Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = drill floor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 21454 KiB  
Article
Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures
by Penglin Zhang, Chong Zhang, Weitao Chen, Chunhui He, Yang Liu and Zhaofei Chu
Buildings 2025, 15(13), 2168; https://doi.org/10.3390/buildings15132168 - 21 Jun 2025
Viewed by 342
Abstract
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated [...] Read more.
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated underground structures. This study investigates the relationship between surrounding rock damage and in situ stress conditions through numerical simulation methods. A constitutive model suitable for simulating rock mass damage was developed and implemented in the LS-DYNA (version R12) code via a user-defined material model, with parameters determined using the Hoek–Brown failure criterion. A finite element model was established to analyze surrounding rock damage under cyclic blasting loads, and the model was validated using field data. Simulations were then carried out to explore the evolution of the damage zone under various stress conditions. The results show that with increasing hydrostatic pressure, the extent of the damage zone first decreases and then increases, with blasting-induced damage dominating under lower pressure and unloading-induced shear failure prevailing at higher pressure. When the hydrostatic pressure is less than 20 MPa, the surrounding rock stabilizes at a distance greater than 12.6 m from the tunnel face, whereas at hydrostatic pressures of 30 MPa and 40 MPa, this distance increases to 29.4 m. When the lateral pressure coefficient is low, tensile failure occurs mainly at the vault and floor, while shear failure dominates at the arch waist. As the lateral pressure coefficient increases, the failure mode at the vault shifts from tensile to shear. Additionally, when the horizontal stress perpendicular to the tunnel axis (σH) is less than the vertical stress (σv), variations in the axial horizontal stress (σh) have a significant effect on shear failure. Conversely, when σH exceeds σv, changes in σh have little impact on the extent of rock damage. Full article
Show Figures

Figure 1

19 pages, 2554 KiB  
Article
Research on an Automated Cleansing and Function Fitting Method for Well Logging and Drilling Data
by Wan Wei
Processes 2025, 13(6), 1891; https://doi.org/10.3390/pr13061891 - 14 Jun 2025
Viewed by 382
Abstract
Oilfield data is characterized by complex types, large volumes, and significant noise interference, so data cleansing has become a key procedure for improving data quality. However, the traditional data cleansing process needs to deal with multiple types of problems, such as outliers, duplicate [...] Read more.
Oilfield data is characterized by complex types, large volumes, and significant noise interference, so data cleansing has become a key procedure for improving data quality. However, the traditional data cleansing process needs to deal with multiple types of problems, such as outliers, duplicate data, and missing values in turn, and the processing steps are complex and inefficient. Therefore, an integrated data cleansing and function fitting method is established. The fine-mesh data density analysis method is utilized to cleanse outliers and duplicate data, and the automated segmented fitting method is used for missing data imputation. For the real-time data generated during drilling or well logging, data cleansing is realized through grid partitioning and data density analysis, and the cleansing ratio is controlled by data density threshold and grid spacing. After data cleansing, based on similar standards, the cleansed data is segmented, and the fitting function type of each segment is determined to fill in the missing data, and data outputs with any frequency can be obtained. For the analysis of the hook load data measured by sensors at the drilling site and obtained from rig floor monitors or remote centers, the data cleansing percentage reaches 98.88% after two-stage cleansing, which still retains the original trend of the data. After data cleansing, the cleansed data are modeled through the automated segmented fitting method, with Mean Absolute Percentage Errors (MAPEs) less than 3.66% and coefficient of determination (R2) values greater than 0.94. Through the integrated data processing mechanism, the workflow can synchronously eliminate outliers and redundant data and fill in the missing values, thereby dynamically adapting to the data requirements of numerical simulation and intelligent analysis and significantly improving the efficiency of on-site data processing and decision-making reliability in the oilfield. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

