Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = droplet transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3234 KiB  
Article
Thermal Performance Enhancement in Pool Boiling on Copper Surfaces: Contact Angle and Surface Tension Analysis
by Robert Kaniowski and Sylwia Wciślik
Energies 2025, 18(17), 4471; https://doi.org/10.3390/en18174471 - 22 Aug 2025
Abstract
The electronics industry has significantly contributed to the development of efficient heat dissipation systems. One widely used technique is pool boiling, a simple method requiring no moving parts or complex structures. It enables the removal of large amounts of heat at relatively low [...] Read more.
The electronics industry has significantly contributed to the development of efficient heat dissipation systems. One widely used technique is pool boiling, a simple method requiring no moving parts or complex structures. It enables the removal of large amounts of heat at relatively low temperature differences. Enhancing pool boiling performance involves increasing the critical heat flux and the heat transfer coefficient, which defines how effectively a surface can transfer heat to a cooling fluid. This method is commonly applied in cooling electronic devices, digital circuits, and power systems. In this study, pool boiling at atmospheric pressure was investigated using copper surfaces. To validate the Rohsenow model used to estimate the maximum bubble departure diameter, a planimetric approach was applied. Measurements included average contact angle (CA), surface tension (σ), and droplet diameter for four working fluids: deionised water, ethanol, Novec-649, and FC-72. For each fluid, at least 15 measurements of CA and σ were conducted using the Young–Laplace model. This study provides a comprehensive analysis of the influence of contact angle and surface tension on nucleate boiling using four different fluids on copper surfaces. The novelty lies in combining high-precision experimental measurements with validation of the Rohsenow model, offering new insights into surface-fluid interactions critical for thermal system performance. Full article
Show Figures

Figure 1

31 pages, 5147 KiB  
Article
Numerical Simulation of Hot Air Anti-Icing Characteristics for Intake Components of Aeronautical Engine
by Shuliang Jing, Yaping Hu and Weijian Chen
Aerospace 2025, 12(9), 753; https://doi.org/10.3390/aerospace12090753 - 22 Aug 2025
Abstract
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual [...] Read more.
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual engine operating parameters. The simulation integrated multi-physics modules, including air-supercooled water droplet two-phase flow around components, water film flow and heat transfer on anti-icing surfaces, solid heat conduction within structural components, hot air flow dynamics in anti-icing cavities, and their coupled heat transfer interactions. Simulation results indicate that water droplet impingement primarily localizes at the leading edge roots and pressure surfaces of struts, as well as the leading edges and pressure surfaces of guide vanes. The peak water droplet collection coefficient reaches 4.2 at the guide vane leading edge. Except for the outlet end wall of the axial flow casing, all anti-icing surfaces of intake components maintain temperatures above the freezing point, demonstrating effective anti-icing performance. The anti-icing characteristics of the intake components are governed by two critical factors: cumulative heat loss along the hot air flow path and heat load consumption for heating and evaporating impinging water droplets. The former induces a 53.9 °C temperature disparity between the first and last struts in the heating sequence. For zero-stage guide vanes, the latter factor exerts a more pronounced influence. Notable temperature reductions occur on the trailing edges of three struts downstream of the hot air flow and at the roots of zero-stage guide vanes. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
19 pages, 3937 KiB  
Article
Numerical Method for Chemical Non-Equilibrium Plume Radiation Characteristics of Solid Rocket Motors
by Ruitao Zhang, Yang Liu, Yuxuan Zou, Moding Peng, Zilong Wang and Xiaojing Yu
Aerospace 2025, 12(8), 743; https://doi.org/10.3390/aerospace12080743 - 21 Aug 2025
Viewed by 239
Abstract
The research objectives of engine plume radiation calculation primarily encompass two aspects: (1) addressing the additional heating induced by plume radiation on rocket thermal protection systems and (2) elucidating the variation patterns of spectral radiation intensity for infrared signature identification and tracking. Focusing [...] Read more.
The research objectives of engine plume radiation calculation primarily encompass two aspects: (1) addressing the additional heating induced by plume radiation on rocket thermal protection systems and (2) elucidating the variation patterns of spectral radiation intensity for infrared signature identification and tracking. Focusing on the thermal effects of radiation, this study first calculates the radiative properties of high-temperature combustion gases and particles separately. Subsequently, the radiative properties of mixed droplets with alumina caps are computed and analyzed. Building upon this and incorporating empirical formulas for aluminum droplet combustion, the engine’s radiative properties are calculated, accounting for the presence of mixed droplets. Ultimately, an integrated computational method for engine radiative properties (both internal and external flow fields) is established, which considers the non-equilibrium processes during droplet transformation. The radiative property parameters are then embedded into the fluid dynamics software via multidimensional interpolation. The radiation transfer equation is solved using the discrete ordinates method (DOM) to obtain the radiation intensity distribution within the plume flow field. This work provides technical support for investigating the radiative characteristics of solid rocket engine plumes. Full article
(This article belongs to the Special Issue Flow and Heat Transfer in Solid Rocket Motors)
Show Figures

