Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,179)

Search Parameters:
Keywords = drug-gene delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1642 KB  
Review
Controlling Biogenesis and Engineering of Exosomes to Inhibit Growth and Promote Death in Glioblastoma Multiforme
by Srikar Alapati and Swapan K. Ray
Brain Sci. 2026, 16(2), 130; https://doi.org/10.3390/brainsci16020130 (registering DOI) - 25 Jan 2026
Abstract
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built [...] Read more.
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built up by the tumor cells. A growing body of research has identified exosomes as critical enablers of therapy resistance. These nanoscale vesicles enable GBM cells to disseminate oncogenic proteins, nucleic acids, and lipids that collectively promote angiogenesis, maintain autophagy under metabolic pressure, and suppress apoptosis. As interest grows in targeting tumor communication networks, exosome-based therapeutic strategies have emerged as promising avenues for improving therapeutic outcomes in GBM. This review integrates current insights into two complementary therapeutic strategies: inhibiting exosome biogenesis and secretion, and engineering exosomes as precision vehicles for the delivery of anti-tumor molecular cargo. Key molecular regulators of exosome formation—including the endosomal sorting complex required for transport (ESCRT) machinery, tumor susceptibility gene 101 (TSG101) protein, ceramide-driven pathways, and Rab GTPases—govern the sorting and release of factors that enhance GBM survival. Targeting these pathways through pharmacological or genetic means has shown promise in suppressing angiogenic signaling, disrupting autophagic flux via modulation of autophagy-related gene (ATG) proteins, and sensitizing tumor cells to apoptosis by destabilizing mitochondria and associated survival networks. In parallel, advances in exosome engineering—encompassing siRNA loading, miRNA enrichment, and small-molecule drug packaging—offer new routes for delivering therapeutic agents across the blood–brain barrier with high cellular specificity. Engineered exosomes carrying anti-angiogenic, autophagy-inhibiting, or pro-apoptotic molecules can reprogram the tumor microenvironment and activate both the intrinsic mitochondrial and extrinsic ligand-mediated apoptotic pathways. Collectively, current evidence underscores the potential of strategically modulating endogenous exosome biogenesis and harnessing exogenous engineered therapeutic exosomes to interrupt the angiogenic and autophagic circuits that underpin therapy resistance, ultimately leading to the induction of apoptotic cell death in GBM. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
20 pages, 1552 KB  
Review
Engineered Mesenchymal Stromal Cells in Oncology: Navigating Between Therapeutic Delivery and Tumor Promotion
by Marta Warzycha, Agnieszka Oleksiuk, Olga Suska, Tomasz Jan Kolanowski and Natalia Rozwadowska
Genes 2026, 17(1), 108; https://doi.org/10.3390/genes17010108 - 20 Jan 2026
Viewed by 95
Abstract
Mesenchymal stromal cells (MSCs) are intensively investigated in oncology owing to their intrinsic tumor-homing ability and capacity to deliver therapeutic agents directly into the tumor microenvironment (TME). Recent advances in genetic engineering have enabled precise modification of MSCs, allowing controlled expression of therapeutic [...] Read more.
Mesenchymal stromal cells (MSCs) are intensively investigated in oncology owing to their intrinsic tumor-homing ability and capacity to deliver therapeutic agents directly into the tumor microenvironment (TME). Recent advances in genetic engineering have enabled precise modification of MSCs, allowing controlled expression of therapeutic genes and other cargo delivery, thus improving targeting efficiency. As cellular carriers, MSCs have been engineered to transport oncolytic viruses, suicide genes in gene-directed enzyme prodrug therapy (GDEPT), multifunctional nanoparticles, and therapeutic factors such as IFN-β or TRAIL, while engineered MSC-derived extracellular vesicles (MSC-EVs) offer a promising cell-free alternative. These strategies increase intratumoral drug concentration, amplify bystander effects, and synergize with standard therapies while reducing systemic toxicity. Conversely, accumulating evidence highlights the tumor-promoting properties of MSCs: once recruited by inflammatory and hypoxic cues, they remodel the tumor microenvironment by stimulating angiogenesis, suppressing immune responses, differentiating into cancer-associated fibroblasts, and promoting epithelial-to-mesenchymal transition (EMT), ultimately enhancing invasion, metastasis, and therapy resistance. This duality has sparked both enthusiasm and concern in the oncology field. The present review outlines the paradoxical role of MSCs in oncology—ranging from their potential to promote tumor growth to their emerging utility as vehicles for targeted drug delivery. By highlighting both therapeutic opportunities and biological risks, we aim to provide a balanced perspective on how MSC-based strategies might be refined, optimized, and safely integrated into future cancer therapies. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

