Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,931)

Search Parameters:
Keywords = driving information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 1471 KiB  
Article
WDM-UNet: A Wavelet-Deformable Gated Fusion Network for Multi-Scale Retinal Vessel Segmentation
by Xinlong Li and Hang Zhou
Sensors 2025, 25(15), 4840; https://doi.org/10.3390/s25154840 - 6 Aug 2025
Abstract
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that [...] Read more.
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that integrates spatial and wavelet-domain representations to simultaneously enhance the local detail and global context. The encoder combines a Deformable Convolution Encoder (DCE), which adaptively models complex vascular structures through dynamic receptive fields, and a Wavelet Convolution Encoder (WCE), which captures the semantic and structural contexts through low-frequency components and hierarchical wavelet convolution. These features are further refined by a Gated Fusion Transformer (GFT), which employs gated attention to enhance multi-scale feature integration. In the decoder, depthwise separable convolutions are used to reduce the computational overhead without compromising the representational capacity. To preserve fine structural details and facilitate contextual information flow across layers, the model incorporates skip connections with a hierarchical fusion strategy, enabling the effective integration of shallow and deep features. We evaluated WDM-UNet in three public datasets: DRIVE, STARE, and CHASE_DB1. The quantitative evaluations demonstrate that WDM-UNet consistently outperforms state-of-the-art methods, achieving 96.92% accuracy, 83.61% sensitivity, and an 82.87% F1-score in the DRIVE dataset, with superior performance across all the benchmark datasets in both segmentation accuracy and robustness, particularly in complex vascular scenarios. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

35 pages, 2799 KiB  
Article
GAPO: A Graph Attention-Based Reinforcement Learning Algorithm for Congestion-Aware Task Offloading in Multi-Hop Vehicular Edge Computing
by Hongwei Zhao, Xuyan Li, Chengrui Li and Lu Yao
Sensors 2025, 25(15), 4838; https://doi.org/10.3390/s25154838 - 6 Aug 2025
Abstract
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a [...] Read more.
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a graph attention-based reinforcement learning algorithm, named GAPO. The algorithm models the dynamic VEC network as an attributed graph and utilizes a graph neural network (GNN) to learn a network state representation that captures the global topological structure and node contextual information. Building on this foundation, an attention-based Actor–Critic framework makes joint offloading decisions by intelligently selecting the optimal destination and collaboratively determining the ratios for offloading and resource allocation. A multi-objective reward function, designed to minimize task latency and to alleviate link congestion, guides the entire learning process. Comprehensive simulation experiments and ablation studies show that, compared to traditional heuristic algorithms and standard deep reinforcement learning methods, GAPO significantly reduces average task completion latency and substantially decreases backbone link congestion. In conclusion, by deeply integrating the state-aware capabilities of GNNs with the decision-making abilities of DRL, GAPO provides an efficient, adaptive, and congestion-aware solution to the resource management problems in dynamic VEC environments. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 1102 KiB  
Article
Assessing the Adoption and Feasibility of Green Wall Systems in Construction Projects in Nigeria
by Oluwayinka Seun Oke, John Ogbeleakhu Aliu, Damilola Ekundayo, Ayodeji Emmanuel Oke and Nwabueze Kingsley Chukwuma
Sustainability 2025, 17(15), 7126; https://doi.org/10.3390/su17157126 - 6 Aug 2025
Abstract
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among [...] Read more.
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among Nigerian construction professionals. A thorough review of the existing literature was conducted to identify different types of green wall systems. Insights from this review informed the design of a structured questionnaire, which was distributed to construction professionals based in Lagos State. The data collected were analyzed using statistical tests. The study reveals that while there is generally high awareness of green wall systems among Nigerian construction professionals, the practical use remains low, with just 8 out of the 18 systems being actively implemented, eclipsing the mean value of 3.0. The findings underscore the need for targeted education, industry incentives, and increased advocacy to encourage the use of green wall systems in the Nigerian construction sector. The results have significant implications for the Nigerian construction industry. The limited awareness and adoption of green wall systems highlight the need for strategic actions from policymakers, industry leaders and educational institutions. Promoting the use of green walls could drive more sustainable building practices, improve environmental outcomes and support the broader goals of decarbonization and circularity in construction. This research adds to the body of knowledge on sustainable construction by offering a detailed evaluation of green wall awareness and adoption within the Nigerian context. While green wall systems have been studied globally, this research provides a regional perspective, which in this case focuses on Lagos State. The study’s recognition of the gap between awareness and implementation highlights an important area for future research and industry development. Full article
Show Figures

Figure 1

23 pages, 800 KiB  
Article
“Innovatives” or “Sceptics”: Views on Sustainable Food Packaging in the New Global Context by Generation Z Members of an Academic Community
by Gerasimos Barbarousis, Fotios Chatzitheodoridis, Achilleas Kontogeorgos and Dimitris Skalkos
Sustainability 2025, 17(15), 7116; https://doi.org/10.3390/su17157116 - 6 Aug 2025
Abstract
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered [...] Read more.
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered pivotal for driving future consumption trends. An online questionnaire assessing perceptions, preferences, and behaviours related to sustainable packaging was administered to students, with responses measured on a five-point Likert scale. Three hundred and sixty-four students took part in this survey, with the majority (60%) of them being female. Principal component analysis was employed to identify underlying factors influencing perceptions, and k-means cluster analysis revealed two consumer segments: “Innovatives”, including one hundred and ninety-eight participants (54%), who demonstrate strong environmental awareness and willingness to adopt sustainable behaviours, and “Sceptics”, including one hundred sixty-six participants (46%), who show moderate engagement and remain cautious in their choices. Convenience, affordability, and clear product communication emerged as significant factors shaping student preferences. The findings suggest that targeted educational campaigns and transparent information are essential to converting positive attitudes into consistent purchasing behaviours. This research provides valuable insights for policymakers and marketers looking to design effective sustainability strategies tailored to the student population. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

16 pages, 825 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
Show Figures

Figure 1

38 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 2015 KiB  
Article
Optimization of Dust Spray Parameters for Simulated LiDAR Sensor Contamination in Autonomous Vehicles Using a Face-Centered Composite Design
by Sungho Son, Hyunmi Lee, Jiwoong Yang, Jungki Lee, Jeongah Jang, Charyung Kim, Joonho Jun, Hyungwon Park, Sunyoung Park and Woongsu Lee
Appl. Sci. 2025, 15(15), 8651; https://doi.org/10.3390/app15158651 (registering DOI) - 5 Aug 2025
Abstract
Light detection and ranging (LiDAR) provides three-dimensional environmental information that is critical for maintaining the safety and reliability of autonomous driving systems. However, dust accumulation on the LiDAR window can cause detection errors and degrade performance. This study determined the optimal spray conditions [...] Read more.
Light detection and ranging (LiDAR) provides three-dimensional environmental information that is critical for maintaining the safety and reliability of autonomous driving systems. However, dust accumulation on the LiDAR window can cause detection errors and degrade performance. This study determined the optimal spray conditions for accumulating dust to evaluate LiDAR sensor cleaning performance. A primary optimization experiment using spray pressure, spray speed, spray distance, and the number of sprays as variables showed that spray pressure and number of sprays had the most significant influence on the kinetic energy and distribution of dust particles. Notably, the interaction between spray distance and number of sprays—related to curvature effects—was identified as a key variable increasing process sensitivity. A supplementary experiment, which added spray angle as a variable, indicated that while spray pressure remained the most significant factor, spray angle and number of sprays had an indirect influence through interaction terms. Both experiments used the same response variable (point cloud data) interactions to stepwise analyze particle transfer and spatial diffusion. The resulting optimal conditions offer a standard basis for evaluating LiDAR cleaning performance and may help improve cleaning efficiency and maintenance strategies. Full article
Show Figures

