Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = drought–rewatering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4538 KiB  
Article
Effects of Drought Stress on the Growth and Physiological Characteristics of Idesia polycarpa Maxim
by Xiaoyu Lu, Yian Yin, Maolin Yang, Shucheng Zhang, Zhangtai Niu, Lingli Wu and Chan Chen
Horticulturae 2025, 11(7), 834; https://doi.org/10.3390/horticulturae11070834 - 15 Jul 2025
Viewed by 254
Abstract
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water [...] Read more.
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water content (RWC): moderate drought (T1, 40 ± 5%), severe drought (T2, 20 ± 5%), control (CK, 70 ± 5%), and rewatering following moderate (T3) and severe drought stress (T4), with RWC restored to 70 ± 5%. Under drought stress, seedlings exhibited adaptive responses including reduced growth, enhanced antioxidant enzyme activity, osmotic regulation, and changes in endogenous hormone levels. Seedlings showed good tolerance and recovery under moderate drought, but severe drought caused substantial damage and limited post-rewatering recovery. Pearson correlation and principal component analyses revealed that betaine, APX, SA, IAA, ABA, chlorophyll (a + b) content, and crown growth were strongly associated with drought response and could serve as key indicators for drought resistance assessment in I. polycarpa. These findings provide insights into the physiological mechanisms of drought adaptation and support the development of a reliable evaluation system for drought tolerance in this promising species. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

17 pages, 1778 KiB  
Article
Stomatal–Hydraulic Coordination Mechanisms of Wheat in Response to Atmospheric–Soil Drought and Rewatering
by Lijuan Wang, Yanqun Zhang, Hao Li, Xinlong Hu, Pancen Feng, Yan Mo and Shihong Gong
Agriculture 2025, 15(13), 1375; https://doi.org/10.3390/agriculture15131375 - 27 Jun 2025
Viewed by 332
Abstract
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. [...] Read more.
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. We set up two VPD treatments (low and high vapor pressure deficit) and two soil moisture treatments (CK: control soil moisture with sufficient irrigation, 85–95% field capacity; drought: soil moisture with deficit irrigation, 50–60% field capacity) in the pot experiment. We investigated wheat’s hydraulic transport (leaf hydraulic conductance, Kleaf) and gas exchange (stomatal conductance, gs; photosynthetic rate, An) responses to combined drought stress from atmospheric and soil conditions at the heading stage, as well as rewatering 55 days after treatment initiation. The results revealed that: (1) high VPD and soil drought significantly reduced leaf hydraulic conductance (Kleaf), with a high VPD decreasing Kleaf by 31.6% and soil drought reducing Kleaf by 33.2%; The high VPD decreased stomatal conductance (gs) by 43.6% but the photosynthetic rate (An) by only 12.3%; (2) After rewatering, gs and An of atmospheric and soil drought recovered relatively rapidly, while Kleaf did not; (3) Atmospheric and soil drought stress led to adaptive changes in wheat’s stomatal regulation strategies, with an increasing severity of drought stress characterized by a shift from non-conservative to conservative water regulation behavior. These findings elucidate wheat’s hydraulic–stomatal coordination mechanisms under drought stress and their differential recovery patterns, providing theoretical foundation for improved irrigation management practices. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