25 pages, 4240 KB  
Article
Graphene-Based Nanosystem for Targeted Delivery of Anti-Sense miRNA-21 on Hepatocellular Carcinoma Cells
by Paola Trischitta, Paulina Kucharzewska, Barbara Nasiłowska, Wojciech Skrzeczanowski, Rosamaria Pennisi, Maria Teresa Sciortino and Marta Kutwin
Int. J. Mol. Sci. 2026, 27(2), 975; https://doi.org/10.3390/ijms27020975 - 19 Jan 2026
Viewed by 92
Abstract
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene [...] Read more.
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene expression, and their dysregulation is associated with various diseases, including cancer. This study aimed to evaluate the impact of graphene oxide on cellular signaling pathways and its potential as a platform for gene delivery by developing a GO–antisense miRNA-21 nanosystem in HepG2 liver cancer cells. A colloidal dispersion of GO was used to prepare GO-antisense miRNA-21 nanosystems via self-assembly. The nanosystem was characterized in terms of ultrastructure, size distribution, surface composition and binding by TEM, DLS, ATR-FTIR and UV-Vis spectra. Zeta potential measurements were conducted to evaluate nanosystem stability by assessing the release kinetics of antisense miRNA-21. The efficiency of the GO nanosystem in delivering antisense miRNA-21 into HepG2 cells was analyzed using confocal microscopy and flow cytometry. Given the central role of miRNA-21 in inflammatory and oncogenic pathways, we first assessed its expression following GO exposure. In line with previous studies reporting high miRNA-21 expression in hepatocellular carcinoma cells, GO treatment further increased miRNA-21 levels in HepG2 cells compared with untreated controls. Changes in the expression levels of IL-8, MCP-1, ICAM-1, TIMP-2, and NF-kB were quantified by qPCR analysis. The ultrastructural analysis confirmed a strong affinity between GO and antisense miRNA-21. Transfection results demonstrate that the GO-based nanosystem effectively delivered antisense miRNA-21 into HepG2 cells, leading to a reduction in the expression of key pro-inflammatory genes. These findings suggest that GO-based nanocarriers may offer a promising strategy for delivering localized intratumoral miRNA-based therapies that target gene regulation in hepatocellular carcinoma. Full article
Show Figures

Graphical abstract

18 pages, 994 KB  
Review
Aptamer-Based Delivery of Genes and Drugs Across the Blood–Brain Barrier
by Luona Yang, Yuan Yin, Xinli Liu and Bin Guo
Pharmaceuticals 2026, 19(1), 164; https://doi.org/10.3390/ph19010164 - 16 Jan 2026
Viewed by 312
Abstract
The blood–brain barrier (BBB) restricts therapeutic delivery to the central nervous system (CNS), hindering the treatment of neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, brain cancers, and stroke. Aptamers, short single-stranded DNA or RNA oligonucleotides that can fold into unique 3D shapes [...] Read more.
The blood–brain barrier (BBB) restricts therapeutic delivery to the central nervous system (CNS), hindering the treatment of neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, brain cancers, and stroke. Aptamers, short single-stranded DNA or RNA oligonucleotides that can fold into unique 3D shapes and bind to specific target molecules, offer high affinity and specificity, low immunogenicity, and promising BBB penetration via receptor-mediated transcytosis targeting receptors such as the transferrin receptor (TfR) and low-density lipoprotein receptor-related protein 1 (LRP1). This review examines aptamer design through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and its variants, mechanisms of BBB crossing, and applications in CNS disorders. Recent advances, including in silico optimization, in vivo SELEX, BBB chip-based MPS-SELEX, and nanoparticle–aptamer hybrids, have identified brain-penetrating aptamers and enhanced the brain delivery efficiency. This review highlights the potential of aptamers to transform CNS-targeted therapies. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