Figure 1

20 pages, 519 KiB  
Article
Bridging the Capacity Building Gap for Antimicrobial Stewardship Implementation: Evidence from Virtual Communities of Practice in Kenya, Ghana, and Malawi
by Ana C. Barbosa de Lima, Kwame Ohene Buabeng, Mavis Sakyi, Hope Michael Chadwala, Nicole Devereaux, Collins Mitambo, Christine Mugo-Sitati, Jennifer Njuhigu, Gunturu Revathi, Emmanuel Tanui, Jutta Lehmer, Jorge Mera and Amy V. Groom
Antibiotics 2025, 14(8), 794; https://doi.org/10.3390/antibiotics14080794 - 4 Aug 2025
Abstract
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through [...] Read more.
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial Stewardship (TEACH AMS), which uses the virtual Extension for Community Healthcare Outcomes (ECHO) learning model to enhance AMS capacity in Kenya, Ghana, and Malawi. Methods: A mixed-methods approach was used, which included attendance data collection, facility-level assessments, post-session and follow-up surveys, as well as focus group discussions. Results: Between September 2023 and February 2025, 77 virtual learning sessions were conducted, engaging 2445 unique participants from hospital-based AMS committees and health professionals across the three countries. Participants reported significant knowledge gain, and data showed facility improvements in two core AMS areas, including the implementation of multidisciplinary ward-based interventions/communications and enhanced monitoring of antibiotic resistance patterns. Along those lines, participants reported that the program assisted them in improving prescribing and culture-based treatments, and also evidence-informed antibiotic selection. The evidence of implementing ward-based interventions was further stressed in focus group discussions, as well as other strengthened practices like point-prevalence surveys, and development or revision of stewardship policies. Substantial improvements in microbiology services were also shared by participants, particularly in Malawi. Other practices mentioned were strengthened multidisciplinary communication, infection prevention efforts, and education of patients and the community. Conclusion: Our findings suggest that a virtual case-based learning educational intervention, providing structured and tailored AMS capacity building, can drive behavior change and strengthen healthcare systems in low resource settings. Future efforts should aim to scale up the engagements and sustain improvements to further strengthen AMS capacity. Full article
24 pages, 6437 KiB  
Article
LEAD-YOLO: A Lightweight and Accurate Network for Small Object Detection in Autonomous Driving
by Yunchuan Yang, Shubin Yang and Qiqing Chan
Sensors 2025, 25(15), 4800; https://doi.org/10.3390/s25154800 - 4 Aug 2025
Abstract
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO [...] Read more.
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO (Lightweight Efficient Autonomous Driving YOLO), an enhanced network architecture based on YOLOv11n that achieves superior small object detection while maintaining computational efficiency. The proposed framework incorporates three innovative components: First, the Backbone integrates a lightweight Convolutional Gated Transformer (CGF) module, which employs normalized gating mechanisms with residual connections, and a Dilated Feature Fusion (DFF) structure that enables progressive multi-scale context modeling through dilated convolutions. These components synergistically enhance small object perception and environmental context understanding without compromising network efficiency. Second, the neck features a hierarchical feature fusion module (HFFM) that establishes guided feature aggregation paths through hierarchical structuring, facilitating collaborative modeling between local structural information and global semantics for robust multi-scale object detection in complex traffic scenarios. Third, the head implements a shared feature detection head (SFDH) structure, incorporating shared convolution modules for efficient cross-scale feature sharing and detail enhancement branches for improved texture and edge modeling. Extensive experiments validate the effectiveness of LEAD-YOLO: on the nuImages dataset, the method achieves 3.8% and 5.4% improvements in mAP@0.5 and mAP@[0.5:0.95], respectively, while reducing parameters by 24.1%. On the VisDrone2019 dataset, performance gains reach 7.9% and 6.4% for corresponding metrics. These findings demonstrate that LEAD-YOLO achieves an excellent balance between detection accuracy and model efficiency, thereby showcasing substantial potential for applications in autonomous driving. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

10 pages, 903 KiB  
Article
Gender Differences in Visual Information Perception Ability: A Signal Detection Theory Approach
by Yejin Lee and Kwangtae Jung
Appl. Sci. 2025, 15(15), 8621; https://doi.org/10.3390/app15158621 (registering DOI) - 4 Aug 2025
Viewed by 25
Abstract
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces [...] Read more.
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces and information with user characteristics in mind to ensure accurate perception of visual information. This study employed the Cognitive Perceptual Assessment for Driving (CPAD) to evaluate and compare gender differences in the ability to perceive visual signals within complex visual stimuli. The experimental setup included a computer with CPAD installed, along with a touch monitor, mouse, joystick, and keyboard. The participants included 11 male and 20 female students, with an average age of 22 for males and 21 for females. Prior to the experiment, participants were instructed to determine whether a signal stimulus was present: if a square, presented as the signal, was included in the visual stimulus, they moved the joystick to the left; otherwise, they moved it to the right. Each participant performed a total of 40 trials. The entire experiment was recorded on video to measure overall response times. The experiment measured the number of correct detections of signal presence, response times, the number of misses (failing to detect the signal when present), and false alarms (detecting the signal when absent). The analysis of experimental data revealed no significant differences in perceptual ability or response times for visual stimuli between genders. However, males demonstrated slightly superior perceptual ability and marginally shorter response times compared to females. Analyses of sensitivity and response bias, based on signal detection theory, also indicated a slightly higher perceptual ability in males. In conclusion, although these differences were not statistically significant, males demonstrated a slightly better perception ability for visual stimuli. The findings of this study can inform the design of information, user interfaces, and visual displays in human–machine systems, particularly in light of the recent trend of increased female participation in the industrial sector. Future research will focus on diverse types of visual information to further validate these findings. Full article
Show Figures

Figure 1

34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 - 3 Aug 2025
Viewed by 167
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

19 pages, 1025 KiB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 (registering DOI) - 1 Aug 2025
Viewed by 155
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop