Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = dry spray deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1321 KiB  
Article
Assessment of Innovative Dry Powders for Inhalation of a Synergistic Combination Against Mycobacterium tuberculosis in Infected Macrophages and Mice
by Faustine Ravon, Emilie Berns, Isaline Lambert, Céline Rens, Pierre-Yves Adnet, Mehdi Kiass, Véronique Megalizzi, Cédric Delporte, Alain Baulard, Vanessa Mathys, Samira Boarbi, Nathalie Wauthoz and Véronique Fontaine
Pharmaceutics 2025, 17(6), 705; https://doi.org/10.3390/pharmaceutics17060705 - 27 May 2025
Viewed by 568
Abstract
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages [...] Read more.
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages make pulmonary administration highly attractive. This study aimed to develop and assess the efficacy of dry powders for inhalation of VAN microparticles embedded with THL. Methods: The dry powders produced by spray-drying, with or without hydrogenated castor oil (HCO), were characterized for their physicochemical properties among others by HPLC-DAD. The fast-screening impactor was used to determine powder aerodynamic properties, and VAN and THL releases were established from the paddle over disk method. Biological activities were assessed in a new M. bovis-infected macrophage model and in Mtb-infected mice. Results and Discussion: The addition of 25% HCO enables co-deposition (fine particle dose) at the desired weight ratio and co-releasing of VAN and THL in aqueous media. Microparticles with 0% to 50% HCO drastically reduced cytoplasmic Mycobacterium bovis survival (99.9% to 62.5%, respectively), with higher efficacy at low HCO concentration. Consequently, VAN/THL with or without 25% HCO was evaluated in Mtb-infected mice. Although no decrease in Mtb lung burden was observed after two weeks of administration, the endotracheal administration of VAN 500 mg/kg and THL 50 mg/kg with 25% HCO administrated three times during five days concomitantly with daily oral rifampicin (10 mg/kg) demonstrated 2-fold bacterial burden reduction compared to the group treated with RIF alone. Conclusions: HCO was crucial for obtaining a fine particle dose at the synergistic weight ratio (VAN/THL 10:1) and for releasing both drugs in aqueous media. With oral administration of the first-line rifampicin, the dry powder VAN/THL/25% HCO was able to exert a potential anti-tubercular effect in vivo in Mtb-infected mice after five days. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

26 pages, 6909 KiB  
Article
Development of Voriconazole Proliposome Based Dry Powder for Inhalation: A Design of Experiment Approach
by Sanjeevani Deshkar, Alisha Vas, Roshani Pagar, Prabhanjan Giram, Asha Thomas and Vaishali Undale
Pharmaceutics 2025, 17(5), 622; https://doi.org/10.3390/pharmaceutics17050622 - 8 May 2025
Viewed by 700
Abstract
The present investigation aimed to formulate and optimize sustained release proliposome dry powder for inhalation of Voriconazole (VZ) and its in vitro and in vivo evaluation. The proliposome-based dry powder for inhalation was formulated by spray drying technique using Phospholipon 90H and cholesterol [...] Read more.
The present investigation aimed to formulate and optimize sustained release proliposome dry powder for inhalation of Voriconazole (VZ) and its in vitro and in vivo evaluation. The proliposome-based dry powder for inhalation was formulated by spray drying technique using Phospholipon 90H and cholesterol in the lipid phase, mannitol as a carrier, and L-leucine as a dispersing agent. A face-centered central composite design was used to study the influence of factors on responses, vesicle size, VZ entrapment efficiency, and drug release. The optimized formulation was further characterized by FTIR, FESEM, DSC, XRD, and evaluated for in vitro drug release, in vitro aerosol deposition, and in vivo lung retention study in Wistar rats. For the optimized batch F-5 proliposome formulation, vesicle size was observed as 191.7 ± 0.049 nm with PDI 0.328 ± 0.009, entrapment efficiency as 72.94 ± 0.56%, and cumulative drug release after 8 h of dissolution was 82.0 ± 0.14%. The median mass aerodynamic diameter (MMAD) generated by optimized formulation F5 was significantly lower (3.85 ± 0.15 µm, p < 0.0001) as compared to spray-dried voriconazole (SD-VZ) (8.35 ± 0.23 µm). In vivo studies demonstrated a profound enhancement in lung retention (3.8-fold) compared to SD-VZ and oral VZ dispersion. Conclusively, proliposome formulation of voriconazole is a plausible and convincing approach for pulmonary fungal infections, considering its sustained release behaviour and prolonged lung retention. Full article
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy
by Petra Party, Márk László Klement, Bianca Maria Gaudio, Milena Sorrenti and Rita Ambrus
Pharmaceutics 2025, 17(4), 486; https://doi.org/10.3390/pharmaceutics17040486 - 7 Apr 2025
Viewed by 935
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral [...] Read more.
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a “nano-in-micro” structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections. Full article
Show Figures