16 pages, 4379 KiB  
Article
Development of 3D-Printed Vibration Absorbers for Noise Control in Material Removal Processes
by Sungmyung Lee, Haewoon Choi and Jonghyun Kim
Machines 2025, 13(5), 370; https://doi.org/10.3390/machines13050370 - 29 Apr 2025
Viewed by 556
Abstract
Material removal processes such as milling, drilling, and turning often generate harmful vibrations that can negatively impact both machine performance and operator safety. Addressing these vibrations at their source or reducing them to safe levels is, therefore, a critical challenge. This study proposes [...] Read more.
Material removal processes such as milling, drilling, and turning often generate harmful vibrations that can negatively impact both machine performance and operator safety. Addressing these vibrations at their source or reducing them to safe levels is, therefore, a critical challenge. This study proposes a practical solution by introducing thin-fin-type vibration-absorbing devices fabricated using 3D printing technology. These devices are designed specifically to mitigate vibration propagation during milling operations. To evaluate their effectiveness, a multi-sensor system comprising sound level meters, a vibrometer, and a vision–acoustic camera was employed to measure sound levels. The results show that the use of fabricated devices can reduce noise levels significantly, from 93 dB (comparable to power tools or a lawn mower) to 74 dB (similar to normal conversation or a busy office). This substantial reduction demonstrates the potential of the proposed devices to enhance workplace safety and acoustic comfort on the shop floor. Full article
(This article belongs to the Special Issue Transforming Classic Machining into Smart Manufacturing)
Show Figures

Figure 1

32 pages, 12574 KiB  
Article
Stochastic and Nonlinear Dynamic Response of Drillstrings in Deepwater Riserless Casing Drilling Operation
by He Li, Guodong Cheng, Shiming Zhou, Wenyang Shi and Jieli Wang
J. Mar. Sci. Eng. 2025, 13(5), 876; https://doi.org/10.3390/jmse13050876 - 28 Apr 2025
Viewed by 364
Abstract
In order to gain an insight into the stress state of drillstring in riserless drilling conditions with Casing while Drilling (CwD) technology, a stochastic and nonlinear dynamic model of the drillstring under the excitation of the environmental load is established based on Hamilton [...] Read more.
In order to gain an insight into the stress state of drillstring in riserless drilling conditions with Casing while Drilling (CwD) technology, a stochastic and nonlinear dynamic model of the drillstring under the excitation of the environmental load is established based on Hamilton principle and finite deformation theory. The distribution of tensile stress, bending stress, and effective stress along the axial direction of drillstring that is exposed to the ambient environment is emphasized, the influence of wall thickness and material of the drillpipe on the stress state of drillstring is also discussed. The numerical results show that significant fluctuations in cross-sectional stress occur during the riserless drilling process, particularly under varying hydrodynamic loads; the tensile stress and effective stress are larger on landing string and the maximum values of these stresses occur at the connection point of the landing string and casing string; the bending stress is larger on casing string and the maximum value occurs near the sea floor; and increasing the wall thickness and selecting the low-density material can help to reduce the stress of the drillstring. It can be concluded from the numerical results that during the CwD riserless drilling process, the effective stress on the cross section of drillstring is mainly determined by the tensile stress and the contribution of bending stress is comparably small, and the dangerous cross section of the drillstring is located at the connection point of landing string and casing string. The proposed dynamic model offers theoretical insights that can inform drillstring design and vibration mitigation strategies in CwD operations. Full article
Show Figures

