Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = dry–wet and freeze–thaw cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5921 KB  
Article
Simultaneous Stabilization of Cu/Ni/Pb/As Contaminated Soil by a ZVI-BFS-CaO Composite System
by Runlai Luo, Nan Zhao, Zhengmiao Jia, Sihan Wu, Xing Chen, Zhongyuan Li, Feng Ju, Yongming Luo and Hui Li
Sustainability 2026, 18(1), 342; https://doi.org/10.3390/su18010342 - 29 Dec 2025
Viewed by 215
Abstract
The simultaneous stabilization of Cu, Ni, Pb, and As in sustainable environmental development remains a significant challenge in heavy metal remediation. In this paper, liquid phase equilibrium experiments have evaluated the immobilization efficiency of 20 potential stabilization materials. Soil stabilization experiments, material characterization, [...] Read more.
The simultaneous stabilization of Cu, Ni, Pb, and As in sustainable environmental development remains a significant challenge in heavy metal remediation. In this paper, liquid phase equilibrium experiments have evaluated the immobilization efficiency of 20 potential stabilization materials. Soil stabilization experiments, material characterization, and long-term effectiveness assessments have been performed to investigate the efficient composite stabilization agent and its underlying mechanisms. Results demonstrate that seven materials, including calcium oxide (CaO) and hydroxyapatite (HAP), exhibit multi-metal immobilization capabilities. Among single-material stabilization in soil, HAP for Pb, zero-valent iron (ZVI) for As, and blast furnace slag (BFS) for Cu exhibit prominent stabilization efficiency, yet they cannot efficiently stabilize the four heavy metals simultaneously. Subsequently, the ZVI:BFS:CaO composite agent (6:3:1 mass ratio, 10% addition rate) has been proposed by formulation optimization, achieving remarkable stabilization rates: 99.92% for Cu, 96.16% for Ni, 92.06% for Pb, and 99.58% for As. XRD, XPS, and SEM-EDS analyses confirm that the stabilization occurs through synergistic mechanisms including precipitation, complexation, and lattice encapsulation. The composite stabilizing agent withstood 15 wet–dry and 150 freeze–thaw cycles, with four types of heavy metals stabilization rates > 60%, confirming its long-term effectiveness. Full article
Show Figures