Figure 1

23 pages, 2587 KiB  
Article
Enhancing Physiological Realism in Nasal Spray Deposition Studies: Synthetic Mucus Properties and Interactions with Saline Solutions and Stereolithography Resin
by Amr Seifelnasr, Farhad Zare, Xiuhua Si and Jinxiang Xi
Liquids 2025, 5(2), 11; https://doi.org/10.3390/liquids5020011 - 7 Apr 2025
Cited by 1 | Viewed by 1510
Abstract
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v [...] Read more.
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v xanthan gum) nasal conditions, were developed to mimic the viscoelastic properties of human nasal mucus. Their physical properties, including viscosity, surface tension, contact angle, and adhesivity on dry and synthetic mucus-coated stereolithography (SLA) surfaces, were systematically characterized. Comparative experiments evaluated the behavior of saline drops and liquid films on dry versus synthetic mucus-coated SLA surfaces at inclinations of 30°, 45°, and 60°. Observational deposition experiments using anatomically accurate nasal models were conducted under a 45° backward-tilted head position with gentle sniff airflow across uncoated, 0.25% w/v mucus-coated, and 1% w/v mucus-coated surfaces. Synthetic mucus coatings significantly influenced saline spray deposition patterns. On uncoated surfaces, deposition consisted of scattered droplets and limited film formation, mainly in the anterior and turbinate regions. In contrast, synthetic mucus coatings facilitated broader and more uniform liquid distribution due to diffusion and lubrication effects. These findings highlight the value of synthetic mucus coatings for better simulating nasal environments, offering insights to optimize nasal spray formulations and delivery devices. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

27 pages, 9025 KiB  
Article
Optimization, In Vitro, and In Silico Characterization of Theophylline Inhalable Powder Using Raffinose-Amino Acid Combination as Fine Co-Spray-Dried Carriers
by Petra Party, Lomass Soliman, Attila Nagy, Árpád Farkas and Rita Ambrus
Pharmaceutics 2025, 17(4), 466; https://doi.org/10.3390/pharmaceutics17040466 - 3 Apr 2025
Cited by 2 | Viewed by 1053
Abstract
Background/Objectives: Dry powder inhalation is an attractive research area for development. Therefore, this work aimed to develop inhalable co-spray-dried theophylline (TN) microparticles, utilizing raffinose-amino acid fine carriers intended for asthma therapy. The study addressed enhancing TN’s physicochemical and aerodynamic properties to ensure [...] Read more.
Background/Objectives: Dry powder inhalation is an attractive research area for development. Therefore, this work aimed to develop inhalable co-spray-dried theophylline (TN) microparticles, utilizing raffinose-amino acid fine carriers intended for asthma therapy. The study addressed enhancing TN’s physicochemical and aerodynamic properties to ensure efficient lung deposition. Methods: The process involves spray-drying each formulation’s solution using a mini spray drier. A rigorous assessment was conducted on particle size distribution, structural and thermal analysis, morphology study, in vitro and in silico aerodynamic investigation, and aerodynamic particle counter in addition to the solubility, in vitro dissolution, and diffusion of TN. Results: The carriers containing leucine and glycine revealed superior characteristics (mass median aerodynamic diameter (MMAD): 4.6–5 µm, fine particle fraction (FPF): 30.6–35.1%, and amorphous spherical structure) as candidates for further development of TN-DPIs, while arginine was excluded due to intensive aggregation and hygroscopicity, which led to poor aerodynamic performance. TN co-spray-dried samples demonstrated fine micronized particles (D [0.5]: 3.99–5.96 µm) with predominantly amorphous structure (crystallinity index: 24.1–45.2%) and significant solubility enhancement (~19-fold). Formulations containing leucine and leucine-glycine revealed the highest FPF (45.7–47.8%) and in silico lung deposition (39.3–40.1%), rapid in vitro drug release (~100% within 10 min), and improved in vitro diffusion (2.29–2.43-fold), respectively. Moreover, the aerodynamic counter confirmed the development of fine microparticles (mean number particle size = 2.3–2.02 µm). Conclusions: This innovative formulation possesses enhanced physicochemical, morphological, and aerodynamic characteristics of low-dose TN for local asthma treatment and could be applied as a promising carrier for dry powder inhaler development. Full article
Show Figures