17 pages, 2388 KiB  
Article
Response of Turf Bermudagrass Hybrids to Induced Drought Stress Under Controlled Environment
by Mitiku A. Mengistu, Desalegn D. Serba, Matthew M. Conley, Reagan W. Hejl, Yanqi Wu and Clinton F. Williams
Grasses 2025, 4(2), 23; https://doi.org/10.3390/grasses4020023 - 5 Jun 2025
Viewed by 597
Abstract
Bermudagrass is a warm-season turfgrass commonly grown in drought-prone areas. Harnessing natural genetic variation available in germplasm is a principal strategy to enhance its resilience to drought stress. This study was carried out to assess the comparative performance of bermudagrass hybrids under drought [...] Read more.
Bermudagrass is a warm-season turfgrass commonly grown in drought-prone areas. Harnessing natural genetic variation available in germplasm is a principal strategy to enhance its resilience to drought stress. This study was carried out to assess the comparative performance of bermudagrass hybrids under drought conditions and their subsequent recovery following the drought period. A total of 48 hybrids, including 2 commercial cultivars, ‘Tifway’ and ‘TifTuf’, were established under optimum growth conditions in the greenhouse and then subjected to drought stress by withholding irrigation for four weeks. The dry-down experiment was laid out in a randomized complete block design with four replications. Turf color, visual quality, and active spectral reflectance data were collected weekly and used to assess the health and vigor of the hybrids during progression of the drought stress for four weeks and through recovery after rewatering. Analysis of variance revealed significant differences among the hybrids for color, visual quality, and spectral vegetation indices. A multivariate analysis grouped the hybrids into drought-tolerant with full recovery after rewatering, moderately tolerant, and susceptible to extended drought stress without recovery. These results showed the prevalence of genetic variation for drought tolerance and proved instrumental in the development of bermudagrass cultivars resilient to drought stress and improved water use efficiency. Full article
(This article belongs to the Special Issue Advances in Sustainable Turfgrass Management)
Show Figures

Figure 1

22 pages, 4494 KiB  
Article
Summer Drought Delays Leaf Senescence and Shifts Radial Growth Towards the Autumn in Corylus Taxa
by Kristine Vander Mijnsbrugge, Art Pareijn, Stefaan Moreels, Sharon Moreels, Damien Buisset, Karen Vancampenhout and Eduardo Notivol Paino
Forests 2025, 16(6), 907; https://doi.org/10.3390/f16060907 - 28 May 2025
Viewed by 376
Abstract
Background: Understanding the mechanisms by which woody perennials adapt to extreme water deficits is important in regions experiencing increasingly frequent and intense droughts. Methods: We investigated the effects of drought severity in the shrubs Corylus avellana L., C. maxima Mill., and their morphological [...] Read more.
Background: Understanding the mechanisms by which woody perennials adapt to extreme water deficits is important in regions experiencing increasingly frequent and intense droughts. Methods: We investigated the effects of drought severity in the shrubs Corylus avellana L., C. maxima Mill., and their morphological intermediate forms, all from local Belgian origin, and C. avellana from a Spanish-Pyrenean origin. Potted saplings in a common garden were not receiving any water for a duration of 30 days in July 2021 and developed a range of visual stress symptoms. We assessed responses across the various symptom categories. Results: Droughted plants senesced later than the controls (up to 6 days). The most severely affected plants disproportionately displayed the longest delay (21 days). The delayed leaf senescence was reflected in the subsequent bud burst which was delayed for the droughted plants, with again the largest delay observed for the most severely affected plants. Interestingly, radial growth shifted towards the autumn among the drought-treated plants, suggesting compensation growth after growing conditions normalized. The Spanish-Pyrenean provenance, characterized by smaller plants with smaller leaves, developed visual drought symptoms later than the local provenance during the drought. Conclusions: The results indicate that severe early summer drought, followed by rewatering, not only diminishes radial growth but also prolongs the growth period, and delays leaf senescence. A prolonged time frame for radial growth and a delayed leaf senescence indicate a longer period in which carbon is incorporated in woody tissue or in non-structural carbohydrates. This can help the fine tuning of carbon sequestration modeling. The Pyrenean provenance, adapted to high altitude, holds an advantage under water-limited conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