19 pages, 1001 KB  
Review
MicroRNAs—Are They Possible Markers of Allergic Diseases and Efficient Immunotherapy?
by Krzysztof Specjalski and Marek Niedoszytko
Int. J. Mol. Sci. 2026, 27(2), 902; https://doi.org/10.3390/ijms27020902 - 16 Jan 2026
Viewed by 131
Abstract
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers [...] Read more.
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers facilitating diagnosis of the most common allergic diseases, such as allergic rhinitis (miR-21, miR-126, miR-142-3p, miR-181a, miR-221), asthma (miR-16, miR-21, miR-126, miR-146a, miR-148a, miR-221, miR-223) and atopic dermatitis (miR-24, miR-124, miR-155, miR-191, miR-223, miR-483-5p), or objectively assessing severity of inflammation and endotype of the disease. In spite of the large body of literature available, its scientific value is limited due to the small numbers of study participants, heterogeneity of populations enrolled, and diverse methodology. Some studies have revealed significant changes in miRNAs’ profile in the course of allergen immunotherapy. Tolerance induction is associated with processes controlled by miRNAs: enhanced activity of Treg cells and increased production of tolerogenic IL-10 and TGF-β. Thus, miRNAs may be candidates as biomarkers of successful immunotherapy. Finally, they are also possible therapeutic agents or targets of therapies based on antagomirs blocking their activity. However, so far no studies are available that demonstrate efficacy in overcoming delivery barriers, tissue targeting or drugs’ safety. As a consequence, despite promising results of in vitro and animal model studies, translation into human therapeutic agents is uncertain. Full article
Show Figures

Figure 1

21 pages, 5367 KB  
Article
Fluorescent Nanoporous Gene Drugs with Fenton-like Catalysis Vector Research
by Yulin Li, Jianjun Pan, Lili Xu, Yan Sun and Tong Li
Nanomaterials 2026, 16(2), 120; https://doi.org/10.3390/nano16020120 - 16 Jan 2026
Viewed by 207
Abstract
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) [...] Read more.
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) and Survivin oligo (siRNA) are loaded to form a ZIF-8@CDs/DOX@siRNA dual loading platform. CDs of 5–10 nm are synthesized by the solvent method and combined with ZIF-8. Electron microscopy shows that the composites are nearly spherical particles of approximately 200 nm, and the surface potential decreases from +36 mV before loading CDs to +25.7 mV after loading. The composite system shows unique advantages: (1) It has Fenton-like catalytic activity, catalyzes H2O2 to generate hydroxyl radicals, and consumes glutathione in the tumor microenvironment. The level of reactive oxygen species (ROS) in the ZIF-8@CDs group is significantly higher than that in the control group. (2) To achieve visual diagnosis and treatment, its fluorescence intensity is superior to that of the traditional Fluorescein isothiocyanate (FITC)-labeled vector; (3) It has a high loading capacity, with the loading amount of small nucleic acids reaching 36.25 μg/mg, and the uptake rate of siRNA by liver cancer cells is relatively ideal. The ZIF-8@CDs/DOX@siRNA dual-loading system is further constructed. Flow cytometry shows that the apoptosis rate of HepG2 cells induced by the ZIF-8@CDs/DOX@siRNA dual-loading system is 49%, which is significantly higher than that of the single-loading system (ZIF-8@CDs/DOX: 34.3%, ZIF-8@CDs@siRNA: 24.2%) and the blank vector (ZIF-8@CDs: 12.6%). The platform provides a new strategy for the integration of tumor diagnosis and treatment through the multi-mechanism synergy of chemical kinetic therapy, gene silencing and chemotherapy. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