Figure 1

22 pages, 7832 KiB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 308
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 3224 KiB  
Article
GelMA Core–Shell Microgel Preparation Based on a Droplet Microfluidic Device for Three-Dimensional Tumor Ball Culture and Its Drug Testing
by Xindong Yang, Yi Xu, Dongchen Zhu and Xianqiang Mi
Molecules 2025, 30(15), 3305; https://doi.org/10.3390/molecules30153305 - 7 Aug 2025
Viewed by 684
Abstract
Gelatin methacrylate (GelMA) microgels serve as promising bioscaffolds for tissue engineering and drug screening. However, conventional solid GelMA microgels often exhibit limited mass transfer efficiency and provide insufficient protection for embedded cells. In this study, we developed a droplet-based microfluidic platform to fabricate [...] Read more.
Gelatin methacrylate (GelMA) microgels serve as promising bioscaffolds for tissue engineering and drug screening. However, conventional solid GelMA microgels often exhibit limited mass transfer efficiency and provide insufficient protection for embedded cells. In this study, we developed a droplet-based microfluidic platform to fabricate core–shell structured GelMA microgels. This system enabled precise control over microgel size and core-to-shell ratio by modulating flow rates. Encapsulation of A549 cells within these core–shell microgels preserved cellular viability and facilitated the formation of three-dimensional tumor spheroids. These outcomes confirmed both the protective function of the core–shell architecture during encapsulation and the overall biocompatibility of the microgels. The developed GelMA core–shell microgel system presents considerable applicability in research domains such as organoid modeling and high-throughput pharmacological screening. Full article
Show Figures

Figure 1

13 pages, 3810 KiB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 - 7 Aug 2025
Viewed by 461
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Viewed by 300
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

14 pages, 2649 KiB  
Article
Study on the Liquid Transport on the Twisted Profile Filament/Spun Combination Yarn in Knitted Fabric
by Yi Cui, Ruiyun Zhang and Jianyong Yu
Polymers 2025, 17(15), 2065; https://doi.org/10.3390/polym17152065 - 29 Jul 2025
Viewed by 334
Abstract
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport [...] Read more.
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport properties primarily compares the wicking results, without considering the varying requirements of testing conditions due to differences in human sweating rates during daily activities. Moreover, the understanding of moisture transport mechanisms in yarns within fabrics under different testing conditions remains insufficient. In this study, two types of twisted combination yarns, composed of hydrophobic profiled polyester filaments and hydrophilic spun yarns to form a hydrophobic-hydrophilic gradient along the axial direction of the yarn, were developed and compared with profiled polyester filaments to understand the liquid migration behaviors in the knitted fabrics formed by these yarns. Results showed that hydrophobic profiled polyester filament yarn demonstrated superior liquid transport performance with infinite saturated liquid supply (vertical wicking test). In contrast, the twisted combination yarns exhibited better moisture diffusion properties under limited liquid droplet supply conditions (droplet diffusion test and moisture management test). These contradictory findings indicated that the amount of liquid moisture supply in testing conditions significantly affected the moisture transport performance of yarns within fabrics. It was revealed that the liquid moisture in the twisted combination yarns migrated through capillary wicking for moisture transfer. Under an infinite saturated liquid supply condition, the higher the content of hydrophilic fibers in the spun yarns, the greater the amount of moisture transferred, demonstrating an excellent liquid transport performance. Under the limited liquid droplet supply conditions, both the volume of liquid water and the moisture absorption capacity of the yarn jointly influence internal moisture migration within the yarn. It provided a theoretical reference for testing the internal moisture wicking performance of fabrics under different states of human sweating. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 4871 KiB  
Article
Study on Laser Surface Texturing and Wettability Control of Silicon Nitride Ceramic
by Hong-Jian Wang, Jing-De Huang, Bo Wang, Yang Zhang and Jin Wang
Micromachines 2025, 16(7), 819; https://doi.org/10.3390/mi16070819 - 17 Jul 2025
Viewed by 343
Abstract
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing [...] Read more.
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing specific patterns. This research focused on the laser surface texturing of a Si3N4 ceramic, employing rectangular patterns instead of the typical dimple designs, as these had promising applications in heat transfer and hydrodynamic lubrication. The effects of scanning speed and number of scans on the change of the morphologies and dimensions of the grooves were investigated. The results indicated that the higher scanning speed and fewer number of scans resulted in less damage to the textured surface. As the scanning speed increased, the width and depth of the grooves decreased significantly first, and then fluctuated. Conversely, increasing the number of scans led to an increase in the width and depth of the grooves, eventually stabilizing. The analysis of the elemental composition of different areas on the textured surface presented a notable increase in oxygen content at the grooves, while Si and N levels decreased. It was mainly caused by the chemical reaction between Si3N4 ceramic and oxygen during laser surface texturing in an air environment. This study also assessed the wettability of the textured surface, finding that the contact angle of the water droplet was significantly affected by the groove dimensions. After laser surface texturing, the contact angle increased from 35.51 ± 0.33° to 57.52 ± 1.83°. Improved wettability was associated with smaller groove volume, indicating better hydrophilicity at lower scanning speed and enhanced hydrophobicity with a fewer number of scans. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