19 pages, 1744 KiB  
Article
Physiological and Biochemical Adaptations to Repeated Drought–Rehydration Cycles in Ochroma lagopus Swartz: Implications for Growth and Stress Resilience
by Yuanxi Liu, Jianli Sun, Cefeng Dai, Guanben Du, Rui Shi and Junwen Wu
Plants 2025, 14(11), 1636; https://doi.org/10.3390/plants14111636 - 27 May 2025
Cited by 1 | Viewed by 498
Abstract
Ochroma lagopus Swartz is a rapidly growing plant known for its lightweight wood; it is widely utilized for timber production and ecological restoration. We investigated the effects of different numbers of drought–rehydration cycles on O. lagopus seedlings cultivated at the Xishuangbanna Tropical Botanical [...] Read more.
Ochroma lagopus Swartz is a rapidly growing plant known for its lightweight wood; it is widely utilized for timber production and ecological restoration. We investigated the effects of different numbers of drought–rehydration cycles on O. lagopus seedlings cultivated at the Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences. The experiment comprised three treatments: normal watering (CK, 80–85% field capacity), one drought–rehydration cycle (D1, one rewatering), and three drought–rehydration cycles (D2, three rewaterings). We characterized the effects of these treatments on seedling growth, biomass allocation, non-structural carbohydrates (NSCs), malondialdehyde (MDA), catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, proline content, and soluble protein content. The number of drought–rehydration cycles had a significant effect on the growth characteristics and physiological and biochemical properties of leaves. As the number of drought–rehydration cycles increased, the height increased significantly (by 17.17% under D2). The leaf biomass ratio, soluble sugar content, and starch content decreased (15.05%, 15.79%, and 46.92% reductions under the D2 treatment); the stem biomass ratio and root biomass ratio increased; CAT activity increased and then decreased (it was highest at 343.67 mg·g−1·min−1 under D1); and the POD and SOD activities, the MDA content, the soluble protein content, and the soluble sugar/starch ratio increased significantly (395.42%, 461.82%, 74.72%, 191.07%, and 59.79% higher under D2). The plasticity of growth was much greater than that of physiological and biochemical traits. In summary, O. lagopus seedlings adapted to multiple drought–rehydration cycles by increasing the accumulation of soluble proteins (likely associated with osmotic protection), activating enzymes (POD and SOD), promoting the conversion of NSCs (increasing stored carbon consumption), and allocating more biomass to plant height growth than to diameter expansion. Under climate change scenarios with intensified drought frequency, elucidating the drought resistance mechanisms of O. lagopus is critical to silvicultural practices in tropical plantation. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 10080 KiB  
Article
Genome-Wide Identification and Characterization of bHLH Transcription Factors and Their Expression Profile in Potato (Solanum tuberosum L.)
by Jiali Ye, Lingzhi Zhang, Shuaikang Liu, Yi Diao, Lina Yin, Xiping Deng and Shiwen Wang
Agronomy 2025, 15(5), 1070; https://doi.org/10.3390/agronomy15051070 - 28 Apr 2025
Viewed by 493
Abstract
The bHLH gene family, one of the most abundant transcription factor families in plants, plays crucial roles in stress resistance, growth, and development. To explore the characteristics of the potato bHLH gene family members, this study identified and analyzed a total of 134 [...] Read more.
The bHLH gene family, one of the most abundant transcription factor families in plants, plays crucial roles in stress resistance, growth, and development. To explore the characteristics of the potato bHLH gene family members, this study identified and analyzed a total of 134 bHLH genes. Using bioinformatics approaches, we examined their physicochemical properties, conserved structural domains, motifs, and cis-acting elements. Additionally, a phylogenetic analysis was conducted, comparing the bHLH proteins of potato with those of the model plant Arabidopsis thaliana. The study also investigated the expression patterns of StbHLH genes under different environmental conditions and growth stages. The potato bHLH gene family is enriched with various cis-acting elements associated with stress response and plant hormone signaling. The expression patterns of StbHLH genes varied significantly across different conditions, revealing their potential roles in stress resistance and developmental processes. For example, under drought and re-watering treatments, distinct expression patterns were observed, with specific genes showing upregulation or downregulation at different time points. StbHLH025 regulates tissue development and stress response in potato. These findings not only reveal the diversity and complexity of the potato bHLH gene family but also provide valuable insights for future research into the functions of StbHLH genes, particularly their roles in potato stress resistance and developmental processes. Full article
Show Figures