Graphical abstract

25 pages, 6552 KiB  
Article
Comprehensive Aerodynamic and Physicochemical Stability Evaluations of Nanocrystal-Based Dry Powder Inhalers: The Role of Mannitol and Leucine in Enhancing Performance
by Heba Banat, Attila Nagy, Árpád Farkas, Rita Ambrus and Ildikó Csóka
Pharmaceutics 2025, 17(4), 436; https://doi.org/10.3390/pharmaceutics17040436 - 28 Mar 2025
Cited by 2 | Viewed by 892
Abstract
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based [...] Read more.
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based dry powders (NC-DPs). Methods: Nanocrystalline suspensions were produced via wet media milling and subjected to stability studies before undergoing nano spray drying. A factorial design was employed to optimize the process parameters. The influence of mannitol and leucine, individually and in combination, was evaluated in terms of aerodynamic properties (Aerodynamic Particle Sizer (APS), in silico modeling) and the physicochemical stability at room temperature (in a desiccator) and accelerated conditions (40 ± 2 °C, 75 ± 5% relative humidity). Results: APS analysis revealed that leucine-containing powders (K-NC-Ls) exhibited the smallest median (1.357 µm) and geometric mean (1.335 µm) particle sizes, enhancing dispersibility. However, in silico results indicated the highest exhaled fraction for K-NC-L, highlighting the need for optimized excipient selection. Although mannitol showed the lowest exhaled fraction, it was mainly deposited in the extra-thoracic region in silico. The mannitol/leucine combination (K-NC-ML) revealed a low exhaled fraction and high lung deposition in silico. Also, K-NC-ML demonstrated superior stability, with a 6% reduction in D[0.5] and a 5% decrease in span overtime. Furthermore, no significant changes in crystallinity, thermal behavior, drug release, or mass median aerodynamic diameter were observed under stress conditions. Conclusions: These findings confirm that combined incorporation of mannitol and leucine in NC-DP formulations enhances stability and aerodynamic performance, making it a promising approach for pulmonary drug delivery. Full article
Show Figures

Graphical abstract

18 pages, 4747 KiB  
Article
Evaluation of Permeability, Safety, and Stability of Nanosized Ketoprofen Co-Spray-Dried with Mannitol for Carrier-Free Pulmonary Systems
by Heba Banat, Ilona Gróf, Mária A. Deli, Rita Ambrus and Ildikó Csóka
Appl. Sci. 2025, 15(3), 1547; https://doi.org/10.3390/app15031547 - 3 Feb 2025
Cited by 1 | Viewed by 1158
Abstract
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized [...] Read more.
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized ketoprofen (KTP) and mannitol (MNT). The formulation was prepared using wet media milling to produce KTP-nanosuspensions, followed by spray drying to achieve combined powders suitable for inhalation. Cell viability and permeability were conducted in both alveolar (A549) and bronchial (CFBE) models. Stability was assessed after storage in hydroxypropyl methylcellulose (HPMC) capsules under stress conditions (40 °C, 75% RH), as per ICH guidelines. KTP showed good penetration through both models, with lower permeability through the CFBE barrier. The MNT-containing sample (F1) increased permeability by 1.4-fold in A549. All formulations had no effect on cell barrier integrity or viability after the impedance test, confirming their safety. During stability assessment, the particle size remained consistent, and the partially amorphous state of KTP was retained over time. However, moisture absorption induced surface roughening and partial agglomeration, leading to reduced fine particle fraction (FPF) and emitted fraction (EF). Despite these changes, the mass median aerodynamic diameter (MMAD) remained stable, confirming the formulation’s continued applicability for pulmonary delivery. Future research should focus on optimizing excipient content, alternative capsule materials, and storage conditions to mitigate moisture-related issues. Hence, the findings demonstrate that the developed ketoprofen–mannitol DPI retains its quality and performance characteristics over an extended period, making it a viable option for pulmonary drug delivery. Full article
Show Figures