Figure 1

42 pages, 15205 KB  
Article
Deterioration Envelopes for Predicting Concrete Bridge-Deck Deterioration Due to Chloride Exposure
by Kenneth Olsen, Monique H. Head and Alemu M. Legese
Buildings 2026, 16(1), 132; https://doi.org/10.3390/buildings16010132 - 26 Dec 2025
Viewed by 258
Abstract
Bridge decks are exposed to chloride ingress from deicing salts, freeze–thaw cycling, and repeated wetting and drying, which gradually degrades the concrete over time. Many existing models treat concrete conditions as static and do not capture time-varying chloride exposure. This study develops deterioration [...] Read more.
Bridge decks are exposed to chloride ingress from deicing salts, freeze–thaw cycling, and repeated wetting and drying, which gradually degrades the concrete over time. Many existing models treat concrete conditions as static and do not capture time-varying chloride exposure. This study develops deterioration envelopes for concrete bridge decks to predict long-term loss of compressive strength and internal integrity by integrating accelerated laboratory wet–dry and freeze–thaw testing with in-service bridge-deck core measurements from Delaware bridges. The model is supported by three data sources: accelerated laboratory tests, cores from in-service bridges provided by the Delaware Department of Transportation (DelDOT), and climate and asset datasets from the National Oceanic and Atmospheric Administration (NOAA) and the Federal Highway Administration’s (FHWA) InfoBridge™ database. Laboratory specimens (n = 300) were reproduced based on Delaware mix designs from the 1970s and 1980s and were tested in accordance with ASTM and ACI protocols. Environmental conditioning applied wet–dry and freeze–thaw cycles at chloride contents of 0, 3, and 15 percent to replicate field exposure within a shortened test period. Measured properties included compressive strength, modulus of elasticity, resonance frequency, and chloride penetration. The results show a gradual, near-linear reduction in compressive strength and resonance frequency with increasing chloride content over 160 cycles, which corresponds to about 2 to 5 years of service exposure. Resonance frequency was the most sensitive indicator of internal damage across the tested chloride contents. By combining test results, core data, and bridge inspection history into a single durability index, the deterioration envelopes forecast long-term degradation under different chloride exposures, providing a basis for prediction that extends beyond visual inspection. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2262 KB  
Article
Enhancing the Strength and Durability of Cement Mortar: Synergetic Effects of Shell Powder, Calcium Formate and Basalt Fibers
by Wei Shi, Zhongping Tang, Yiming Jin, Shixiang Yi, Lili Huang, Shuang Lu and Wenjing Sun
Buildings 2026, 16(1), 98; https://doi.org/10.3390/buildings16010098 - 25 Dec 2025
Viewed by 243
Abstract
This study focuses on the core issue of sustainably utilizing shells to enhance the performance of cement mortar. The influence of shell powder on the slump flow, setting time, mechanical strengths, drying shrinkage rate and carbonation depth of cement mortar is investigated. The [...] Read more.
This study focuses on the core issue of sustainably utilizing shells to enhance the performance of cement mortar. The influence of shell powder on the slump flow, setting time, mechanical strengths, drying shrinkage rate and carbonation depth of cement mortar is investigated. The flexural and compressive strengths of cement mortar incorporating calcium formate after 12 h, 3-day and 28-day curing periods are examined. The effect of basalt fibers on the attenuation of cement mortar’s mechanical properties (flexural and compressive strengths) after NaCl freeze–thaw cycles is also studied. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) is employed to elucidate the underlying mechanisms. Results show that the slump flow, setting time and mechanical strengths have cubic function relationships with the shell powder’s mass ratio, while the drying shrinkage rate and carbonation depth follow quadratic function changes. Cement mortar with 15% shell powder by mass of the total binder materials demonstrates the highest slump flow and mechanical strengths. At this shell powder mass ratio, cement mortar shows the lowest drying shrinkage rate and carbonation depth. Calcium formate positively influences the 12-h mechanical strengths. After 3 days of curing, the mechanical strengths of cement mortar with 0.3% calcium formate are the highest. The calcium carbonate powder reduces the drying shrinkage rate of mortar and increases the content of Ca and C elements. The mass ratio of calcium formate exhibits a negative correlation with the cement mortar’s mechanical strengths after being cured for 28 days. The addition of basalt fibers enhances resistance to chloride salt freeze–thaw and dry-wet alternations erosion performance. These findings will provide a sustainable and effective strategy for utilizing agricultural by-products in concrete structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 8122 KB  
Article
Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China
by Ruihua Shang, Chenyang Li, Xiaoju Yang, Pengju Han and Weiwei Liu
Microorganisms 2025, 13(12), 2802; https://doi.org/10.3390/microorganisms13122802 - 9 Dec 2025
Viewed by 354
Abstract