26 pages, 2484 KB  
Review
Effective Non-Invasive Delivery of Epigenetic Drugs Using Functionalized Accessory Unit Conjugates
by Toshihiko Tashima
Pharmaceutics 2026, 18(1), 115; https://doi.org/10.3390/pharmaceutics18010115 - 15 Jan 2026
Viewed by 301
Abstract
Epigenetics involves heritable changes in gene expression—such as DNA methylation (5-methylcytosine; 5mC), histone modifications, and regulation by non-coding RNAs at the mRNA translation level—without altering the underlying DNA sequence. As targeting these mechanisms enables intervention at the root cause of disease rather than [...] Read more.
Epigenetics involves heritable changes in gene expression—such as DNA methylation (5-methylcytosine; 5mC), histone modifications, and regulation by non-coding RNAs at the mRNA translation level—without altering the underlying DNA sequence. As targeting these mechanisms enables intervention at the root cause of disease rather than the symptoms alone, epigenetics has become a rapidly advancing field in pharmaceutical sciences. Various epigenetic modulators, including histone deacetylase (HDAC) inhibitors, histone acetyltransferase (HAT) inhibitors, DNA methyltransferase (DNMT) inhibitors, and microRNAs (miRNAs), have been developed, and some have already been approved for cancer therapy. However, these agents often face significant challenges such as poor membrane permeability, enzymatic instability, and suboptimal biodistribution. Incorporating functionalized accessory units—serving as vectors (e.g., transporter recognition units, cell-penetrating peptides, tumor-homing peptides, monoclonal antibodies) or as carriers (e.g., monoclonal antibodies, nanoparticles)—into epigenetic modulators may help overcome these delivery barriers. In this narrative review, I discuss the potential and advantages of effective non-invasive delivery of epigenetic drugs using such functionalized accessory unit conjugates. Full article
(This article belongs to the Special Issue Development and Drug Delivery in Epigenetic Therapy)
Show Figures

Figure 1

42 pages, 919 KB  
Review
Corneal Neovascularization: Pathogenesis, Current Insights and Future Strategies
by Evita Muller, Leo Feinberg, Małgorzata Woronkowicz and Harry W. Roberts
Biology 2026, 15(2), 136; https://doi.org/10.3390/biology15020136 - 13 Jan 2026
Viewed by 536
Abstract
The cornea is an avascular, immune-privileged tissue critical to maintaining transparency, optimal light refraction, and protection from microbial and immunogenic insults. Corneal neovascularization (CoNV) is a pathological sequela of multiple anterior segment diseases and presents a major cause for reduced visual acuity and [...] Read more.
The cornea is an avascular, immune-privileged tissue critical to maintaining transparency, optimal light refraction, and protection from microbial and immunogenic insults. Corneal neovascularization (CoNV) is a pathological sequela of multiple anterior segment diseases and presents a major cause for reduced visual acuity and overall quality of life. Various aetiologies, including infection (e.g., herpes simplex), inflammation (e.g., infective keratitis), hypoxia (e.g., contact lens overuse), degeneration (e.g., chemical burns), and trauma, disrupt the homeostatic avascular microenvironment, triggering an overactive compensatory response. This response is governed by a complex interplay of pro- and anti-angiogenic factors. This review investigates the potential for these mediators to serve as therapeutic targets. Current therapeutic strategies for CoNV encompass topical corticosteroids, anti-VEGF injections, fine-needle diathermy, and laser modalities including argon, photodynamic therapy and Nd:YAG. Emerging therapies involve steroid-sparing immunosuppressants (including cyclosporine and rapamycin), anti-fibrotic agents and advanced drug delivery systems, including ocular nanosystems and viral vectors, to enhance drug bioavailability. Adjunctive therapy to attenuate the protective corneal epithelium prior to target neovascular plexi are further explored. Gene-based approaches, such as Aganirsen (antisense oligonucleotides) and CRISPR/Cas9-mediated VEGF-A editing, have shown promise in preclinical studies for CoNV regression and remission. Given the multifactorial pathophysiology of CoNV, combination therapies targeting multiple molecular pathways may offer improved visual outcomes. Case studies of CoNV highlight the need for multifaceted approaches tailored to patient demographics and underlying ocular diseases. Future research and clinical trials are essential to elucidate optimal therapeutic strategies and explore combination therapies to ensure better management, improved treatment outcomes, and long-term remission of this visually disabling condition. Full article
Show Figures