Figure 1

23 pages, 2454 KiB  
Article
Fire Safety Literacy of Personnel in High-Rise Buildings: A Survey Study
by Jingya Wang, Diping Yuan, Dingli Liu, Tian Zhou and Weijun Liu
Fire 2025, 8(2), 40; https://doi.org/10.3390/fire8020040 - 23 Jan 2025
Viewed by 2222
Abstract
Over recent decades, the number of high-rise building fires has increased rapidly with urbanization. However, few studies have been conducted from the perspective of fire safety awareness among residents in high-rise buildings. This study investigated the fire safety literacy of people in high-rise [...] Read more.
Over recent decades, the number of high-rise building fires has increased rapidly with urbanization. However, few studies have been conducted from the perspective of fire safety awareness among residents in high-rise buildings. This study investigated the fire safety literacy of people in high-rise buildings. High-rise buildings are an important part of the urban environment, and fires can cause environmental pollution. In this work, online and on-site questionnaire surveys were combined to investigate residents’ evacuation preparation, firefighting skills, and knowledge about firefighting equipment. A total of 3000 questionnaires were collected, of which 2026 were validated. The survey results showed that 27.79% of residents were unaware of the location of evacuation staircases, 55.43% were not aware of the location of refuge floors in super high-rise buildings, and 41.20% were not aware that fire doors should be in a normally closed state. The main findings of this investigation indicate that the fire safety knowledge of residents in high-rise buildings is gravely deficient. Therefore, it is recommended that fire safety awareness campaigns be enhanced in both school education and community activities, and residents in high-rise buildings should be organized to participate in regular fire drills. Full article
(This article belongs to the Special Issue Building Fires, Evacuations and Rescue)
Show Figures

Figure 1

23 pages, 6955 KiB  
Article
Study on the Method of Advanced Water Prediction for Underground Mine Expansion Using the Transient Electromagnetic Method and the Field Test: A Case Study of the Huize Lead–Zinc Mine
by Zhouhong Ren, Dajin Liu, Ticai Hu, Shichong Yuan, Hongliang Wang, Ronghui Xia and Lihui Han
Water 2025, 17(1), 122; https://doi.org/10.3390/w17010122 - 4 Jan 2025
Viewed by 951
Abstract
Mine water disaster is one of the main natural disasters in underground mining operations, and seriously threatens the safety of mine production and personnel’s life, affecting mine safety and sustainable development. The research on the prevention and control of the disaster of water [...] Read more.
Mine water disaster is one of the main natural disasters in underground mining operations, and seriously threatens the safety of mine production and personnel’s life, affecting mine safety and sustainable development. The research on the prevention and control of the disaster of water inrush in fractured rock mass has become a major international frontier issue in the field of underground engineering, and it is also a major national demand. The key to effectively preventing and controlling disasters is to reveal the mechanisms of disasters. Taking the Huize lead–zinc mine as an example, this paper deeply studies the application method of the transient electromagnetic method (TEM) in advance water detection in shaft and roadway development and field test results. In view of the complicated hydrogeological conditions of the mine and the serious threat of water damage, this paper puts forward a kind of advanced water detection technology for the Huize lead–zinc mine based on the mine transient electromagnetic method. The technology uses the principle of electromagnetic induction to detect the water-bearing structure ahead by placing the transmitting and receiving coils in the shaft. In the field test, the multi-turn small wire frame device is used to detect the direction of the roof, bedding and floor of the roadway head on. In roadway excavation, if the site meets the detection requirements, the abnormal low-resistance area in the test area can be exposed by drilling first. The degree of structural development and the peak value of water gushing in the target area have been mastered. Then, it is determined whether it is necessary to increase borehole exploration in other relatively high-resistance low-risk areas. The experimental results show that the mine transient electromagnetic method can accurately identify the low-resistance water in front, and provide reliable technical support for mine water disaster prevention. The research in this paper not only enriches the application field of the mine transient electromagnetic method, but also provides a useful reference for mine water damage prevention under similar conditions. Full article
Show Figures