Figure 1

34 pages, 1732 KiB  
Review
Dry Powder Inhalers for Delivery of Synthetic Biomolecules
by Hossein Omidian, Ali Nokhodchi and Niloofar Babanejad
Pharmaceuticals 2025, 18(2), 175; https://doi.org/10.3390/ph18020175 - 27 Jan 2025
Cited by 2 | Viewed by 2498
Abstract
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced [...] Read more.
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced stability, bioactivity, and aerosol performance. Studies reveal the critical role of excipients, particle morphology, and device design in optimizing deposition and therapeutic efficacy. Applications include asthma, cystic fibrosis, tuberculosis (TB), and lung cancer, with emerging platforms such as ternary formulations and siRNA-loaded systems demonstrating significant clinical potential. Challenges such as stability, scalability, and patient adherence are addressed through novel strategies, including Quality by Design (QbD) approaches and advanced imaging tools. This work outlines pathways for future innovation in pulmonary drug delivery. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

38 pages, 11891 KiB  
Review
Review of Progress on Printing Techniques Towards Commercialization of Perovskite Solar Cells
by Mai Ali Alharbi, Shubhranshu Bhandari and Tapas Mallick
Energies 2025, 18(1), 6; https://doi.org/10.3390/en18010006 - 24 Dec 2024
Cited by 2 | Viewed by 2140
Abstract
Perovskite solar cells (PSCs) offer a number of key advantages over silicon solar cells. These include their low-cost materials, high efficiency, simplicity of fabrication, and inexpensive manufacturing techniques. To commercialize PSCs, there are many methods to develop the quality of the cells, one [...] Read more.
Perovskite solar cells (PSCs) offer a number of key advantages over silicon solar cells. These include their low-cost materials, high efficiency, simplicity of fabrication, and inexpensive manufacturing techniques. To commercialize PSCs, there are many methods to develop the quality of the cells, one of them being printing techniques. Different printing techniques deposition have been developed for the perovskite solar cell, such as blade coating, slot die coating, inkjet printing, screen printing, spray coating, flexographic printing, and gravure printing. These techniques have a substantial impact on the performance of PSCs and controlling film formation to commercialize PSCs. This review summarizes a comprehensive overview of various deposition printing techniques used to fabricate PSCs during different years and different techniques, such as using different preparation methods, novel drying techniques, and ink engineering. In addition, the challenges that are faced by using these, such as material stability, reproducibility of printing processes, and cost-effectiveness techniques, are reviewed. Future research should focus on optimizing printing techniques to improve the stability and scalability of PSCs. Exploring novel perovskite materials, deposition techniques, and innovative fabrication methods may further enhance the PSCs and facilitate their commercialization. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 15801 KiB  
Article
The Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of Cold-Sprayed Zn-6Cu Deposits
by Xiao-Zhen Hu, Xiao-Bo Tan, Bin Xie, Hai-Long Yao, Chao Yang and Tao Zhou
Materials 2024, 17(24), 6096; https://doi.org/10.3390/ma17246096 - 13 Dec 2024
Viewed by 639
Abstract
To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment. [...] Read more.
To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment. Zn-6Cu deposits were composed of Zn and CuZn5 phases in addition to ZnO phase regardless of heat treatment, but the full width at half maximum of both the CuZn5 and the Zn phase were varied. The yield strength and ultimate tensile strength of Zn-6Cu deposits after post heat treatment were, respectively, increased from 83.8 ± 28.7 MPa and 159.6 ± 44.5 MPa to 89.4 ± 24.4 MPa and 223.8 ± 37.1 MPa. Fracture morphology after tensile testing exhibited main features of dimples, pores and cleaving particles. The friction coefficient and wear rate of Zn-6Cu deposits were increased after heat treatment, and the corrosive wear exhibited a lower friction coefficient and wear rate than the dry wear due to the lubricant of simulated body fluid. Grooves and localized delamination were the main wear features of Zn-6Cu deposits regardless of both the heat treatment and wear condition. This result indicates a potential application of cold-sprayed Zn-6Cu deposits comparable to the casting ones. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