Figure 1

16 pages, 2571 KB  
Article
A Nanoparticle-Based Strategy to Stabilize 5-Azacytidine and Preserve DNA Demethylation Activity in Human Cardiac Fibroblasts
by Kantaporn Kheawfu, Chuda Chittasupho, Sudarshan Singh, Siriporn Okonogi and Narainrit Karuna
Pharmaceutics 2026, 18(1), 88; https://doi.org/10.3390/pharmaceutics18010088 - 9 Jan 2026
Viewed by 405
Abstract
Background: 5-Azacytidine (5-Aza) is a clinically important DNMT inhibitor with the potential to modulate cardiac remodeling by epigenetically reprogramming human cardiac fibroblasts (HCFs). However, its clinical utility is limited by rapid hydrolytic degradation. Nanoparticle (NP) encapsulation offers a strategy to mitigate this instability. [...] Read more.
Background: 5-Azacytidine (5-Aza) is a clinically important DNMT inhibitor with the potential to modulate cardiac remodeling by epigenetically reprogramming human cardiac fibroblasts (HCFs). However, its clinical utility is limited by rapid hydrolytic degradation. Nanoparticle (NP) encapsulation offers a strategy to mitigate this instability. This study evaluated the physical and chemical stability of free 5-Aza and 5-Aza-loaded lipid nanoparticles (5-Aza-NP) under different storage temperatures and examined their effects on DNA methylation-related gene expression in HCFs. Methods: Hyaluronic acid-stabilized lipid NPs were prepared using a solvent displacement method. Particle size, polydispersity index (PDI), and zeta potential were monitored over four days at −20 °C, 4 °C, and 30 °C. Chemical stability was assessed using HPLC and first-order kinetic modeling. Functional activity was evaluated by treating HCFs with free 5-Aza or 5-Aza-NP stored for 96 h and measuring DNMT1, DNMT3A, and DNMT3B expression by RT-qPCR. Results: 5-Aza-NP remained physically stable at 4 °C, while −20 °C induced aggregation and 30 °C caused thermal variability. Free 5-Aza degraded rapidly at 30 °C (6.56% remaining at 72 h), whereas 5-Aza-NP preserved 11.54%. Kinetic modeling confirmed first-order degradation, with consistently longer half-lives for the NP formulation. Functionally, 5-Aza–NP preserved its ability to suppress DNMT1 expression following 96 h of storage at 4 °C, whereas free 5-Aza showed reduced activity. In contrast, DNMT3A and DNMT3B levels remained low and unchanged across all treatments. Conclusions: NP encapsulation enhances the physicochemical stability of 5-Aza and preserves its DNMT1-inhibitory activity, while DNMT3A/B remain unaffected. These findings support NP-based delivery as a promising strategy to stabilize labile epigenetic drugs such as 5-Aza. Full article
Show Figures