Figure 1

23 pages, 19347 KiB  
Article
Georadar Survey and Simulation for Subsurface Investigation at Historical Mosque of Sorghatmesh, Cairo, Egypt
by Mohamed Elkarmoty, Hussien E. Allam, Khalid Helal, Fathy Ahmed, Stefano Bonduà and Sherif A. Mourad
Buildings 2024, 14(11), 3653; https://doi.org/10.3390/buildings14113653 - 17 Nov 2024
Cited by 1 | Viewed by 1108
Abstract
Sorghatmesh mosque is a historical structure that was constructed in Cairo, Egypt, by Prince Saif El-Din Sorghatmesh in 1356. A dual-frequency ground-penetrating radar (GPR) with 250–700 MHz was used to investigate the subsurface of the Sorghatmesh mosque for restoration purposes. A total of [...] Read more.
Sorghatmesh mosque is a historical structure that was constructed in Cairo, Egypt, by Prince Saif El-Din Sorghatmesh in 1356. A dual-frequency ground-penetrating radar (GPR) with 250–700 MHz was used to investigate the subsurface of the Sorghatmesh mosque for restoration purposes. A total of 37 lines were surveyed on the ground floor of the mosque. The subsurface utilities were detected, and the status of the concrete base and the medium of the ground floor were assessed. A set of subsurface anomalies were detected and interpreted within the ground floor area of the mosque. In order to validate the interpretation, a trial pit was drilled on the ground floor, allowing for the visual inspection of the subsurface, and a Georadar numerical simulation was carried out to study the responses of the subsurface materials and conditions. For a better comprehension of the results, the ground floor area was categorized into five zones where the GPR interpretations between survey lines are almost similar. This work not only demonstrates the effectiveness of GPR as a non-invasive investigation tool but also highlights the potential of integrating advanced technologies into cultural heritage preservation by offering refined methodologies and insights for future research and restoration efforts. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage)
Show Figures

Figure 1

17 pages, 4106 KiB  
Article
Research and Application of the Synergistic Support System of “LDAGF” in an Extremely Soft and Fragile Fully Mechanized Caving Face Roadway
by Xianjie Ni, Yuan Yuan, Xinzhu Hua and Ke Ding
Appl. Sci. 2024, 14(18), 8485; https://doi.org/10.3390/app14188485 - 20 Sep 2024
Viewed by 832
Abstract
This study aims to alleviate the serious deformation of surrounding rock (SR) in an extremely soft and fragile fully mechanized caving face roadway (ESFFMCFR, the 8# coal seam, Huaibei mining area) under a conventional support. Laboratory tests of roadway SR were conducted. The [...] Read more.
This study aims to alleviate the serious deformation of surrounding rock (SR) in an extremely soft and fragile fully mechanized caving face roadway (ESFFMCFR, the 8# coal seam, Huaibei mining area) under a conventional support. Laboratory tests of roadway SR were conducted. The results show that in this coal seam, the extremely soft and fragile coal body has a high clay mineral content, so it is of low strength and breaks and softens easily. With reference to the mechanical tests on coal and rock mass around the coal seam and the monitoring results of roadway deformation, the roadway deformation is mainly caused by the development of fractures in the roadway SR, the separation of the support body and SR and the loose supporting structure. Considering the engineering environment and deformation characteristics of SR in the ESFFMCFR (the 8# coal seam, Huaibei mining area), this study proposed a synergistic support system of “lowering, drilling, anchoring, grouting and flatting (LDAGF)” for the ESFFMCFR based on the synergistic mechanism of support and SR under the basic principles of synergetics. Specifically, the synergistic support system of “LDAGF” includes the following measures: floor breaking and side lowering, bolt advance support, anchor cable support, advance water injection and grouting and flat-roof U-shaped steel shed support. Furthermore, this synergistic support system was applied on the ESFFMCFR in the 8# coal seam of Xinhu and Guobei coal mines, Huaibei mining area. The on-site application results reveal that when the synergistic support system is adopted, the maximum subsidence values in the above roadway roofs are 117 mm and 121 mm and the maximum displacement values of the two sides are 66 mm and 74 mm, respectively, which proves an excellent support effect. The synergistic support system, which can effectively control the serious deformation of the SR in ESFFMCFRs and ensure long-term stability and safety of the roadways, is suitable for the support of ESFFMCFRs and is of great guiding significance for roadways of the same type. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