Figure 1

19 pages, 4368 KiB  
Review
Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response
by Zhitao Li, Zhen Liu, Jinyong Zhu, Weilu Wang, Chengwei Gao, Jiangpeng Qi, Xiaoqiang Qiu, Minmin Bao, Hongyu Luo, Yuanming Li and Yuhui Liu
Agronomy 2025, 15(4), 911; https://doi.org/10.3390/agronomy15040911 - 7 Apr 2025
Cited by 1 | Viewed by 712
Abstract
Drought stress, being a crucial abiotic stress factor, and its recovery mechanism after rehydration are important in regulating crop production. This meta-analysis investigates the effects of drought stress followed by rewatering (DSRW) on crop productivity and water use efficiency (WUE) in Chinese cropping [...] Read more.
Drought stress, being a crucial abiotic stress factor, and its recovery mechanism after rehydration are important in regulating crop production. This meta-analysis investigates the effects of drought stress followed by rewatering (DSRW) on crop productivity and water use efficiency (WUE) in Chinese cropping systems, synthesizing data from 90 studies (1997–2023) encompassing 2606 experimental observations. Results indicate that DSRW significantly reduced crop yield (CY) across plant types, with monocots (20.31% decline) outperforming dicots (23.64%) and woody plants (19.98% decline) showing greater resilience than herbaceous species (21.52%). WUE improved in woody plants (+7.81%) but declined in herbaceous crops (−9.44%), with notable increases in Chenopodiaceae (+59.39%) and Malvaceae (+11.35%). Mild drought stress (>65% field capacity) followed by short-term rewatering during early growth stages minimized CY losses (−19.60%) and WUE reduction (−6.89%), outperforming moderate or severe stress. Physiological analyses revealed DSRW-induced declines in photosynthetic parameters (e.g., net photosynthetic rate: −11.54%) but enhanced antioxidant enzyme activities (CAT: +18.21%, SOD: +10.23%) and osmoregulatory substance accumulation (proline: +16.22%). The study highlights the compensatory potential of strategic rewatering timing and intensity, advocating for early-stage, mild drought interventions to mitigate yield losses, which provide a practical value for promoting the sustainable development of water-saving agriculture. Future research should address regional climatic variability and crop quality responses to DSRW, advancing climate-resilient agricultural practices. Full article
Show Figures

Figure 1

20 pages, 2675 KiB  
Article
GABA and Proline Application Induce Drought Resistance in Oilseed Rape
by Sigita Jurkonienė, Virgilija Gavelienė, Rima Mockevičiūtė, Elžbieta Jankovska-Bortkevič, Vaidevutis Šveikauskas, Jurga Jankauskienė, Tautvydas Žalnierius and Liudmyla Kozeko
Plants 2025, 14(6), 860; https://doi.org/10.3390/plants14060860 - 10 Mar 2025
Cited by 1 | Viewed by 971
Abstract
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds [...] Read more.
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds enhances the plants response to prolonged water deficit and, if so, to identify the biochemical processes involved in the plant tissue. The experiment was conducted under controlled laboratory conditions. After 21 days of plant cultivation, at the 3–4 leaf stage, seedlings were sprayed with aqueous solutions of GABA (0.1 mM) and proline (0.1 mM). The plants were then subjected to 8 days of severe drought stress, after which irrigation was resumed, and recovery was assessed over 4 days. The results showed that both amino acids alleviated the drought-induced stress as indicated by higher relative water content (RWC), increased levels of endogenous proline and photosynthetic pigments in leaves, and enhanced survival and growth recovery after drought. GABA-treated plants maintained membrane integrity and preserved plasma membrane (PM) ATPase activity during prolonged drought stress while reducing ethylene, H2O2, and MDA levels. Proline also influenced these biochemical responses, though to a lesser extent. The combination of GABA and proline facilitated better recovery of oilseed rape compared to the drought control group following rewatering. Notably, GABA treatment resulted in a significant increase in gene expression compared to the untreated control. Molecular analysis of drought-responsive genes revealed that the gene expression in plants treated with both proline and GABA was typically intermediate between those treated with proline alone and those treated with GABA alone. Based on these findings, we propose that GABA application could serve as an alternative to proline for improving oilseed rape’s drought tolerance, potentially increasing both crop yield and quality. Full article
(This article belongs to the Special Issue Advances in Molecular Genetics and Breeding of Brassica napus L.)
Show Figures