As a typical representative of soft capping, primary vegetation capping has both protective and destructive effects on earthen city walls. Addressing its detrimental aspects constitutes the central challenge of this project. Because the integration of MICP technology with plants offered advantages, including soil [...] Read more.
As a typical representative of soft capping, primary vegetation capping has both protective and destructive effects on earthen city walls. Addressing its detrimental aspects constitutes the central challenge of this project. Because the integration of MICP technology with plants offered advantages, including soil solidification, erosion resistance, and resilience to dry–wet cycles and freeze–thaw cycles, the application of MICP technology to root–soil composites was proposed as a potential solution. Employing a combined approach of RF-RFE-CV modeling and microscopic imaging on laboratory samples from the Western City Wall of the Jinyang Ancient City in Taiyuan, Shanxi Province, China, key factors and characteristics in the mineralization process of Sporosarcina pasteurii were quantified and observed systematically to define the optimal pathway for enhancing urease activity and calcite yield. The conclusions were as follows. The urease activity of Sporosarcina pasteurii was primarily regulated by three key parameters with bacterial concentration, pH value, and the intensity of urease activity, which required stage-specific dynamic control throughout the growth cycle. Bacterial concentration consistently emerged as a high-importance feature across multiple time points, with peak effectiveness observed at 24 h (1.127). pH value remained a highly influential parameter across several time points, exhibiting maximum impact at around 8 h (1.566). With the intensity of urease activity, pH exerted a pronounced influence during the early cultivation stage, whereas inoculation volume gained increasing importance after 12 h. To achieve maximum urease activity, the use of CASO AGAR Medium 220 and the following optimized culture conditions was recommended: an activation culture time of 27 h, an inoculation age of 16 h, an inoculation volume of 1%, a culture temperature of 32 °C, an initial pH of 8, and an oscillation speed of 170 r/min. Furthermore, to maximize the yield of CaCO3 in output and the yield of calcite in CaCO3, the following conditions and procedures were recommended: a ratio of urea concentration to Ca2+ concentration of 1 M:1.3 M, using the premix method of Sporosarcina pasteurii, quiescent reaction, undisturbed filtration, and drying at room-temperature in the shade environment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 2525 KB  
Article
Effects of Freeze–Thaw Cycles on Soil Aggregate Stability and Organic Carbon Distribution Under Different Land Uses
by Yuting Cheng, Maolin Liu, Yi Zhang, Shuhao Hao, Xiaohu Dang and Ziyang Wang
Agriculture 2025, 15(22), 2369; https://doi.org/10.3390/agriculture15222369 - 15 Nov 2025
Viewed by 841
Abstract
Soil aggregates are critical determinants of soil erosion resistance and nutrient retention capacity, while freeze–thaw cycles (FTCs) induce the structural reorganization of soil aggregates, thereby altering soil stability and influencing soil organic carbon (SOC) sequestration. This study was located in the Minjia River [...] Read more.
Soil aggregates are critical determinants of soil erosion resistance and nutrient retention capacity, while freeze–thaw cycles (FTCs) induce the structural reorganization of soil aggregates, thereby altering soil stability and influencing soil organic carbon (SOC) sequestration. This study was located in the Minjia River Basin in the typical seasonal freeze–thaw areas of the Loess Plateau and aimed to quantify the effects of FTCs on soil aggregate stability and SOC content under different land use types. Farmland, grassland, and forestland with more than 20 years of usage in the region were selected, and a 0–20 cm soil layer was subjected to seven FTCs (−8 °C to 20 °C), followed by wet and dry sieving classification, focusing on soil aggregate distribution, aggregate stability, mean weight diameter (MWD), geometric mean diameter (GMD), aggregate particle fractal dimension (APD), and SOC content of the aggregate. The results showed that soil aggregates in all land use types were dominated by macroaggregates (>2 mm), with the proportion in forestland (61–63%) > grassland (54–58%) > farmland (38–51%). FTCs enhanced aggregate stability across all land use types, especially in farmland. Concurrently, FTCs reduced the SOC content in all aggregate size fractions, with reduction rates ranging from farmland (9.00–21%) to grassland (4–26%) to forestland (5–31%). Notably, FTCs significantly increased the contribution of 2–5 mm water-stable (WS) aggregates to SOC sequestration, with increment rates of 86% (farmland), 80% (grassland), and 86% (forestland). Furthermore, FTCs altered the correlation between SOC content and aggregate stability. Specifically, the positive correlations of SOC with MWD and GMD were strengthened in aggregates < 0.5 mm but weakened in aggregates >0.5 mm. These findings advance our understanding of the coupled mechanisms underlying soil erosion and carbon cycling across land uses under freeze–thaw, providing a theoretical basis for ecosystem restoration and optimized soil carbon management in cold regions. Full article
Show Figures