14 pages, 11301 KiB  
Article
Application of Multiple Geophysical Exploration Methods in the Exploration of Marine Sand Resources in the Northern Offshore Waters of the South China Sea
by Gang Yu, Xichong Hu, Jie Fang, Ying Yang, Yongcong Zhang, Jinhui Lin, Jingyi Liu and Libing Qian
J. Mar. Sci. Eng. 2024, 12(9), 1561; https://doi.org/10.3390/jmse12091561 - 5 Sep 2024
Cited by 2 | Viewed by 1196
Abstract
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local [...] Read more.
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local authorities are required to delineate auctioned sand mining areas after a general survey, commonly referred to as preliminary exploration. Marine sand can be categorized into surface marine sand and buried marine sand. Buried marine sand deposits are buried beneath the sea floor, making it challenging to locate them due to their thin thickness. Consequently, there exist numerous technical difficulties associated with marine sand exploration. We conducted the preliminary research work in the waters off Guangdong Province of the South China Sea, employing a reduced drilling and identifying a potentially extensive deposit of marine sand ore. In this study, various geophysical methods such as sub-bottom profile survey, single-channel seismic survey, and drilling engineering were employed in the northern offshore waters of the South China Sea. As a result, two distinct marine sand bodies were delineated within the study area. Additionally, five reflective interfaces (R1, R2, R3, R4, and R5) were identified from top to bottom. These interfaces can be divided into five seismic sequences: A1, B1, C1, D1, and E1, respectively. Three sets of strata were recognized: the Holocene Marine facies sediment layer (Q4m), the Pleistocene alluvial and pluvial facies sediment layer (Q3al+pl), as well as the Pleistocene Marine facies sedimentary layer (Q3m). In total, two placers containing marine sand have been discovered during this study. We estimated the volume of marine sand and achieved highly favorable results of the concept that we are proposing a geologic exploration approach that does not involve any previous outcropping analogue study. Full article
Show Figures

Figure 1

9 pages, 3800 KiB  
Article
Classical vs. Retrograde Endoscopic Dacryocystorhinostomy: Analyses and Comparison of the Results
by Matteo Alicandri-Ciufelli, Daniela Lucidi, Elisa Aggazzotti Cavazza, Paolo Russo, Cinzia Del Giovane, Daniele Marchioni and Federico Calvaruso
J. Clin. Med. 2024, 13(13), 3824; https://doi.org/10.3390/jcm13133824 - 29 Jun 2024
Cited by 3 | Viewed by 1616
Abstract
Background: In endoscopic dacryocystorhinostomy (DCR), surgical landmarks such as the maxillary line (ML) and the axilla of the middle turbinate (MT) guide the surgeon in identifying the lacrimal sac. The primary surgical risk associated with the classical technique, which involves directly opening the [...] Read more.
Background: In endoscopic dacryocystorhinostomy (DCR), surgical landmarks such as the maxillary line (ML) and the axilla of the middle turbinate (MT) guide the surgeon in identifying the lacrimal sac. The primary surgical risk associated with the classical technique, which involves directly opening the lacrimal sac, is the height of the bone drilling on the projection of the lateral wall of the nasal fossa. This poses a significant risk of damaging the orbit, the floor of the frontal sinus, and the anterior skull base. Furthermore, the anatomical variability in size and location of the lacrimal sac poses a risk for difficult and precise surgical identification. Recently, a ‘retrograde’ technique has been introduced to safely identify and expose the lacrimal sac. The aim of this study is to compare the results of retrograde DCR (rDCR) to a classic technique (clDCR), in terms of clinical recurrence and complications. Methods: A retrospective study on a cohort of 35 patients who underwent DCR at the ENT Department of the Modena University Hospital between January 2010 and October 2022 (18 clDCR and 17 rDCR) was performed. Minimum postoperative follow-up for inclusion was 12 months. We used the Fisher’s exact test to compare the two techniques, comparing functional outcomes and clinical recurrence rates. Results: Clinical recurrence of nasolacrimal stenosis in clDCR patients was 50%, compared to 6% in those who underwent rDCR (p-value 0.005). Postoperative surgical complications were not significantly different between the two groups (p > 0.05). Conclusions: rDCR is a safe technique and has been shown to be a statistically more effective surgical technique than clDCR in reducing clinical recurrence rates. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

19 pages, 7285 KiB  
Article
Study on the Influence of Some Ventilation Parameters on Dust Dispersion in Heading Face Coal Mine Using CFD Numerical Model
by Quang Van Nguyen, Thinh Van Nguyen and Phong Duyen Nguyen
Appl. Sci. 2024, 14(13), 5643; https://doi.org/10.3390/app14135643 - 28 Jun 2024
Cited by 1 | Viewed by 1610
Abstract
Coal dust is one of the environmental factors that seriously affect the health of workers as well as the mining equipment in underground coal mines. At present, coal dust is commonly generated during drilling, blasting, excavation, and transportation processes in mining operations. During [...] Read more.
Coal dust is one of the environmental factors that seriously affect the health of workers as well as the mining equipment in underground coal mines. At present, coal dust is commonly generated during drilling, blasting, excavation, and transportation processes in mining operations. During mining blasting processes, coal dust is generated with varying particle sizes and high concentration levels. High concentrations of dust will affect mining operations and increase the ventilation time required for mining faces. In addition, coal dust exists in suspended form in the roadway and is harmful to human health, especially fine dust particles that have a negative impact on work efficiency. To improve ventilation efficiency and eliminate coal dust, this article presents a CFD-DPM numerical modeling method that integrates a DEM collision model based on the finite element method to analyze the motion characteristics of airflow and dust particles in the mine tunnel, while considering collisions between particles and between particles and walls. The article analyzes the distribution of wind speed, the dispersion of dust in the space around the roadway, and dust concentrations at distances of 1 m, 3 m, and 6 m from the working personnel and at a position 1.5 m above the roadway floor, corresponding to the breathing zone of the workers, with varying parameters such as velocity and duct position. The results indicate that with a wind velocity of V = 18 m/s and an air duct height h = 3.0 m, the best dust reduction results are achieved, and they provide theoretical guidance for selecting and optimizing ventilation parameters in dust control. Full article
Show Figures

Figure 1

23 pages, 7623 KiB  
Article
Geological Controls on Gas Content of Deep Coal Reservoir in the Jiaxian Area, Ordos Basin, China
by Shaobo Xu, Qian Li, Fengrui Sun, Tingting Yin, Chao Yang, Zihao Wang, Feng Qiu, Keyu Zhou and Jiaming Chen
Processes 2024, 12(6), 1269; https://doi.org/10.3390/pr12061269 - 20 Jun 2024
Cited by 2 | Viewed by 1367
Abstract
Deep coalbed methane (DCBM) reservoirs hold exceptional potential for diversifying energy sources. The Ordos Basin has attracted much attention due to its enormous resource reserves of DCBM. This work focuses on the Jiaxian area of the Ordos basin, and the multi-factor quantitative evaluation [...] Read more.
Deep coalbed methane (DCBM) reservoirs hold exceptional potential for diversifying energy sources. The Ordos Basin has attracted much attention due to its enormous resource reserves of DCBM. This work focuses on the Jiaxian area of the Ordos basin, and the multi-factor quantitative evaluation method on the sealing of cap rocks is established. The abundant geologic and reservoir information is synthesized to explore variable factors affecting the gas content. Results indicate that the sealing capacity of the coal seam roof in the Jiaxian area, with a mean sealing index of 3.12, surpasses the floor’s sealing capacity by 13.87%, which averages 2.74. The sealing of the coal seam roof has a more positive impact on the enrichment of coalbed methane (CBM). In addition, the conditions for preserving gas would be boosted as coal seam thickness increased, leading to enhanced gas content in coal seams. The CH4 content increases by an average of ~2.38 m3/t as coal seam thickness increases with the interval of 1 m. The increasing burial depth represents the incremental maturity of organic matter and the gas generation ability in coal seams, which contributes to improving the gas content in coal seams. There is a positive correlation between the degree of coal fragmentation and the gas content of the coal seam to a certain extent. These findings provide valuable insights for targeted drilling strategies and enhancing natural gas production capacity in the Jiaxian area of the Ordos Basin. Full article
(This article belongs to the Special Issue Shale Gas and Coalbed Methane Exploration and Practice)
Show Figures

Figure 1

21 pages, 7819 KiB  
Article
Research on the Deviation Correction Control of a Tracked Drilling and Anchoring Robot in a Tunnel Environment
by Chuanwei Wang, Hongwei Ma, Xusheng Xue, Qinghua Mao, Jinquan Song, Rongquan Wang and Qi Liu
Actuators 2024, 13(6), 221; https://doi.org/10.3390/act13060221 - 13 Jun 2024
Cited by 2 | Viewed by 1356
Abstract
In response to the challenges of multiple personnel, heavy support tasks, and high labor intensity in coal mine tunnel drilling and anchoring operations, this study proposes a novel tracked drilling and anchoring robot. The robot is required to maintain alignment with the centerline [...] Read more.
In response to the challenges of multiple personnel, heavy support tasks, and high labor intensity in coal mine tunnel drilling and anchoring operations, this study proposes a novel tracked drilling and anchoring robot. The robot is required to maintain alignment with the centerline of the tunnel during operation. However, owing to the effects of skidding and slipping between the track mechanism and the floor, the precise control of a drilling and anchoring robot in tunnel environments is difficult to achieve. Through an analysis of the body and track mechanisms of the drilling and anchoring robot, a kinematic model reflecting the pose, steering radius, steering curvature, and angular velocity of the drive wheel of the drilling and anchoring robot was established. This facilitated the determination of speed control requirements for the track mechanism under varying driving conditions. Mathematical models were developed to describe the relationships between a tracked drilling and anchoring robot and several key factors in tunnel environments, including the minimum steering space required by the robot, the minimum relative steering radius, the steering angle, and the lateral distance to the sidewalls. Based on these models, deviation-correction control strategies were formulated for the robot, and deviation-correction path planning was completed. In addition, a PID motion controller was developed for the robot, and trajectory-tracking control simulation experiments were conducted. The experimental results indicate that the tracked drilling and anchoring robot achieves precise control of trajectory tracking, with a tracking error of less than 0.004 m in the x-direction from the tunnel centerline and less than 0.001 m in the y-direction. Considering the influence of skidding, the deviation correction control performance test experiments of the tracked drilling and anchoring robot at dy = 0.5 m away from the tunnel centerline were completed. In the experiments, the tracked drilling and anchoring robot exhibited a significant difference in speed between the two sides of the tracks with a track skid rate of 0.22. Although the real-time tracking maximum error in the y-direction from the tunnel centerline was 0.13 m, the final error was 0.003 m, meeting the requirements for position deviation control of the drilling and anchoring robot in tunnel environments. These research findings provide a theoretical basis and technical support for the intelligent control of tracked mobile devices in coal mine tunnels, with significant theoretical and engineering implications. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—2nd Edition)
Show Figures

Figure 1

16 pages, 8051 KiB  
Article
Experimental Analysis of the Mechanical Properties and Failure Behavior of Deep Coalbed Methane Reservoir Rocks
by Haiyang Wang, Shugang Yang, Linpeng Zhang, Yunfeng Xiao, Xu Su, Wenqiang Yu and Desheng Zhou
Processes 2024, 12(6), 1125; https://doi.org/10.3390/pr12061125 - 30 May 2024
Cited by 4 | Viewed by 1140
Abstract
A comprehensive understanding of the mechanical characteristics of deep coalbed methane reservoir rocks (DCMRR) is crucial for the safe and efficient development of deep coalbed gas resources. In this study, the microstructural and mechanical features of the coal seam roof, floor, and the [...] Read more.
A comprehensive understanding of the mechanical characteristics of deep coalbed methane reservoir rocks (DCMRR) is crucial for the safe and efficient development of deep coalbed gas resources. In this study, the microstructural and mechanical features of the coal seam roof, floor, and the coal seam itself were analyzed through laboratory experiments. The impact mechanisms of drilling fluid and fracturing fluid hydration on the mechanical properties and failure behavior of coal seam rocks were investigated. The experimental results indicate that the main minerals in coal seams are clay and amorphous substances, with kaolinite being the predominant clay mineral component in coal seam rocks. The rock of the coal seam roof and floor exhibits strong elasticity and high compressive strength, while the rock in the coal seam section shows a lower compressive capacity with pronounced plastic deformation characteristics. The content of kaolinite shows a good correlation with the mechanical properties of DCMRR. As the kaolinite content increases, the strength of DCMRR gradually decreases, and deformability enhances. After immersion in drilling fluid and slickwater, the strength of coal seam rocks significantly decreases, leading to shear fracture zones and localized strong damage features after rock compression failure. The analysis of the mechanical properties of DCMRR suggests that the horizontal well trajectory should be close to the coal seam roof, and strong sealing agents should be added to drilling fluid to reduce the risk of wellbore collapse. Enhancing the hydration of slickwater is beneficial for the formation of a more complex fracture network in deep coalbed methane reservoir. Full article
(This article belongs to the Special Issue Coal Mining and Unconventional Oil Exploration)
Show Figures

Figure 1

29 pages, 8552 KiB  
Article
Integrated Underground Analyses as a Key for Seasonal Heat Storage and Smart Urban Areas
by Dimitra Rapti, Francesco Tinti and Carlo Antonio Caputo
Energies 2024, 17(11), 2533; https://doi.org/10.3390/en17112533 - 24 May 2024
Cited by 3 | Viewed by 1094
Abstract
The design and performance of a shallow geothermal system is influenced by the geological and hydrogeological context, environmental conditions and thermal demand loads. In order to preserve the natural thermal resource, it is crucial to have a balance between the supply and the [...] Read more.
The design and performance of a shallow geothermal system is influenced by the geological and hydrogeological context, environmental conditions and thermal demand loads. In order to preserve the natural thermal resource, it is crucial to have a balance between the supply and the demand for the renewable energy. In this context, this article presents a case study where an innovative system is created for the storage of seasonal solar thermal energy underground, exploiting geotechnical micropiles technology. The new geoprobes system (energy micropile; EmP) consists of the installation of coaxial geothermal probes within existing micropiles realized for the seismic requalification of buildings. The underground geothermal system has been realized, starting from the basement of an existing holiday home Condominium, and was installed in dry subsoil, 20 m-deep below the parking floor. The building consists of 140 apartments, with a total area of 5553 m2, and is located at an altitude of about 1490 m above sea level. Within the framework of a circular economy, energy saving and the use of renewable sources, the design of the geothermal system was based on geological, hydrogeological and thermophysical analytical studies, in situ measurements (e.g., Lefranc and Lugeon test during drilling; Rock Quality Designation index; thermal response tests; acquisition of temperature data along the borehole), numerical modelling and long-term simulations. Due to the strong energy imbalance of the demand from the building (heating only), and in order to optimize the underground annual balance, both solar thermal storage and geothermal heat extraction/injection to/from a field of 380 EmPs, with a relative distance varying from 1 to 2 m, were adopted. The integrated solution, resulting from this investigation, allowed us to overcome the standard barriers of similar geological settings, such as the lack of groundwater for shallow geothermal energy exploitation, the lack of space for borehole heat exchanger drilling, the waste of solar heat during the warm season, etc., and it can pave the way for similar renewable and low carbon emission hybrid applications as well as contribute to the creation of smart buildings/urban areas. Full article
(This article belongs to the Collection Review Papers in Energy and Environment)
Show Figures

Figure 1

Back to TopTop