16 pages, 2272 KiB  
Article
A Rapid Method for Heat Transfer Coefficient Prediction on the Icing Surfaces of Aircraft Wings Based on a Partitioned Boundary Layer Integral Model
by Liu Wang, Dexin Zhang, Zikang Cheng, Jiaxin Feng, Bo Sun, Jianye Chen and Junlong Xie
Aerospace 2025, 12(7), 634; https://doi.org/10.3390/aerospace12070634 - 16 Jul 2025
Viewed by 328
Abstract
Aircraft wing surface icing compromises flight safety, where accurate calculation of heat transfer coefficient on airfoil surfaces serves as a prerequisite for designing thermal anti-icing systems. However, during icing conditions, ice morphology changes wall roughness and transition properties, making it difficult to accurately [...] Read more.
Aircraft wing surface icing compromises flight safety, where accurate calculation of heat transfer coefficient on airfoil surfaces serves as a prerequisite for designing thermal anti-icing systems. However, during icing conditions, ice morphology changes wall roughness and transition properties, making it difficult to accurately determine the heat transfer coefficient. The current study develops a partitioned rough-wall boundary layer integral methodology in order to overcome this issue, extending the conventional boundary layer integral method. The technique generates a convective heat transfer coefficient formulation for aircraft icing surfaces while accounting for roughness differences brought on by water droplet shape. The results show that the partitioned rough-wall boundary layer integral method divides the wing surface into three distinct zones based on water droplet dynamics—a smooth zone, rough zone, and runback zone—each associated with specific roughness values. The NACA0012 airfoil was used for numerical validation, which showed that computational and experimental data concur well. Additionally, the suggested approach predicts transition locations with a high degree of agreement with experimental results. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 9695 KiB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 246
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

23 pages, 9638 KiB  
Article
A Study on the Influence Mechanism of the Oil Injection Distance on the Oil Film Distribution Characteristics of the Gear Meshing Zone
by Wentao Zhao, Lin Li and Gaoan Zheng
Machines 2025, 13(7), 606; https://doi.org/10.3390/machines13070606 - 14 Jul 2025
Viewed by 350
Abstract
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational [...] Read more.
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational fluid dynamics (CFD) and dynamic mesh technology. By implementing the volume of fluid (VOF) multiphase flow model and the standard k-ω turbulence model, the study simulates the dynamic distribution of lubricant in gear meshing zones and analyzes critical parameters such as the oil volume fraction, eddy viscosity, and turbulent kinetic energy. The results show that reducing the oil injection distance significantly enhances lubricant coverage and continuity: as the injection distance increases from 4.8 mm to 24 mm, the lubricant shifts from discrete droplets to a dense wedge-shaped film, mitigating lubrication failure risks from secondary atomization and energy loss. The optimized injection distance also improves the spatial stability of eddy viscosity and suppresses excessive dissipation of turbulent kinetic energy, enhancing both the shear-load capacity and thermal management. Dynamic data from monitoring point P show that reducing the injection distance stabilizes lubricant velocity and promotes more consistent oil film formation and heat transfer. Through multiphysics simulations and parametric analysis, this study elucidates the interaction between geometric parameters and hydrodynamic behaviors in jet lubrication systems. The findings provide quantitative evaluation methods for structural optimization and energy control in gear lubrication systems, offering theoretical insights for thermal management and reliability enhancement in high-speed transmission. These results contribute to the lightweight design and sustainable development of industrial equipment. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