Figure 1

48 pages, 37698 KB  
Article
Transforming Construction Waste into High-Performance Alkali-Activated Paste with Microstructural and Predictive π Modelling Insights
by Israf Javed, Hamza Saeed and Abdullah Ekinci
Buildings 2025, 15(21), 3830; https://doi.org/10.3390/buildings15213830 - 23 Oct 2025
Cited by 1 | Viewed by 944
Abstract
The construction industry is among the most resource-intensive sectors, generating nearly 40% of global CO2 emissions and over two billion tonnes of construction and demolition waste (CDW) annually. This study investigates the sustainable reuse of CDW in developing binder-free alkali-activated paste (AAP) [...] Read more.
The construction industry is among the most resource-intensive sectors, generating nearly 40% of global CO2 emissions and over two billion tonnes of construction and demolition waste (CDW) annually. This study investigates the sustainable reuse of CDW in developing binder-free alkali-activated paste (AAP) using sodium hydroxide (NaOH) as an activator. Eleven formulations were prepared by varying the brick-to-total waste ratio (BW/TW: 0–1), NaOH concentrations (0–10%), and curing durations (7, 28, and 60 days). The mixes were evaluated for unconfined compressive strength (UCS), shear modulus (Go), durability (wet–dry and freeze–thaw cycles), and microstructural evolution. Results showed significant improvements in mechanical and durability properties with increased NaOH content, BW/TW ratios up to 0.9, and longer curing times. The optimal mix (10% NaOH, BW/TW = 0.9, 60 days of curing) achieved a UCS of 28.7 MPa and a Go of 30 GPa, while exhibiting minimal mass loss (<2% freeze–thaw; <3% wet–dry). Microstructural analyses revealed densified matrices and enhanced gel formation. A dimensional analysis using the Buckingham π theorem yielded a scalable predictive model that correlates material composition, alkaline activation, and curing with mechanical performance. The study underscores the feasibility of transforming CDW into durable, high-performance AAPs for sustainable infrastructure development. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 8748 KB  
Article
Effect of Basalt Fibers on the Performance of CO2-Cured Recycled Aggregate Concrete Composite Slab–Column Assemblies with Bolted Connections Under NaCl Erosion
by Di Wang, Yuanfeng Wu, Zhiqiang Xu, Na Xu, Chuanqi Li, Xu Tian, Feiting Shi and Hui Wang
Coatings 2025, 15(9), 1053; https://doi.org/10.3390/coatings15091053 - 8 Sep 2025
Viewed by 1040
Abstract
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss [...] Read more.
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss and the deterioration of key mechanical properties in basalt fiber-reinforced RAC composite slab–column assemblies (RAC composite assemblies) subjected to NaCl freeze–thaw cycles (F-Cs) and dry–wet alternations (D-As) and further explores the damage mechanisms of the concrete matrix through microscopic characterization. The results show that, compared with NaCl F-Cs, NaCl D-As have a more pronounced impact on the performance degradation of RAC composite slab–column assemblies. Moreover, basalt fibers effectively mitigate the deterioration of RAC composite assemblies in chloride-rich environments, particularly under NaCl D-As, where their protective effect is more evident. At 2.5 vol% fiber content, impact toughness peaked at an 83.7% improvement after 30 D-As, while flexural toughness showed a maximum enhancement of 773.6% after 100 F-Cs. Scanning electron microscopy energy-dispersive spectroscopy (SEM-EDS) analysis revealed a marked increase in Cl content within RAC, with NaCl D-As causing more severe erosion than NaCl F-Cs. Additionally, basalt fibers significantly inhibited chloride ion penetration and associated erosion in RAC. These findings provide valuable insights into utilizing basalt fibers to enhance the durability of RAC in coastal infrastructure exposed to chloride attacks. Further research on long-term performance and fiber parameter optimization is needed to support practical implementation. Full article
Show Figures

Figure 1

21 pages, 2924 KB  
Article
Feasibility Study on Using Calcium Lignosulfonate-Modified Loess for Landfill Leachate Filtration and Seepage Control
by Jinjun Guo, Wenle Hu and Shixu Zhang
ChemEngineering 2025, 9(5), 96; https://doi.org/10.3390/chemengineering9050096 - 2 Sep 2025
Cited by 1 | Viewed by 1014
Abstract
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to [...] Read more.
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to investigate its effects on loess permeability via a series of laboratory tests. This study focused on the influence of varying dosages of calcium lignosulfonate (CLS) on loess permeability, along with its capacity to adsorb and immobilize heavy metal ions. Microscale characterization techniques, including Zeta potential analysis, X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM), were employed to investigate the impermeability mechanisms of CLS-modified loess and its adsorption behavior toward heavy metals. The results indicate that the permeability coefficient of loess decreases significantly with increasing compaction, while higher leachate concentrations lead to a notable increase in permeability. At a compaction degree of 0.90, the permeability coefficient was reduced to 8 × 10−8 cm/s. In contrast, under conditions of maximum leachate concentration, the permeability coefficient rose markedly to 1.5 × 10−4 cm/s. Additionally, increasing the dosage of the compacted loess stabilizer (CLS) effectively reduced the permeability coefficient of the modified loess to 7.1 × 10−5 cm/s, indicating improved impermeability and enhanced resistance to contaminant migration. With the prolonged infiltration time of landfill leachate, the removal efficiency of Pb2+ gradually decreases and stabilizes, while the Pb2+ removal efficiency of the modified loess increased by approximately 40%. CLS-modified loess, through multiple mechanisms, reduces the fluid flow pathways and enhances its adsorption capacity for Pb2+, thereby improving the soil’s protection against heavy metal contamination. While these results demonstrate the potential of CLS-modified loess as a sustainable landfill liner material, the findings are based on controlled laboratory conditions with Pb2+ as the sole target contaminant. Future work should evaluate long-term performance under field conditions, including seasonal wetting–drying and freeze–thaw cycles, and investigate multi-metal systems to validate the broader applicability of this modification technique. Full article
Show Figures