Figure 1

30 pages, 6855 KiB  
Article
Circadian-Mediated Regulation of Growth, Chloroplast Proteome, Targeted Metabolomics and Gene Regulatory Network in Spinacia oleracea Under Drought Stress
by Ajila Venkat and Sowbiya Muneer
Agriculture 2025, 15(5), 522; https://doi.org/10.3390/agriculture15050522 - 28 Feb 2025
Viewed by 1234
Abstract
The paramount objectives of this study were to analyze the beneficial role of the circadian clock in alleviating drought stress in an essential green leafy horticultural crop, spinach (Spinacia oleracea), and to attain knowledge on drought-stress adaptation for crop productivity. From [...] Read more.
The paramount objectives of this study were to analyze the beneficial role of the circadian clock in alleviating drought stress in an essential green leafy horticultural crop, spinach (Spinacia oleracea), and to attain knowledge on drought-stress adaptation for crop productivity. From dawn to dusk, a circadian core oscillator-based defense mechanism was noticed in relation to the strength of the chloroplast proteome and transcriptome, and the defense hormone fused it along with the molecular physiology using genotypes “Malav Jyoti” and “Delhi Green”. A photo-periodic rhythmicity containing a 4 h time interval (morning–evening loop) for 12 h in spinach was exhibited under drought-stressed (day-5) and drought re-irrigated (day-10) conditions. The circadian oscillator controlled 70% of the major part of growth and physiological measures such as the biomass, plant height, leaf-relative water content, and the shoot–root ratio under drought stress. Contrarily, drought stress resulted in the upregulation of antioxidative activities and stress markers, whereas it was diversified and maintained in the case of the re-irrigated state at certain rhythmic time intervals of the circadian clock. The physiological parameters we examined, such as net photosynthesis, transpiration, stomatal conductance, and antioxidative enzymes, exhibited the role of the circadian clock in drought stress by showing 80–90% improvements found in plants when they were re-watered after drought stress based on their circadian oscillations. Based on the physiological results, 10 a.m. and 2 p.m. were disclosed to be the rhythmic times for controlling drought stress. Moreover, an extensive study on a gene expression analysis of circadian clock-based genes (CCA1, LHY, TOC1, PRR3, PRR5, PRR7, PRR9, and RVE8) and drought-responsive genes (DREB1, DREB2, and PIP1) depicted the necessity of a circadian oscillator in alleviating drought stress. Hence, the findings of our study allowed for an intense understanding of photo-periodic rhythms in terms of the morning–evening loop, which is in line with the survival rate of spinach plants and occurs by altering cellular ROS-scavenging mechanisms, chloroplast protein profiles, gene regulation, and metabolite concentrations. Full article
Show Figures