Figure 1

23 pages, 2668 KB  
Review
Targeting Cardiac Fibroblast Plasticity for Antifibrotic and Regenerative Therapy in Heart Failure
by Suchandrima Dutta, Sophie Chen, Waqas Ahmad, Wei Huang, Jialiang Liang and Yigang Wang
Cells 2026, 15(2), 112; https://doi.org/10.3390/cells15020112 - 8 Jan 2026
Viewed by 297
Abstract
Cardiac fibrosis is a major component of heart failure (HF) and develops when reparative wound healing becomes chronic, leading to excessive extracellular matrix accumulation. Cardiac fibroblasts (CFs), the main regulators of matrix remodeling, are heterogeneous in developmental origins, regional localizations, and activation states. [...] Read more.
Cardiac fibrosis is a major component of heart failure (HF) and develops when reparative wound healing becomes chronic, leading to excessive extracellular matrix accumulation. Cardiac fibroblasts (CFs), the main regulators of matrix remodeling, are heterogeneous in developmental origins, regional localizations, and activation states. This diversity determines whether tissue repair resolves normally or progresses into maladaptive scarring that disrupts myocardial structure and function after injuries. Recent single-cell and spatial transcriptomic studies show that CFs exist in distinct yet interrelated molecular states in murine models and human cardiac tissue with specialized roles in matrix production, angiogenesis, immune signaling, and mechanical sensing. These insights redefine cardiac fibrosis as a dynamic and context-dependent process rather than a uniform cellular response. Although CFs are promising targets for preventing HF progression and enhancing cardiac remodeling, translation into effective therapies remains limited by the unclear heterogeneity of pathological fibroblasts, the lack of distinctive CF markers, and the broad activity of fibrogenic signaling pathways. In this review, we discuss the dynamics of CF activations during the development and progression of HF and assess the underlying pathways and mechanisms contributing to cardiac dysfunction. Additionally, we highlight the potential of targeting CFs for developing therapeutic strategies. These include nonspecific suppression of fibroblast activity and targeted modulation of the signaling pathways and cell populations that sustain chronic remodeling. Furthermore, we assess regenerative approaches that can reprogram fibroblasts or modulate their paracrine functions to restore functional myocardium. Integrating antifibrotic and regenerative strategies with advances in precision drug discovery and gene delivery offers a path toward reversing established fibrosis and achieving recovery in HF. Full article
(This article belongs to the Special Issue Signalling Mechanisms Regulating Cardiac Fibroblast Function)
Show Figures

Graphical abstract

26 pages, 4325 KB  
Article
Pentamidine-Functionalized Polycaprolactone Nanofibers Produced by Solution Blow Spinning for Controlled Release in Cutaneous Leishmaniasis Treatment
by Nerea Guembe-Michel, Paul Nguewa and Gustavo González-Gaitano
Polymers 2026, 18(2), 170; https://doi.org/10.3390/polym18020170 - 8 Jan 2026
Viewed by 247
Abstract
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for [...] Read more.
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for cutaneous leishmaniasis (CL). Homogeneous PCL fiber mats were produced using a simple SBS set-up with a commercial airbrush after optimizing several working parameters. Drug release studies demonstrated sustained PTM release profile over time, which was mechanistically modeled by utilizing the complete nanofiber diameter distribution, obtained from SEM analysis of the blow-spun material. FTIR and XRD analyses were performed to investigate the drug–polymer interactions, revealing molecularly dispersed PTM at low-proportion drug/polymers and partial crystallinity at high loadings. The released PTM exhibited significant leishmanicidal activity against Leishmania major promastigotes. Biological investigations showed that SBS-formulated PTM treatment was consistent with the downregulation of parasite genes involved in cell division and DNA replication (cycA, cyc6, pcna, top2, mcm4) and upregulation of the drug response gene (prp1). The controlled delivery of PTM within SBS-fabricated PCL nanofibers provides an effective therapeutic approach to tackle CL and, through the incorporation of additional drugs, could be extended to address a broader range of cutaneous infections. Full article
(This article belongs to the Special Issue Fiber Spinning Technologies and Functional Polymer Fiber Development)
Show Figures