Figure 1

23 pages, 11360 KB  
Article
Dynamic Behaviors of the Loess Modified by Fly Ash and Lignin Under the Coupled Effect of Dry-Wet and Frozen-Thaw Cycles
by Qian Wang, Chen Li, Xiumei Zhong, Shan Yan, Haiping Ma, Xuefeng Hu and Songhan Wu
Water 2025, 17(17), 2512; https://doi.org/10.3390/w17172512 - 22 Aug 2025
Cited by 1 | Viewed by 855
Abstract
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under [...] Read more.
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under complex environmental conditions, including dry and wet cycles, as well as freeze-thaw cycles, remains unclear. In this study, the dynamic and structural characteristics of modified loess mixing fly ash and lignin under the coupling effect of dry-wet/freeze-thaw cycles were investigated through laboratory tests, including dry-wet–freeze/thaw cycle tests, dynamic triaxial tests, and scanning electron microscope tests. The cumulative plastic deformation characteristics of the improved loess under different dry-wet cycles and freeze-thaw cycles were analyzed. Combined with the scanning electron microscope test results, the attenuation mechanism of the strength of the improved loess under dry-wet/freeze-thaw coupling was analyzed. The results show that the dry-wet/freeze-thaw cycles have a significant effect on the dynamic deformation of the improved loess. With the increase in dry-wet/freeze-thaw cycles, the cumulative plastic deformation of the improved loess increases logarithmically with the rise in vibration times. With the increase in the number of dry-wet/freeze-thaw cycles, the improved loess becomes loose. The micro-cracks formed in the modified loess due to the connection and directional arrangement of the pores, and become wider and wider with the increase in dry-wet/freeze-thaw cycles. The apparent porosity, average porous diameter, and pore fractal dimension of the improved loess increase, while the probability entropy decreases. Compared with freeze-thaw cycles, dry-wet cycles had a greater effect on the microstructure of the improved loess, which made the deterioration of the dynamic stability of the improved loess more obvious. Full article
Show Figures

Figure 1

16 pages, 4455 KB  
Article
Durability and Microstructure Analysis of Loess-Based Composite Coal Gangue Porous Vegetation Concrete
by Manman Qiu, Wuyu Zhang, Shuaihua Ye, Xiaohui Li and Jingbang Li
Buildings 2025, 15(14), 2531; https://doi.org/10.3390/buildings15142531 - 18 Jul 2025
Viewed by 655
Abstract
In order to improve the durability of loess-based composite coal gangue porous planting concrete (LCPC), the effects of fly ash and slag powder content on the durability and microstructure of LCPC were studied. In this paper, fly ash and slag powder were mixed [...] Read more.
In order to improve the durability of loess-based composite coal gangue porous planting concrete (LCPC), the effects of fly ash and slag powder content on the durability and microstructure of LCPC were studied. In this paper, fly ash and slag powder were mixed into LCPC, and freeze-thaw cycle and dry-wet cycle tests were carried out. The compressive strength, dynamic elastic modulus, and mass change were used as evaluation indices to determine the optimal mix ratio for LCPC durability. Scanning electron microscopy (SEM) was performed, and the experimental design was carried out with the water–cement ratio, fly ash, and slag powder content as variables. The microstructure characteristics of LCPC were analyzed. The results show that the maximum number of freeze-thaw cycles can reach 35 times and the maximum number of dry-wet cycles can reach 50 when 5% fly ash and 20% slag powder are used. With an increase in the water-cement ratio, the skeleton of the loess gradually became complete, and its structure became more compact. In the micro-morphology diagram, the mixed fly ash and slag powder particles are not obvious, but with an increase in dosage, the size of the cracks and pores gradually decreases. The incorporation of fly ash and slag powder can play a positive role in the durability of LCPC and improvement of its microstructure. The results of this study are crucial for improving the application performance of ecological restoration, soil improvement, and long-term stability of structures, and can provide a scientific basis for the sustainable development of environmentally friendly building materials. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