19 pages, 7317 KiB  
Article
Development and Characterization of Spray-Dried Combined Levofloxacin–Ambroxol Dry Powder Inhaler Formulation
by Ruwani K. Suraweera, Kirsten M. Spann, Emad L. Izake, Timothy J. Wells, Xiaodong Wang and Nazrul Islam
Pharmaceutics 2024, 16(12), 1506; https://doi.org/10.3390/pharmaceutics16121506 - 22 Nov 2024
Cited by 2 | Viewed by 1461
Abstract
Background: This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections [...] Read more.
Background: This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections (LRTIs). Methods: A range of LVX to AMB mass ratios (1:1, 1:0.5, and 1:0.25) were prepared, with and without the use of the dispersibility enhancer leucine (LEU), and spray-dried following pre-optimized parameters to achieve the required particle size (1–5 µm) and flow properties. The formulations were characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and a thermogravimetric analysis (TGA). The in vitro aerosolization performance of the new formulation was evaluated with a twin-stage impinger (TSI) at a flow rate of 60 ± 5 L/min. Using a validated RP-HPLC method, LVX and AMB were quantitatively determined. Results: The combined spray-dried LVX, AMB, and LEU particles were spherically shaped with sizes ranging from 1.9 to 2.9 µm, thus complying with the size requirements for effective deep lung deposition. The dispersibility enhancer leucine produced a high yield and enhanced the flow properties and aerosolization characteristics of the spray-dried formulations. The LVX to AMB mass ratios showed a remarkable impact on the aerosolization properties, with the LVX to AMB 1:1 mass ratio demonstrating the best flow and FPFs for both drugs. There must be a balanced ratio of these components for spray drying the composite particles to obtain composite particles of the required size and with the appropriate flow property. The addition of 5% of LEU significantly (p < 0.005) improved the FPF of all the formulations, probably by enhancing the surface hydrophobicity of the composite particles. Conclusions: The spray-dried combined antibiotics formulation has a strong potential for efficient lung delivery intended for the management of LRTIs. Full article
(This article belongs to the Special Issue Development of Spray-Dried Powders for Pulmonary Drug Delivery)
Show Figures

Figure 1

22 pages, 7402 KiB  
Article
Development of Nanocomposite Microspheres for Nasal Administration of Deferiprone in Neurodegenerative Disorders
by Radka Boyuklieva, Plamen Katsarov, Plamen Zagorchev, Silviya Abarova, Asya Hristozova and Bissera Pilicheva
J. Funct. Biomater. 2024, 15(11), 329; https://doi.org/10.3390/jfb15110329 - 5 Nov 2024
Cited by 1 | Viewed by 1630
Abstract
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the [...] Read more.
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the other hand, when administered by an alternative route of administration, such as the nasal route, systemic exposure to deferiprone will be reduced, thereby reducing the occurrence of adverse effects. Direct nose-to-brain delivery has been raised as a non-invasive strategy to deliver drugs to the brain, bypassing the blood–brain barrier. The aim of the study was to develop and characterize nanocomposite microspheres suitable for intranasal administration by combining nano- and microparticle-based approaches. Nanoparticles with an average particle size of 213 ± 56 nm based on the biodegradable polymer poly-ε-caprolactone were developed using the solvent evaporation method. To ensure the deposition of the particles in the nasal cavity and avoid exhalation or deposition into the small airways, the nanoparticles were incorporated into composite structures of sodium alginate obtained by spray drying. Deferiprone demonstrated sustained release from the nanocomposite microspheres and high iron-chelating activity. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