Graphical abstract

30 pages, 1561 KB  
Review
Molecular Mechanisms of Chondrocyte Hypertrophy Mediated by Physical Cues and Therapeutic Strategies in Osteoarthritis
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 624; https://doi.org/10.3390/ijms27020624 - 8 Jan 2026
Viewed by 429
Abstract
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness [...] Read more.
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness and viscoelasticity, topological organization, and surface chemistry—regulate hypertrophic differentiation and matrix degradation in a zone-, stage-, and scale-dependent manner. Microscale measurements often reveal localized stiffening in superficial zones during early OA, whereas bulk tissue testing can show softening or heterogeneous changes in deeper zones or advanced stages, highlighting the context-dependent nature of ECM mechanics. These biophysical signals are sensed by integrin-based adhesion complexes, primary cilia, mechanosensitive ion channels (TRP/Piezo), and the actin cytoskeleton–nucleus continuum, and are transduced into intracellular pathways with zone- and stage-specific effects, governing chondrocyte fate under physiological and osteoarthritic conditions. Mechanism-based anti-hypertrophic strategies include biomimetic scaffold design for focal defects, dynamic mechanical stimulation targeting early OA, and multimodal approaches integrating mechanical cues with biochemical factors, gene modulation, drug delivery, or cell-based therapies. Collectively, this review provides an integrated mechanobiological framework for understanding cartilage degeneration and highlights emerging opportunities for disease-modifying interventions targeting chondrocyte hypertrophy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

34 pages, 786 KB  
Review
Current State of the Neurotrophin-Based Pharmaceutics in the Treatment of Neurodegenerative Diseases and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Med. Sci. 2026, 14(1), 15; https://doi.org/10.3390/medsci14010015 - 29 Dec 2025
Viewed by 598
Abstract
Background: The regulation of the synthesis of the nerve growth factor and other neurotrophins is one of the dynamically developing areas of pharmacotherapy of neurological and mental disorders. Despite a large number of studies of various ligands of neurotrophin receptors, only a few [...] Read more.
Background: The regulation of the synthesis of the nerve growth factor and other neurotrophins is one of the dynamically developing areas of pharmacotherapy of neurological and mental disorders. Despite a large number of studies of various ligands of neurotrophin receptors, only a few have reached clinical application and only for ocular diseases. The aim of this narrative review was to systematize the main progress on neurotrophin-based pharmaceutics; to perform a comparative critical analysis of various therapeutic strategies, elucidate the underlying causes of clinical trial failures, and identify the most promising avenues for future development. Methods: The literature search was conducted in PubMed, Google Scholar, Medline, and EBSCO, and the ClinicalTrials.gov database was used to track current clinical studies, along with the official websites of pharmaceutical companies. The search covered original studies published up to October 2025, with inclusion restricted to articles published in English. Articles describing specific pharmacological compounds that had reached the clinical trial stage were selected. Foundational biological research was referenced to contextually explain the mechanisms of action of the drugs and their therapeutic implications. Results: Recombinant neurotrophins and synthetic molecules, the agonists and antagonists of their receptors, and cell-based gene therapy are promising means for the prevention and rehabilitation of ischemic conditions, as well as the treatment of neuropathic pain and neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Some of these have undergone clinical trials, yet only neurotrophins for ocular diseases have been implemented in clinical practice: recombinant NGF—cenegermin and recombinant CNTF—Revakinagene taroretcel. The success of these eye drugs is likely attributable to their local administration, improved bioavailability, and low ocular immunoresistance. Conclusions: The study identified limitations and future prospects for neurotrophin-based pharmaceuticals. For future clinical trials, attention should be paid to the pharmacogenetic profiles of the patients and the evaluation of the inflammatory status of the disease. Novel plasma biomarkers of the effectiveness are needed as well as TSPO-PET imaging. Drug delivery systems remain insufficient; therefore, efforts should focus on inducing endogenous neurotrophin production and developing highly selective agonists and antagonists of neurotrophin receptors. It is crucial to establish a favorable premorbid background before neurotrophin therapy to minimize immunoresistance. Full article
(This article belongs to the Collection Advances in the Pathogenesis of Neurodegenerative Diseases)
Show Figures

Figure 1

58 pages, 2014 KB  
Review
FGFR Aberrations in Solid Tumors: Mechanistic Insights and Clinical Translation of Targeted Therapies
by Zijie He, Yizhen Chen, Genglin Li, Jintao Wang, Yuxin Wang, Pengjie Tu, Yangyun Huang, Lilan Zhao, Xiaojie Pan, Hengrui Liu and Wenshu Chen
Cancers 2026, 18(1), 89; https://doi.org/10.3390/cancers18010089 - 27 Dec 2025
Viewed by 466
Abstract
Aberrations in fibroblast growth factor receptors (FGFRs) constitute a key oncogenic mechanism across multiple solid tumors, influencing tumor initiation, therapeutic response, and clinical outcomes. This review synthesizes current knowledge on the molecular biology, signaling networks, and tumor-specific distribution of FGFR alterations, including amplifications, [...] Read more.
Aberrations in fibroblast growth factor receptors (FGFRs) constitute a key oncogenic mechanism across multiple solid tumors, influencing tumor initiation, therapeutic response, and clinical outcomes. This review synthesizes current knowledge on the molecular biology, signaling networks, and tumor-specific distribution of FGFR alterations, including amplifications, point mutations, and gene fusions. The mechanistic basis of FGFR-driven tumor progression is discussed, including activation of downstream signaling pathways, crosstalk with other receptor tyrosine kinases, and regulation of the tumor microenvironment, angiogenesis, and immune escape. Recent development of selective FGFR inhibitors—such as pemigatinib, erdafitinib, and futibatinib—has translated mechanistic insights into measurable clinical benefits in genomically defined patient populations. However, acquired resistance remains a major challenge, driven by secondary mutations, activation of bypass pathways, and intratumoral heterogeneity. Integration of multi-omics profiling, liquid biopsy monitoring, and biomarker-guided patient selection is essential to optimize therapeutic efficacy and overcome resistance. This review also highlights emerging therapeutic modalities, such as antibody–drug conjugates and nanotechnology-based delivery systems, which may improve target specificity and prolong therapeutic durability. By integrating molecular, translational, and clinical evidence, this review aims to establish a comprehensive framework for precision oncology strategies targeting FGFR-driven malignancies. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches for Cancer Treatment)
Show Figures

Figure 1

35 pages, 1606 KB  
Review
Hybrid Nanocarriers for Cancer Therapy: Advancements in Co-Delivery of Gene Therapy and Immunotherapy
by Kulzhan Berikkhanova, Isah Inuwa, Abdulrahman Garba Jibo, Nurzhan Berikkhanov, Nurzhan Bikhanov, Yessenkhan Sultan and Ardak Omarbekov
Int. J. Mol. Sci. 2026, 27(1), 248; https://doi.org/10.3390/ijms27010248 - 25 Dec 2025
Viewed by 592
Abstract
Over the years, cancer has continued to be a leading global health threat, prompting researchers to explore advanced therapies that go beyond traditional treatments like chemotherapy and radiotherapy. Among these advanced therapies, gene therapy and immunotherapy have shown significant promise in treating cancer [...] Read more.
Over the years, cancer has continued to be a leading global health threat, prompting researchers to explore advanced therapies that go beyond traditional treatments like chemotherapy and radiotherapy. Among these advanced therapies, gene therapy and immunotherapy have shown significant promise in treating cancer by either altering genetic makeup or stimulating the immune system. However, their clinical applications face significant obstacles such as poor drug delivery, rapid degradation, and immune system clearance. Hybrid nanocarriers have emerged as a transformative development in modern precision oncology, enabling the co-delivery of gene therapy and immunotherapy agents in a highly targeted manner to address the persistent limitations of traditional cancer treatments. This review focuses on hybrid nanocarrier systems specifically engineered for co-delivery applications and critically evaluates when and how these multifunctional platforms outperform conventional single-modality or non-hybrid formulations. We compare key hybrid architectures in terms of payload compatibility, pharmacokinetics, immune modulation, and translational readiness, and examine the influence of tumor microenvironmental characteristics on their therapeutic performance. Particular emphasis is placed on stimuli-responsive designs, biomimetic surface engineering, and artificial intelligence–assisted optimization as emerging strategies to enhance co-delivery efficacy. By synthesizing current evidence and identifying key scientific and manufacturing gaps, this review aims to provide a practical foundation for advancing hybrid nanocarriers from laboratory development to clinically meaningful, personalized cancer therapies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop