between the dry forest and the salt flat was minimal, with the dry forest showing slightly higher values. Nonetheless, certain species were prevalent in both ecosystems, such as Cerrena hydnoides, Pycnoporus sanguineus, Hexagonia tenuis, and Chondrostereum sp., alongside four species with resupinate habit, all of them growing on decayed wood. The Shannon and Simpson indices were calculated to assess alpha diversity, revealing higher diversity in the DF. To evaluate differences in community composition between habitats, non-metric multidimensional scaling (NMDS) and permutational analysis of variance (PERMANOVA) were applied, indicating greater species turnover and dominance of specific taxa in the DF compared to the SF. These findings highlight the importance of the fungal diversity found in the REAR while also pointing to the need for more exhaustive monitoring and comparative studies with other wild or protected areas to fully understand and conserve this biodiversity. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

15 pages, 2684 KiB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Cited by 1 | Viewed by 599
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

26 pages, 5576 KiB  
Article
Comparison Between Traditional Forest Inventory and Remote Sensing with Random Forest for Estimating the Periodic Annual Increment in a Dry Tropical Forest
by Anelisa Pedroso Finger, Rinaldo Luiz Caraciolo Ferreira, Mayara Dalla Lana, José Antônio Aleixo da Silva, Emanuel Araújo Silva, Fábio Marcelo Breunig, Polyanna da Conceição Bispo, Veraldo Liesenberg and Sara Sebastiana Nogueira
Forests 2025, 16(6), 998; https://doi.org/10.3390/f16060998 - 13 Jun 2025
Viewed by 511
Abstract
This study evaluates the effectiveness of combining remote sensing techniques with the Random Forest algorithm for estimating the Periodic Annual Increment (PAI) in a dry tropical forest located within the Caatinga biome in northeastern Brazil. The analysis integrates forest inventory data collected from [...] Read more.
This study evaluates the effectiveness of combining remote sensing techniques with the Random Forest algorithm for estimating the Periodic Annual Increment (PAI) in a dry tropical forest located within the Caatinga biome in northeastern Brazil. The analysis integrates forest inventory data collected from permanent plots monitored between 2011 and 2019 with Landsat satellite imagery processed through the Google Earth Engine platform. By incorporating surface reflectance and vegetation indices, the approach significantly improved the accuracy of productivity estimates while reducing the costs and efforts associated with traditional field-based methods. The Random Forest model achieved a strong performance (R2 = 0.8867; RMSE = 0.87), and its predictions were further refined using post-processing correction factors. These results demonstrate the potential of data-driven modeling to support forest monitoring and sustainable management practices, especially in ecosystems vulnerable to the impacts of climate change. Full article
Show Figures

Figure 1

19 pages, 4283 KiB  
Article
Simulating Energy Balance Dynamics to Support Sustainability in a Seasonally Dry Tropical Forest in Semi-Arid Northeast Brazil
by Rosaria R. Ferreira, Keila R. Mendes, Pablo E. S. Oliveira, Pedro R. Mutti, Demerval S. Moreira, Antonio C. D. Antonino, Rômulo S. C. Menezes, José Romualdo S. Lima, João M. Araújo, Valéria L. Amorim, Nikolai S. Espinoza, Bergson G. Bezerra, Cláudio M. Santos e Silva and Gabriel B. Costa
Sustainability 2025, 17(12), 5350; https://doi.org/10.3390/su17125350 - 10 Jun 2025
Cited by 1 | Viewed by 543
Abstract
In semi-arid regions, seasonally dry tropical forests are essential for regulating the surface energy balance, which can be analyzed by examining air heating processes and water availability control. The objective of this study was to evaluate the ability of the Brazilian Developments on [...] Read more.
In semi-arid regions, seasonally dry tropical forests are essential for regulating the surface energy balance, which can be analyzed by examining air heating processes and water availability control. The objective of this study was to evaluate the ability of the Brazilian Developments on the Regional Atmospheric Modelling System (BRAMS) model in simulating the seasonal variations of the energy balance components of the Caatinga biome. The surface measurements of meteorological variables, including air temperature and relative humidity, were also examined. To validate the model, we used data collected in situ using an eddy covariance system. In this work, we used the BRAMS model version 5.3 associated with the Joint UK Land Environment Simulator (JULES) version 3.0. The model satisfactorily represented the rainfall regime over the northeast region of Brazil (NEB) during the wet period. In the dry period, however, the coastal rainfall pattern over the NEB region was underestimated. In addition, the results showed that the surface fluxes linked to the energy balance in the Caatinga were impacted by the effects of rainfall seasonality in the region. The assessment of the BRAMS model’s performance demonstrated that it is a reliable tool for studying the dynamics of the dry forest in the region, providing valuable support for sustainable management and conservation efforts. Full article
Show Figures

Figure 1

18 pages, 962 KiB  
Article
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
by Iván Daniel Filip, Pablo Luis Peri, Natalia Banegas, José Nasca, Mónica Sacido, Claudia Faverin and Ronaldo Vibart
Sustainability 2025, 17(11), 5012; https://doi.org/10.3390/su17115012 - 29 May 2025
Viewed by 510
Abstract
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in [...] Read more.
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 7730 KiB  
Article
The Importance of Different Biomes (Atlantic Forest, Cerrado, and Caatinga) in the Regional Structuring of Neotropical Dragonfly Assemblages
by Karolina Teixeira, Acácio de Sá Santos, Diogo Silva Vilela, Cíntia Ribeiro and Marciel Elio Rodrigues
Diversity 2025, 17(5), 345; https://doi.org/10.3390/d17050345 - 14 May 2025
Viewed by 528
Abstract
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at [...] Read more.
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at different spatial scales allows us to comprehend how environmental modifications can affect biodiversity on a local and regional scale. The objective of this study was to evaluate the biodiversity of Odonata species using taxonomic diversity metrics (richness and composition) in areas of Cerrado, Atlantic Forest, and Caatinga and to evaluate which sets of local and spatial environmental variables are associated with these assemblages among the different areas evaluated. The study was conducted in the state of Bahia, where 49 streams were sampled, including 17 in the Atlantic Forest, 18 in the Caatinga, and 15 in the Cerrado. Our results demonstrate a high diversity of Odonata species, with 95 species collected. We found a similar species richness among the regions sampled. However, each region presented a distinct composition, with greater similarity between the Cerrado and the Caatinga. Spatial predictors along with some environmental variables were associated with the Caatinga and Cerrado. Some environmental variables, such as the amount of riparian vegetation and aquatic vegetation, were associated with the Cerrado. The results highlighted that each of the evaluated regions are fundamental for maintaining and conserving the regional dragonfly biodiversity. The lack of conservation of aquatic ecosystems in the different regions leads to local species loss and, consequently, to a loss of regional Odonata biodiversity. Full article
(This article belongs to the Special Issue Tropical Aquatic Biodiversity)
Show Figures

Figure 1

Back to TopTop