16 pages, 5955 KiB  
Article
Influence of Plasma Arc Current and Gas Flow on the Structural and Tribological Properties of TiN Coatings Obtained by Plasma Spraying
by Aidar Kengesbekov
Coatings 2024, 14(11), 1404; https://doi.org/10.3390/coatings14111404 - 5 Nov 2024
Cited by 2 | Viewed by 1150
Abstract
This study investigates the development of TiN-based coatings using plasma spraying technology, focusing on how plasma arc current and working gas flow rate affect the coatings’ structural-phase composition and mechanical–tribological properties. The research highlights the potential and effectiveness of plasma spraying for TiN [...] Read more.
This study investigates the development of TiN-based coatings using plasma spraying technology, focusing on how plasma arc current and working gas flow rate affect the coatings’ structural-phase composition and mechanical–tribological properties. The research highlights the potential and effectiveness of plasma spraying for TiN coatings. Results from scanning electron microscopy and nanoindentation tests show that the TiN coatings have a dense microstructure with strong adhesion. Tribological testing demonstrated that coatings deposited at a 250 A arc current displayed the lowest coefficient of dry friction and the lowest porosity (2.13%) compared to those deposited at 350 A and 450 A arc currents, which exhibited higher porosity (up to 10.45%). Full article
(This article belongs to the Special Issue Structural, Mechanical and Tribological Properties of Hard Coatings)
Show Figures

Figure 1

23 pages, 13548 KiB  
Review
Synthesis Methods of Si/C Composite Materials for Lithium-Ion Batteries
by Inkyu Park, Hanbyeol Lee and Oh B. Chae
Batteries 2024, 10(11), 381; https://doi.org/10.3390/batteries10110381 - 28 Oct 2024
Cited by 6 | Viewed by 5476
Abstract
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, [...] Read more.
Silicon anodes present a high theoretical capacity of 4200 mAh/g, positioning them as strong contenders for improving the performance of lithium-ion batteries. Despite their potential, the practical application of Si anodes is constrained by their significant volumetric expansion (up to 400%) during lithiation/delithiation, which leads to mechanical degradation and loss of electrical contact. This issue contributes to poor cycling stability and hinders their commercial viability, and various silicon–carbon composite fabrication methods have been explored to mitigate these challenges. This review covers key techniques, including ball milling, spray drying, pyrolysis, chemical vapor deposition (CVD), and mechanofusion. Each method has unique benefits; ball milling and spray drying are effective for creating homogeneous composites, whereas pyrolysis and CVD offer high-quality coatings that enhance the mechanical stability of silicon anodes. Mechanofusion has been highlighted for its ability to integrate silicon with carbon materials, showing the potential for further optimization. In light of these advancements, future research should focus on refining these techniques to enhance the stability and performance of Si-based anodes. The optimization of the compounding process has the potential to enhance the performance of silicon anodes by addressing the significant volume change and low conductivity, while simultaneously addressing cost-related concerns. Full article
Show Figures

Figure 1

13 pages, 5714 KiB  
Article
Fabrication and Tribology Properties of PTFE-Coated Cemented Carbide Under Dry Friction Conditions
by Shoujun Wang, Wenlong Song, Lei An, Zixiang Xia and Shengdong Zhang
Lubricants 2024, 12(11), 363; https://doi.org/10.3390/lubricants12110363 - 23 Oct 2024
Cited by 2 | Viewed by 1176
Abstract
PTFE coatings were deposited on YT15 carbide substrates using spray technology. A series of examinations were conducted, including the use of surface and cross-section micrographs to analyze the structural integrity of the coatings. The surface roughness, the adhesion force between the PTFE coatings [...] Read more.
PTFE coatings were deposited on YT15 carbide substrates using spray technology. A series of examinations were conducted, including the use of surface and cross-section micrographs to analyze the structural integrity of the coatings. The surface roughness, the adhesion force between the PTFE coatings and the carbide substrate, and the micro-hardness of the coated carbide were also evaluated. Additionally, the friction and wear behaviors were assessed through dry sliding friction tests against WC/Co balls. The test results indicated that while the PTFE-coated carbide exhibited a rougher surface and reduced micro-hardness, it also demonstrated a significant reduction in surface friction and adhesive wear. These findings suggest that the PTFE coatings enhance the overall wear resistance of the carbides. The lower surface hardness and shear strength of the coatings influenced the friction performance, leading to specific wear failure mechanisms, such as abrasion wear, coating delamination, and flaking. Overall, the deposition of PTFE coatings on carbide substrates presents a promising strategy to enhance their friction and wear performance. This approach not only improves the durability of carbide materials but also offers potential applications in industries where reduced friction and wear are critical for performance. Full article
(This article belongs to the Special Issue Tribological Properties of Sprayed Coatings)
Show Figures

Figure 1

Back to TopTop