31 pages, 16466 KB  
Article
Study on the Influencing Factors of UHPC Durability and Its Microscopic Performance Characterization
by Risheng Wang, Yongzhuang Zhang, Hongrui Wu and Xueni Jiang
Materials 2025, 18(14), 3268; https://doi.org/10.3390/ma18143268 - 10 Jul 2025
Viewed by 876
Abstract
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing [...] Read more.
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing methods, aggregate types, and mineral admixtures on key durability indicators, including chloride ion permeability, compressive strength loss, and mass loss. Scanning electron microscopy (SEM) examined microstructural changes under various conditions. Results showed that curing method significantly affected chloride ion permeability and sulfate resistance. High-temperature curing (70 ± 2 °C) reduced 28-day chloride ion electric flux by about 50%, and the compressive strength loss rate of specimens subjected to sulfate attack decreased by 2.7% to 45.7% compared to standard curing. Aggregate type had minimal impact on corrosion resistance, while mineral admixtures improved durability more effectively. Frost resistance was excellent, with mass loss below 0.87% after 500 freeze–thaw cycles. SEM analysis revealed that high-temperature curing decreased free cement particles, and mineral admixtures refined pore structure, enhancing matrix compactness. Among all mixtures, Mix Proportion 4 demonstrated the best overall durability. This study offers valuable insights for UHPC design in aggressive marine conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

17 pages, 2835 KB  
Article
Effects of Aged Biochar on Remediation of Cd-Contaminated Soil and Greenhouse Gas Emission in Chinese Cabbage (Brassica chinensis L.) Growth
by Yanyan Lu, Xiaoyi Zhao, Yuxuan Li, Guanlin Li, Guizhu Wu, Qianwu Wang, Jian Li and Daolin Du
Horticulturae 2025, 11(7), 800; https://doi.org/10.3390/horticulturae11070800 - 5 Jul 2025
Cited by 1 | Viewed by 1064
Abstract
Biochar has demonstrated effectiveness in environmental remediation. However, the physicochemical properties of biochar change with natural aging, which potentially impacts its efficacy. This study was designed to evaluate the effects of aged biochar (at 1% and 5% rates) on the growth of Chinese [...] Read more.
Biochar has demonstrated effectiveness in environmental remediation. However, the physicochemical properties of biochar change with natural aging, which potentially impacts its efficacy. This study was designed to evaluate the effects of aged biochar (at 1% and 5% rates) on the growth of Chinese cabbage, greenhouse gas emission, and Cd remediation in soils. Canada goldenrod (Solidago canadensis L.) feedstock biochar was subjected to three artificial aging processes (freeze–thaw cycle, dry–wet cycle, and hydrogen peroxide oxidation) to prepare aged biochar. Results showed that aging significantly altered properties and structure of biochar. Biochar addition had no effect on CH4 emissions, but it decreased cumulative N2O emission (all treatments) and increased cumulative CO2 emission (only the pristine biochar at 5% application rate). Aged biochar showed no effect on microbial life strategy and Shannon index. However, PB-5% application shifted the life history strategies of A-strategists (resource acquisition microbe) towards Y-strategists (high-yield microbe) such as Proteobacteria, Gemmatimonadota, Bacteroidota, Firmicutes and Actinobacteriota, which partially attributed to the enhanced soil CO2 emission. Aged biochar reduced plant uptake Cd and soil available Cd concentrations by up to 36.6% and 34.0%, respectively, ascribing to improved soil physicochemical properties and functional bacterial abundance. Full article
Show Figures

Figure 1

20 pages, 2051 KB  
Review
Unfired Bricks from Wastes: A Review of Stabiliser Technologies, Performance Metrics, and Circular Economy Pathways
by Yuxin (Justin) Wang and Hossam Abuel-Naga
Buildings 2025, 15(11), 1861; https://doi.org/10.3390/buildings15111861 - 28 May 2025
Cited by 7 | Viewed by 4770
Abstract
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance [...] Read more.
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance metrics, and sustainability indicators across a wide variety of unfired brick systems. It thus provides a coherent reference framework to support further development and industrial translation. Emphasis is placed on the role of stabilisers—including cement, lime, geopolymers, and microbial or bio-based stabilisers—in improving mechanical strength, moisture resistance, and durability. Performance data are analysed in relation to compressive strength, water absorption, drying shrinkage, thermal conductivity, and resistance to freeze–thaw and wet–dry cycles. The findings indicate that properly stabilised unfired bricks can achieve compressive strengths above 20 MPa and water absorption rates below 10%, with notable improvements in insulation and acoustic properties. Additionally, life-cycle comparisons reveal up to 90% reductions in CO2 emissions and energy use relative to fired clay bricks. Despite technical and environmental advantages, broader adoption remains limited due to standardisation gaps and market unfamiliarity. The paper concludes by highlighting the importance of hybrid stabiliser systems, targeted certification frameworks, and waste valorisation policies to support the transition toward low-carbon, resource-efficient construction practices. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