Figure 1

17 pages, 2751 KiB  
Article
Morpho-Physiological and Molecular Responses to Seedling-Stage Drought Stress in Different Cowpea Cultivars
by Inocent Paulin Ritte, Marceline Egnin, Gregory Christopher Bernard, Desmond Mortley, Osagie Idehen, Michelle Pamelas Okoma and Conrad Bonsi
Int. J. Plant Biol. 2025, 16(1), 25; https://doi.org/10.3390/ijpb16010025 - 21 Feb 2025
Cited by 1 | Viewed by 797
Abstract
Drought poses a significant challenge to cowpea growth and productivity, necessitating the development of drought-tolerant cultivars through detailed morpho-physiological and molecular analyses. This study evaluated drought stress responses in cowpea cultivars using polypropylene plastic boxes under greenhouse conditions. RT-qPCR was conducted to assess [...] Read more.
Drought poses a significant challenge to cowpea growth and productivity, necessitating the development of drought-tolerant cultivars through detailed morpho-physiological and molecular analyses. This study evaluated drought stress responses in cowpea cultivars using polypropylene plastic boxes under greenhouse conditions. RT-qPCR was conducted to assess the relative expression of five photosynthetic and abiotic stress-related genes in a subset of seven contrasting cultivars at 7-, 14-, and 28-days post-treatment initiation (DPTI) and 24 h post-rewatering. Drought-stressed plants showed progressive wilting and a declining chlorophyll content, with plant greenness scores ranging from 2.2 (TVu11987) to 4.7 (TVu2428). California Blackeye (72.2%) and TVu11987 (69.4%) had the highest recovery rates, indicating greater drought tolerance, while TVu2428 had the lowest (2.8%). Gene expression analyses revealed significant drought-induced variation across cultivars and time points. Transcript levels were notably higher in drought-tolerant cultivars, particularly at 14 DPTI and 24 h post-rewatering, aligning with the morpho-physiological screening results. However, gene expression declined as the drought severity increased. These results suggest that California Blackeye, TVu11987, Lobia-I-Sefade, K929, and Aloomba were more drought tolerant compared to Mississippi Silver and TVu2428. Future research using transcriptomic profiling could unravel the complex molecular mechanisms of drought responses in cowpeas, providing valuable insights for breeding genotypes with improved resiliency to drought. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

22 pages, 3836 KiB  
Article
Identifying Plant Healthy Indicators of Five Tropical Perennials Using Certain Leaf Physiological Traits During Drought Stress and Re-Watering
by Jie He, Kai Jie Goh, Lin Qin, Yuanjie Shen and Harianto Rahardjo
Horticulturae 2025, 11(3), 230; https://doi.org/10.3390/horticulturae11030230 - 20 Feb 2025
Viewed by 595
Abstract
Perennials improve soil strength and stabilize the slope. However, they are very prone to drought stress (DS). To identify plant health indicators, this study investigated the responses of five tropical perennials commonly grown in Singapore’s slope to DS and re-watering (RW) in the [...] Read more.
Perennials improve soil strength and stabilize the slope. However, they are very prone to drought stress (DS). To identify plant health indicators, this study investigated the responses of five tropical perennials commonly grown in Singapore’s slope to DS and re-watering (RW) in the greenhouse. The durations for mild, intermediate, and severe DS defined as T1, T2, and T3, respectively, before RW were based on the extents of reduced Fv/Fm ratio (maximal quantum efficiency of PSII) and the levels of wilting. After RW, soil water content (SWC) increased until field capacity in all DS soil, although they were significantly lower than in well-watered (WW) soil. Overall, the Fv/Fm ratios and leaf water content (LWC) decreased significantly in all DS plants compared to those of WW plants, but all increased to the similar level as WW plants after RW. Nitrogen deficiency did not occur in any plants during DS. There were clear positive correlations of SWC with Fv/Fm ratios, LWC, effective quantum yield of PSII (∆F/Fm’), electron transport rate (ETR), and photochemical quenching (qP) for all species. To monitor plant health, it would recommend using both non-destructive measurements such as SWC and Fv/Fm ratios and destructive parameters like LWC, ∆F/Fm’, ETR, and qP. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

19 pages, 5554 KiB  
Article
GAPDH Gene Family in Populus deltoides: Genome-Wide Identification, Structural Analysis, and Expression Analysis Under Drought Stress
by Hyemin Lim, Michael Immanuel Jesse Denison, Sathishkumar Natarajan, Kyungmi Lee, Changyoung Oh and Danbe Park
Int. J. Mol. Sci. 2025, 26(1), 335; https://doi.org/10.3390/ijms26010335 - 2 Jan 2025
Viewed by 1292
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. [...] Read more.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown. Identification and systematic analysis of the GAPDH family in Populus deltoides (P. deltoides) have not been performed. Bioinformatics methods were used to analyze the physicochemical characteristics, structural characteristics, phylogenetic relationships, gene structure, motif analysis, and expression of GAPDH gene family members in P. deltoides. We identified 12 GAPDH members in P. deltoides. Five types of PdGAPDH were identified: GAPA, GAPB, GAPC1, GAPC2, and GAPCp. PdGAPDH genes were differentially expressed in leaves, stems, and roots of 1-year-old poplar seedlings. PdGAPDH gene transcripts showed that PdGAPDH2 and PdGAPDH4 were highly expressed in the leaves. In the roots, seven genes—PdGAPDH01, PdGAPDH05, PdGAPDH06, PdGAPDH07, PdGAPDH08, PdGAPDH09, and PdGAPDH12—showed significantly high expression levels. PdGAPDH02, PdGAPDH03, PdGAPDH04, and PdGAPDH11 showed decreased expression under drought conditions and recovered after re-watering. These results lay the foundation for further studies on the drought stress mechanisms of P. deltoides. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

15 pages, 2142 KiB  
Article
Growth and C:N:P Stoichiometry of Pinus yunnanensis Seedlings in Response to Drought and Rewatering
by Chengyao Liu, Junwen Wu, Jianyao Gu and Huaijiao Duan
Forests 2024, 15(12), 2175; https://doi.org/10.3390/f15122175 - 10 Dec 2024
Viewed by 1012
Abstract
Pinus yunnanensis has high economic and ecological value. The survival of P. yunnanensis has been greatly affected by global warming. This study examines the response of P. yunnanensis seedlings to drought stress and their recovery following rewatering, focusing on growth metrics and C:N:P [...] Read more.
Pinus yunnanensis has high economic and ecological value. The survival of P. yunnanensis has been greatly affected by global warming. This study examines the response of P. yunnanensis seedlings to drought stress and their recovery following rewatering, focusing on growth metrics and C:N:P stoichiometry. This experiment included the four following treatments: CK (water content was 90% ± 5%); LS (water content was 75% ± 5%); MS (water content was 60% ± 5%); and SS (water content was 45% ± 5%). This experiment also included a continuous drought period of 30 days followed by 7 days of rewatering. This study found that drought limited the growth of seedlings, and seedlings could recover rapidly from the damage caused by LS and MS treatments after rewatering, and the recovery of seedlings was greater following LS and MS treatments than following SS. After the drought, the C content in the leaves and stems of P. yunnanensis seedlings could recover to CK levels after rewatering. The N content of each organ and the P content of fine roots of P. yunnanensis seedlings showed an upward trend after rewatering. In summary, the growth of P. yunnanensis seedlings was significantly affected by drought stress, and the recovery mechanism of rewatering varied depending on the degree of drought. Combining the phenotypic plasticity index and principal component analysis, the stem biomass, thin root biomass, root/shoot ratio, leaf C:P, leaf N:P, leaf P, stem C:P, thin root N, thin root P, coarse root N, coarse root P, and coarse root C were the most important indexes for adaptation to drought and rewatering. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