18 pages, 4066 KiB  
Article
Video Segmentation of Wire + Arc Additive Manufacturing (WAAM) Using Visual Large Model
by Shuo Feng, James Wainwright, Chong Wang, Jun Wang, Goncalo Rodrigues Pardal, Jian Qin, Yi Yin, Shakirudeen Lasisi, Jialuo Ding and Stewart Williams
Sensors 2025, 25(14), 4346; https://doi.org/10.3390/s25144346 - 11 Jul 2025
Viewed by 505
Abstract
Process control and quality assurance of wire + arc additive manufacturing (WAAM) and automated welding rely heavily on in-process monitoring videos to quantify variables such as melt pool geometry, location and size of droplet transfer, arc characteristics, etc. To enable feedback control based [...] Read more.
Process control and quality assurance of wire + arc additive manufacturing (WAAM) and automated welding rely heavily on in-process monitoring videos to quantify variables such as melt pool geometry, location and size of droplet transfer, arc characteristics, etc. To enable feedback control based upon this information, an automatic and robust segmentation method for monitoring of videos and images is required. However, video segmentation in WAAM and welding is challenging due to constantly fluctuating arc brightness, which varies with deposition and welding configurations. Additionally, conventional computer vision algorithms based on greyscale value and gradient lack flexibility and robustness in this scenario. Deep learning offers a promising approach to WAAM video segmentation; however, the prohibitive time and cost associated with creating a well-labelled, suitably sized dataset have hindered its widespread adoption. The emergence of large computer vision models, however, has provided new solutions. In this study a semi-automatic annotation tool for WAAM videos was developed based upon the computer vision foundation model SAM and the video object tracking model XMem. The tool can enable annotation of the video frames hundreds of times faster than traditional manual annotation methods, thus making it possible to achieve rapid quantitative analysis of WAAM and welding videos with minimal user intervention. To demonstrate the effectiveness of the tool, three cases are demonstrated: online wire position closed-loop control, droplet transfer behaviour analysis, and assembling a dataset for dedicated deep learning segmentation models. This work provides a broader perspective on how to exploit large models in WAAM and weld deposits. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
Show Figures

Figure 1

18 pages, 1371 KiB  
Article
Reduced-Order Model for Catalytic Cracking of Bio-Oil
by Francisco José de Souza, Jonathan Utzig, Guilherme do Nascimento, Alicia Carvalho Ribeiro, Higor de Bitencourt Rodrigues and Henry França Meier
Fluids 2025, 10(7), 179; https://doi.org/10.3390/fluids10070179 - 7 Jul 2025
Viewed by 274
Abstract
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented [...] Read more.
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented using a Lagrangian framework, which accounts for their movement and evaporation within the gas-solid flow field, enabling the assessment of droplet size impact on reactor performance. The cracking reactions are modeled using a four-lumped kinetic scheme, representing the conversion of bio-oil into gasoline, kerosene, gas, and coke. The resulting set of ordinary differential equations is solved using a stiff, second- to third-order solver. The simulation results are validated against experimental data from a full-scale FCC unit, demonstrating good agreement in terms of product yields. The findings indicate that heat exchange by radiation is negligible and that the Buchanan correlation best represents the heat transfer between the droplets and the catalyst particles/gas phase. Another significant observation is that droplet size, across a wide range, does not significantly affect conversion rates due to the bio-oil’s high vaporization heat. The proposed reduced-order model provides valuable insights into optimizing FCC riser reactors for bio-oil processing while avoiding the high computational costs of 3D CFD simulations. The model can be applied across multiple applications, provided the chemical reaction mechanism is known. Compared to full models such as CFD, this approach can reduce computational costs by thousands of computing hours. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

12 pages, 1625 KiB  
Communication
Prediction of Multiphase Flow in Ruhrstahl–Heraeus (RH) Reactor
by Han Zhang, Hong Lei, Yuanxin Jiang, Yili Sun, Shuai Zeng and Shifu Chen
Materials 2025, 18(13), 3149; https://doi.org/10.3390/ma18133149 - 2 Jul 2025
Viewed by 337
Abstract
Splashed droplets in the vacuum chamber play an important role in decarburization and degassing in Ruhrstahl–Heraeus (RH), but the scholars do not pay attention to the behaviors of splashed droplets. Thus, it is necessary to propose a new method to investigate the splashed [...] Read more.
Splashed droplets in the vacuum chamber play an important role in decarburization and degassing in Ruhrstahl–Heraeus (RH), but the scholars do not pay attention to the behaviors of splashed droplets. Thus, it is necessary to propose a new method to investigate the splashed droplets. A Euler–Euler model and the inter-phase momentum transfer are applied to investigate the interaction between the molten steel and the bubbles, and the gas domain in the vacuum chamber is included in the computational domain in order to describe the movement of the splashed droplets. Numerical results show that the flow field predicted by Euler–Euler model agrees well with the experimental data. There is a higher gas volume fraction near the up-snorkel wall, the “fountain” formed by the upward flow from the up-snorkel exceeds 0.1 m above the free surface, and the center of the vortex between the upward stream and the downward stream is closer to the upward stream in the vacuum chamber. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

Back to TopTop