26 pages, 6397 KB  
Review
Evaluation of the Service Performance of Soil–Bentonite Vertical Cut-Off Walls at Heavy Metal Contaminated Sites: A Review
by Ke Wang and Yan Zhang
Appl. Sci. 2025, 15(9), 5215; https://doi.org/10.3390/app15095215 - 7 May 2025
Cited by 3 | Viewed by 2898
Abstract
Soil–bentonite (SB) vertical cut-off walls are widely utilized to mitigate the transport of soil contaminants in groundwater. Evaluating their long-term service performance is crucial for ensuring environmental safety and effective pollution control. The evaluation model for the long-term service performance of contaminant cut-off [...] Read more.
Soil–bentonite (SB) vertical cut-off walls are widely utilized to mitigate the transport of soil contaminants in groundwater. Evaluating their long-term service performance is crucial for ensuring environmental safety and effective pollution control. The evaluation model for the long-term service performance of contaminant cut-off walls considers key processes such as convection, diffusion, dispersion, and adsorption. These processes are closely linked to the physicochemical properties of the cut-off walls, which are influenced by the surrounding complex environment, ultimately impacting their long-term performance. This study delves into the long-term service performance of SB vertical cut-off walls. It focuses on the key factors that influence this performance and the measures that can enhance it. Moreover, it offers a detailed analysis of how the performance of seepage cut-off walls in soil–bentonite materials evolves under various environmental influences. These influences include chemical exposure, freeze–thaw cycles, and dry–wet cycles. Additionally, it outlines existing service performance evaluation methods and identifies their shortcomings. By leveraging the advantages of in situ testing methods, this paper proposes the establishment of a comprehensive evaluation system for the service performance of vertical cut-off walls based on in situ test parameters. The proposed evaluation system aims to provide a scientific assessment of the long-term service performance of SB vertical cut-off walls. Full article
Show Figures

Figure 1

14 pages, 3519 KB  
Article
Compression Characteristics and Damage Constitutive Model of Loess Under Dry–Wet and Freeze–Thaw Cycles
by Yuan Yuan, Hui-Mei Zhang, Hao Liu and Pan Wang
Water 2025, 17(9), 1328; https://doi.org/10.3390/w17091328 - 29 Apr 2025
Cited by 1 | Viewed by 794
Abstract
The study of the compression characteristics of loess in seasonal regions involves analyzing the mechanical properties and mesoscale damage evolution of intact loess subjected to dry–wet freeze–thaw cycles. This study meticulously examines the evolution of the stress–strain curve at the macroscale and the [...] Read more.
The study of the compression characteristics of loess in seasonal regions involves analyzing the mechanical properties and mesoscale damage evolution of intact loess subjected to dry–wet freeze–thaw cycles. This study meticulously examines the evolution of the stress–strain curve at the macroscale and the pore structure at the mesoscale of loess by consolidation and drainage triaxial shear tests, as well as nuclear magnetic resonance (NMR), under varying numbers of dry–wet freeze–thaw cycles. Then, utilizing the Duncan–Chang model (D-C), the damage model for intact loess is derived based on the principles of equivalent strain and Weibull distribution, with testing to verify its applicability. The results indicate that the stress–strain curve of undisturbed loess exhibits significant strain softening during the initial stage of the freeze–thaw dry–wet cycle. As the number of cycles increases, the degree of strain softening weakens and gradually exhibits a strain-hardening morphology; the volume strain also changes from dilatancy to shear contraction. According to the internal pore test data analysis, the undisturbed loess contributes two components to shear strength: cementation and friction during the shear process. The cementation component of the aggregate is destroyed after stress application, resulting in a gradual enlargement of the pore area, evidenced by the change from tiny pores into larger- and medium-sized pores. After 10 cycles, the internal pore area of the sample expands by nearly 35%, indicating that the localized damage caused by the dry–wet freeze–thaw cycle controls the macroscopic mechanical properties. Finally, a damage constitutive model is developed based on the experimental phenomena and mechanism analysis, and the model’s validity is verified by comparing the experimental data with theoretical predictions. Full article
Show Figures

Figure 1

Back to TopTop