12 pages, 1949 KiB  
Article
Response of Non-Structural Carbohydrates and Carbon, Nitrogen, and Phosphorus Stoichiometry in Pinus yunnanensis Seedlings to Drought Re-Watering
by Chengyao Liu, Junwen Wu, Jianyao Gu and Huaijiao Duan
Forests 2024, 15(11), 1864; https://doi.org/10.3390/f15111864 - 24 Oct 2024
Cited by 3 | Viewed by 1060
Abstract
Pinus yunnanensis is an endemic tree species in southwest China that has high ecological and economic benefits. Nowadays, global climate change is remarkable, the frequency of drought is increasing day by day, the distribution of rainfall is unbalanced, and even the phenomenon of [...] Read more.
Pinus yunnanensis is an endemic tree species in southwest China that has high ecological and economic benefits. Nowadays, global climate change is remarkable, the frequency of drought is increasing day by day, the distribution of rainfall is unbalanced, and even the phenomenon of alternating drought and flood has appeared, which is unfavorable to the growth of P. yunnanensis. We set up four treatments, namely normal water (CK), light drought (LD), moderate drought (MD), and severe drought (SD), and water content was controlled by the weighing method. After continuous drought for 30 days, re-watering was performed for 7 days. The stoichiometric characteristics of non-structural carbohydrates (NSC), soluble sugars (SS), and starch (ST), as well as carbon (C), nitrogen (N), and phosphorus (P), in various organs of P. yunnanensis seedlings were measured. The results revealed significant effects of re-watering on NSC and its components in P. yunnanensis seedlings. The SS and NSC contents in the leaves of P. yunnanensis seedlings treated with SD were significantly higher than those of the control. The C content in the leaves and stems of P. yunnanensis seedlings recovered to the CK level after re-watering under different drought degrees. The contents of N in different organs and P in the fine roots of P. yunnanensis seedlings increased after re-watering with the LD, MD, and SD treatments, while the C/N ratio decreased. In summary, the recovery mechanism of P. yunnanensis seedlings to re-watering varied with the drought degree. The contents and ratios of NSC, C, N, and P in different organs of P. yunnanensis seedlings were significantly affected by re-watering. Combining the phenotypic plasticity index and PCA results, seedlings of P. yunnanensis adapted to drought re-watering by adjusting leaf NSC, leaf P, stem SS/ST, fine root ST, and fine root NSC. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

17 pages, 6397 KiB  
Article
Functional Analysis of Cucumis melo CmXTH11 in Regulating Drought Stress Tolerance in Arabidopsis thaliana
by Shiwen Zhao, Qianqian Cao, Lei Li, Wenqin Zhang, Yongjun Wu and Zhenchao Yang
Int. J. Mol. Sci. 2024, 25(20), 11031; https://doi.org/10.3390/ijms252011031 - 14 Oct 2024
Cited by 3 | Viewed by 1258
Abstract
The CmXTH11 gene, a member of the XTH (xyloglucan endotransglycosylase/hydrolase) family, plays a crucial role in plant responses to environmental stress. In this study, we heterologously expressed the melon gene CmXTH11 in Arabidopsis to generate overexpressing transgenic lines, thereby elucidating the regulatory role [...] Read more.
The CmXTH11 gene, a member of the XTH (xyloglucan endotransglycosylase/hydrolase) family, plays a crucial role in plant responses to environmental stress. In this study, we heterologously expressed the melon gene CmXTH11 in Arabidopsis to generate overexpressing transgenic lines, thereby elucidating the regulatory role of CmXTH11 in water stress tolerance. Using these lines of CmXTH11 (OE1 and OE2) and wild-type (WT) Arabidopsis as experimental materials, we applied water stress treatments (including osmotic stress and soil drought) and rewatering treatments to investigate the response mechanisms of melon CmXTH11 in Arabidopsis under drought stress from a physiological and biochemical perspective. Overexpression of CmXTH11 significantly improved root growth under water stress conditions. The OE lines exhibited longer roots and a higher number of lateral roots compared to WT plants. The enhanced root system contributed to better water uptake and retention. Under osmotic and drought stress, the OE lines showed improved survival rates and less wilting compared to WT plants. Biochemical analyses revealed that CmXTH11 overexpression led to lower levels of malondialdehyde (MDA) and reduced electrolyte leakage, indicating decreased oxidative damage. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were significantly higher in OE lines, suggesting enhanced oxidative stress tolerance. The CmXTH11 gene positively regulates water stress tolerance in Arabidopsis by enhancing root growth, improving water uptake, and reducing oxidative damage. Overexpression of CmXTH11 increases the activities of antioxidant enzymes, thereby mitigating oxidative stress and maintaining cellular integrity under water deficit conditions. These findings suggest that CmXTH11 is a potential candidate for genetic improvement of drought resistance in crops. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop