Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = dopant impurity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 227
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

23 pages, 4593 KiB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 449
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

17 pages, 2309 KiB  
Article
Cerium-Doped Titanium Dioxide (CeT) Hybrid Material, Characterization and Spiramycin Antibiotic Photocatalytic Activity
by Hayat Khan
Catalysts 2025, 15(6), 512; https://doi.org/10.3390/catal15060512 - 23 May 2025
Viewed by 620
Abstract
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were [...] Read more.
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were produced with stable tetragonal (anatase) lattices by room temperature sol–gel method and employing the inorganic titanium oxysulfate (TiOSO4) as titanium precursor. The structural analysis by X-ray diffraction (XRD) revealed that at calcination temperature of 600 °C all (un and doped) powders were composed of crystalline anatase TiO2 with the crystallite sizes in the range of 13.5–11.3 nm. UV–vis DRS spectroscopy revealed that the most narrowed bandgap value of 2.75 eV was calculated for the 0.5CeT sample containing the optimum dopant content of 0.5 weight ratio. X-ray spectroscopy (XPS) confirmed the presence of the impurity level Ce3+/Ce4+, which became responsible for the decrease in bandgap as well as for the photoinduced carriers recombination rate. Photocatalytic tests showed that the maximum decomposition of the model spiramycin (SPR) antibiotic pollutant was 88.0% and 77.0%, under UV and visible light, respectively. According to the reaction kinetics, SPR decomposition adhered to the Langmuir–Hinshelwood (L–H) model and via ROS experiments mainly hydroxyl radicals (OH) followed by photogenerated holes (h+s) become responsible for the pollutant degradation. In summary, this study elaborates on the role of xCeT nanoparticles as an efficient photocatalyst for the elimination of organic contaminants in wastewater. Full article
Show Figures

Graphical abstract

22 pages, 2259 KiB  
Article
Dynamical Characteristics of Isolated Donors, Acceptors, and Complex Defect Centers in Novel ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(10), 749; https://doi.org/10.3390/nano15100749 - 16 May 2025
Cited by 1 | Viewed by 350
Abstract
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory [...] Read more.
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory applications. Despite earlier evidence of attaining p-type wz ZnO with N doping, the problem persists in achieving reproducible p-type conductivity. This issue is linked to charging compensation by intrinsic donors and/or background impurities. In ZnO: Al (Li), the vibrational features by infrared and Raman spectroscopy have been ascribed to the presence of isolated AlZn(LiZn) defects, nearest-neighbor (NN) [AlZnNO] pairs, and second NN [AlZnOLiZn;VZnOLiZn] complexes. However, no firm identification has been established. By integrating accurate perturbation models in a realistic Green’s function method, we have meticulously simulated the impurity vibrational modes of AlZn(LiZn) and their bonding to form complexes with dopants as well as intrinsic defects. We strongly feel that these phonon features in doped ZnO will encourage spectroscopists to perform similar measurements to check our theoretical conjectures. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

10 pages, 5938 KiB  
Article
Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping
by Peng Zhu, Xin Zhang, Liu Yang, Yuqi Zhang, Deng Hu, Fuhong Chen, Haoyu Qi and Zhiwei Wang
Materials 2025, 18(5), 1110; https://doi.org/10.3390/ma18051110 - 28 Feb 2025
Viewed by 637
Abstract
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. [...] Read more.
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. In this work, we demonstrated that tin (Sn) or indium (In) dopants could be introduced into a BiSbTeSe2 single crystal. The impacts of the dopants on the bulk-insulating property and electron mobility of the surface state were systematically investigated by electrical transport measurements. The doped single crystals had the same crystal structure as the pristine BiSbTeSe2, no impure phase was observed, and all elements were distributed homogeneously. The electrical transport measurements illustrated that slight Sn doping could improve the performance of BiSbTeSe2 a lot, as the longitudinal resistivity (ρxx), bulk carrier density (nb), and electron mobility of the surface state (μs) reached about 11 Ωcm, 7.40 × 1014 cm−3, and 6930 cm2/(Vs), respectively. By comparison, indium doping could also improve the performance of BiSbTeSe2 with ρxx, nb, and μs up to about 13 Ωcm, 1.29 × 1015 cm−3, and 4500 cm2/(Vs), respectively. Our findings suggest that Sn- or indium-doped BiSbTeSe2 crystals should be good platforms for studying novel topological properties, as well as promising candidates for low-dissipation electron transport, spin electronics, and quantum computing. Full article
Show Figures

Graphical abstract

15 pages, 4930 KiB  
Article
Enhanced Photoluminescence of Europium-Doped TiO2 Nanoparticles Using a Single-Source Precursor Strategy
by Violaine Mendez, Marlène Fabre, Thibaut Cornier, Françoise Bosselet, Stéphane Loridant, Sarah Asaad and Stéphane Daniele
Molecules 2024, 29(24), 5824; https://doi.org/10.3390/molecules29245824 - 10 Dec 2024
Cited by 1 | Viewed by 1326
Abstract
TiO2:Eu3+ nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol–gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO [...] Read more.
TiO2:Eu3+ nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol–gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO2 substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer–Emmett–Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL). This low-temperature synthesis yielded crystalline powders, and calcination at 400 °C was performed to remove surface organic impurities, enabling a precise comparison of the final nanomaterials. While both preparation methods produced materials with similarly dispersed and localized dopants on the TiO2 surface, photoluminescence studies revealed that the SSP-derived nanomaterials exhibited significantly superior electro-optical properties. This enhanced efficiency is attributed to the co-hydrolysis of both reactants, which facilitates an optimized interface between the crystalline TiO2 core and the dopant-rich amorphous surface, thereby enabling far more effective charge transfer than that achieved by impregnation. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Figure 1

13 pages, 6335 KiB  
Article
Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen
by Sergey Kudryashov, Alena Nastulyavichus, Victoria Pryakhina, Evgenia Ulturgasheva, Michael Kovalev, Ivan Podlesnykh, Nikita Stsepuro and Vadim Shakhnov
Technologies 2024, 12(11), 224; https://doi.org/10.3390/technologies12110224 - 7 Nov 2024
Cited by 1 | Viewed by 2450
Abstract
A novel double-impurity doping process for silicon (Si) surfaces was developed, utilizing nanosecond-laser melting of an 11 nm thick gold (Au) top film and a Si wafer substrate in a laser plasma-activated liquid nitrogen (LN) environment. Scanning electron microscopy revealed a fluence- and [...] Read more.
A novel double-impurity doping process for silicon (Si) surfaces was developed, utilizing nanosecond-laser melting of an 11 nm thick gold (Au) top film and a Si wafer substrate in a laser plasma-activated liquid nitrogen (LN) environment. Scanning electron microscopy revealed a fluence- and exposure-independent surface micro-spike topography, while energy-dispersive X-ray spectroscopy identified minor Au (~0.05 at. %) and major N (~1–2 at. %) dopants localized within a 0.5 μm thick surface layer and the slight surface post-oxidation of the micro-relief (oxygen (O), ~1.5–2.5 at. %). X-ray photoelectron spectroscopy was used to identify the bound surface (SiNx) and bulk doping chemical states of the introduced nitrogen (~10 at. %) and the metallic (<0.01 at. %) and cluster (<0.1 at. %) forms of the gold dopant, and it was used to evaluate their depth distributions, which were strongly affected by the competition between gold dopants due to their marginal local concentrations and the other more abundant dopants (N, O). In this study, 532 nm Raman microspectroscopy indicated a slight reduction in the crystalline order revealed in the second-order Si phonon band; the tensile stresses or nanoscale dimensions of the resolidified Si nano-crystallites envisioned by the main Si optical–phonon peak; a negligible a-Si abundance; and a low-wavenumber peak of the Si3N4 structure. In contrast, Fourier transform infrared (FT-IR) reflectance and transmittance studies exhibited only broad structureless absorption bands in the range of 600–5500 cm−1 related to dopant absorption and light trapping in the surface micro-relief. The room-temperature electrical characteristics of the laser double-doped Si layer—a high carrier mobility of 1050 cm2/Vs and background carrier sheet concentration of ~2 × 1010 cm−2 (bulk concentration ~1014–1015 cm−3)—are superior to previously reported parameters of similar nitrogen-implanted/annealed Si samples. This novel facile double-element laser-doping procedure paves the way to local maskless on-demand introductions of multiple intra-gap intermediate donor and acceptor bands in Si, providing related multi-wavelength IR photoconductivity for optoelectronic applications. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

16 pages, 5265 KiB  
Article
Overlooked Ionic Contribution of a Chiral Dopant in Cholesteric Liquid Crystals
by Hassanein Shaban, Po-Chang Wu, Yi-Fei Jia and Wei Lee
Materials 2024, 17(20), 5080; https://doi.org/10.3390/ma17205080 - 18 Oct 2024
Cited by 6 | Viewed by 1530
Abstract
This study focuses on the ionic contribution by a chiral dopant added into a nematic host for preparing cholesteric liquid crystals (CLCs). Chiral structures were designated by individually incorporating two enantiomers, R5011 and S5011, into the nematic E44 to construct right- and left-handed [...] Read more.
This study focuses on the ionic contribution by a chiral dopant added into a nematic host for preparing cholesteric liquid crystals (CLCs). Chiral structures were designated by individually incorporating two enantiomers, R5011 and S5011, into the nematic E44 to construct right- and left-handed CLCs, respectively. Characterized by the space-charge polarization, the dielectric spectra of the CLCs were investigated in the low-frequency regime, where f  ≤  1 kHz. The role of the individual chiral dopant, R5011 or S5011, at concentrations of 0–4.0 wt.% in altering the ionic properties of the CLC material was analyzed by deducing the electrical conductivity, ion density, and ion diffusivity. Regardless of the cell structure to be antiparallel or twisted by 90°, a significant ionic response was observed in the right-handed CLCs in comparison with the left-handed counterparts, suggesting that excess ions originating from our R5011 were introduced into the mesogenic mixtures. This work alarms the potential contribution of notorious impurity ions by a chiral dopant, which is often ignored in fabricating CLCs for electro-optical applications. Full article
(This article belongs to the Special Issue Structural and Physical Properties of Liquid Crystals)
Show Figures

Graphical abstract

16 pages, 8762 KiB  
Article
Roles of Impurity Levels in 3d Transition Metal-Doped Two-Dimensional Ga2O3
by Hui Zeng, Chao Ma, Xiaowu Li, Xi Fu, Haixia Gao and Meng Wu
Materials 2024, 17(18), 4582; https://doi.org/10.3390/ma17184582 - 18 Sep 2024
Cited by 2 | Viewed by 952
Abstract
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are [...] Read more.
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are scarce, both theoretically and experimentally. In this study, the detailed variations in impurity levels within 3d TM-doped 2D Ga2O3 systems have been explored via first-principles calculations using the generalized gradient approximation (GGA) +U method. Our results show that the Co impurity tends to incorporate on the tetrahedral GaII site, while the other dopants favor square pyramidal GaI sites in 2D Ga2O3. Moreover, Sc3+, Ti4+, V4+, Cr3+, Mn3+, Fe3+, Co3+, Ni3+, Cu2+, and Zn2+ are the energetically favorable charge states. Importantly, a transition from n-type to p-type conductivity occurs at the threshold Cu element as determined by the defect formation energies and partial density of states (PDOS), which can be ascribed to the shift from electron doping to hole doping with respect to the increase in the atomic number in the 3d TM group. Moreover, the spin configurations in the presence of the square pyramidal and tetrahedral coordinated crystal field effects are investigated in detail, and a transition from high-spin to low-spin arrangement is observed. As the atomic number of the 3d TM dopant increases, the percentage contribution of O ions to the total magnetic moment significantly increases due to the electronegativity effect. Additionally, the formed 3d bands for most TM dopants are located near the Fermi level, which can be of significant benefit to the transformation of the absorbing region from ultraviolet to visible/infrared light. Our results provide theoretical guidance for designing 2D Ga2O3 towards optoelectronic and spintronic applications. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Graphical abstract

16 pages, 28541 KiB  
Article
Effect of Ag Doping on Mechanical Properties of Cu6Sn5 Intermetallic Compounds
by Biao Wang, Junxi Lu, Lingyan Zhao, Junjie Liao and Jikang Yan
Metals 2024, 14(6), 678; https://doi.org/10.3390/met14060678 - 7 Jun 2024
Viewed by 1242
Abstract
Cu6Sn5-xAg alloys (x = 0, 3, 6; %, mass fraction) were synthesized using Ag as a dopant through a high-temperature melting technique. The microstructure of the alloy was analyzed using X-ray diffraction (XRD), scanning electron microscopy [...] Read more.
Cu6Sn5-xAg alloys (x = 0, 3, 6; %, mass fraction) were synthesized using Ag as a dopant through a high-temperature melting technique. The microstructure of the alloy was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and other equipment, while the hardness of the alloy was measured to investigate the impact of Ag addition on the structure and microstructure of the Cu6Sn5 intermetallic compound. This study explored the influence of varying Ag contents on the properties of Cu6Sn5 intermetallic compounds, with calculations based on first principles revealing the mechanical properties and density of states of η′-Cu6Sn5 and its Ag-doped systems. The results indicated that Cu6Sn5-xAg alloys predominantly existed in three distinct forms, all exhibiting large masses without any impurities or precipitates. First-principle calculations demonstrated that Ag substitution in certain sites suppressed the anisotropy of the Young’s modulus of Cu6Sn5, particularly in the Cu1, Cu3, Sn1, and Sn3 positions, while the effect was less significant at the Cu2, Cu4, and Sn2 sites. The introduction of Ag through doping enhanced the covalent bonding within the η′-Cu6Sn5 structure, promoting the formation of a stable (Cu, Ag)6Sn5 structure. Full article
(This article belongs to the Special Issue Application of First Principle Calculation in Metallic Materials)
Show Figures

Figure 1

13 pages, 2368 KiB  
Article
Crystal Growth and Spectroscopy of Yb2+-Doped CsI Single Crystal
by Dmitriy Sofich, Alexandra Myasnikova, Alexander Bogdanov, Viktorija Pankratova, Vladimir Pankratov, Ekaterina Kaneva and Roman Shendrik
Crystals 2024, 14(6), 500; https://doi.org/10.3390/cryst14060500 - 24 May 2024
Cited by 4 | Viewed by 1607
Abstract
The single crystals of CsI-Yb2+ were grown, and their spectroscopic studies were conducted. The observed luminescence in CsI-Yb2+ is due to 5d–4f transitions in Yb2+ ions. Using time-resolved spectroscopy, spin-allowed and spin-forbidden radiative transitions of ytterbium ions at room temperature [...] Read more.
The single crystals of CsI-Yb2+ were grown, and their spectroscopic studies were conducted. The observed luminescence in CsI-Yb2+ is due to 5d–4f transitions in Yb2+ ions. Using time-resolved spectroscopy, spin-allowed and spin-forbidden radiative transitions of ytterbium ions at room temperature were found. The excitation spectra of Yb2+ luminescence bands were obtained in the range of 3–45 eV. The mechanism of charge compensation of Yb2+ ions in a CsI crystal was also studied, the spectrum of the thermally stimulated depolarization current was measured, and the activation energies of the two observed peaks were calculated. These peaks belong to impurity–vacancy complexes in two different positions. The charge compensation of Yb2+ occurs via cation vacancies in the nearest-neighbor and next-nearest-neighbor positions.The Yb2+ ions are promising dopants for CsI scintillators and X-ray phosphors in combination with SiPM photodetectors. Full article
(This article belongs to the Special Issue Crystals for Radiation Detectors, UV Filters and Lasers)
Show Figures

Figure 1

10 pages, 1288 KiB  
Article
Carbon-Isovalent Dopant Pairs in Silicon: A Density Functional Theory Study
by Stavros-Richard G. Christopoulos, Efstratia N. Sgourou, Alexander Chroneos and Charalampos A. Londos
Appl. Sci. 2024, 14(10), 4194; https://doi.org/10.3390/app14104194 - 15 May 2024
Cited by 1 | Viewed by 1260
Abstract
Carbon (C) is an important isovalent impurity in silicon (Si) that is inadvertently added in the lattice during growth. Germanium (Ge), tin (Sn), and lead (Pb) are isovalent atoms that are added in Si to improve its radiation hardness, which is important for [...] Read more.
Carbon (C) is an important isovalent impurity in silicon (Si) that is inadvertently added in the lattice during growth. Germanium (Ge), tin (Sn), and lead (Pb) are isovalent atoms that are added in Si to improve its radiation hardness, which is important for microelectronics in space or radiation environments and near reactors or medical devices. In this work, we have employed density functional theory (DFT) calculations to study the structure and energetics of carbon substitutional-isovalent dopant substitutional CsDs (i.e., CsGes, CsSns and CsPbs) and carbon interstitial-isovalent dopant substitutional CiDs (i.e., CiGes, CiSns and CiPbs) defect pairs in Si. All these defect pairs are predicted to be bound with the larger isovalent atoms, forming stronger pairs with the carbon atoms. It is calculated that the larger the dopant, the more stable the defect pair, whereas the CsDs defects are more bound than the CiDs defects. Full article
Show Figures

Figure 1

20 pages, 4513 KiB  
Article
Novel Photoluminescence and Optical Thermometry of Solvothermally Derived Tetragonal ZrO2:Ti4+,Eu3+ Nanocrystals
by Lu Li, Xuesong Qu, Guo-Hui Pan and Jung Hyun Jeong
Chemosensors 2024, 12(4), 62; https://doi.org/10.3390/chemosensors12040062 - 15 Apr 2024
Cited by 3 | Viewed by 2245
Abstract
In this paper, we report on the solvothermal preparation and detailed characterization of pristine and intentionally doped zirconium dioxide (ZrO2) nanocrystals (NCs, ~5 nm) with Eu3+ or Ti4+/Eu3+ ions using alkoxide precursors. The results indicated that the [...] Read more.
In this paper, we report on the solvothermal preparation and detailed characterization of pristine and intentionally doped zirconium dioxide (ZrO2) nanocrystals (NCs, ~5 nm) with Eu3+ or Ti4+/Eu3+ ions using alkoxide precursors. The results indicated that the ZrO2 NCs were dominantly of a tetragonal phase (t-ZrO2) with a small proportion of monoclinic ZrO2 (m-ZrO2). The high purity of t-ZrO2 NCs could be synthesized with more Eu3+ doping. It was found that the as-obtained ZrO2 NCs contain some naturally present Ti4+ ions originating from precursors, but were being overlooked commonly, and some carbon impurities produced during synthesis. These species showed distinct photoluminescence (PL) properties. At least two types of Eu3+, located at low- and high-symmetry sites (probably sevenfold and eightfold oxygen coordination), respectively, were demonstrated to build into the lattice structure of t-ZrO2 NCs together. The cationic dopants were illustrated to be distributed non-randomly over the sites normally occupied by Zr, while Ti impurities preferentially occupied the sites near the low-symmetry site of Eu3+, yielding efficient energy transfer from the titanate groups to the neighboring Eu3+. Luminescence nanothermometry could measure temperature in a non-contact and remote way and could find great potentials in micro/nano-electronics, integrated photonics, and biomedicine. On the basis of the dual-emitting combination strategy involving the white broadband CT (Ti3+→O) emissions of the titanate groups and red sharp Eu3+ emissions, t-ZrO2:Eu3+ nanophosphors were demonstrated to be ratiometric self-referencing optical thermometric materials, with a working range of 130–230 K and a maxima of relative sensitivity of ~1.9% K1 at 230 K. Full article
(This article belongs to the Section Optical Chemical Sensors)
Show Figures

Graphical abstract

11 pages, 939 KiB  
Article
Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs
by Samuel Zambrano-Rojas, Gerardo Fonthal, Gene Elizabeth Escorcia-Salas and José Sierra-Ortega
Materials 2024, 17(6), 1399; https://doi.org/10.3390/ma17061399 - 19 Mar 2024
Cited by 2 | Viewed by 1304
Abstract
The aging dynamics of materials used to build the active part of optoelectronic devices is a topic of current interest. We studied epitaxial samples of GaAs doped with Ge and Sn up to 1×1019 cm−3, which were stored [...] Read more.
The aging dynamics of materials used to build the active part of optoelectronic devices is a topic of current interest. We studied epitaxial samples of GaAs doped with Ge and Sn up to 1×1019 cm−3, which were stored in a dry and dark environment for 26 years. Photoluminescence spectra were taken in three periods: 1995, 2001 and 2021. In the last year, time-resolved photoluminescence, Raman, and X-ray measurements were also performed to study the evolution of defects formed by the action of O2 in the samples and its correlation with the doping with Ge and Sn impurities. We found that oxygen formed oxides that gave off Ga and As atoms, leaving vacancies mainly of As. These vacancies formed complexes with the dopant impurities. The concentration of vacancies over the 26 years could be as large as 1×1018 cm−3. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 4634 KiB  
Article
Luminescence Properties of ZrO2: Ti Ceramics Irradiated with Electrons and High-Energy Xe Ions
by Alma Dauletbekova, Sergey Zvonarev, Sergey Nikiforov, Abdirash Akilbekov, Tatiana Shtang, Natalia Karavannova, Aiman Akylbekova, Alexey Ishchenko, Gulzhanat Akhmetova-Abdik, Zein Baymukhanov, Gulnara Aralbayeva, Guldar Baubekova and Anatoli I. Popov
Materials 2024, 17(6), 1307; https://doi.org/10.3390/ma17061307 - 12 Mar 2024
Cited by 4 | Viewed by 1940
Abstract
Samples of ZrO2 ceramics with different concentrations of impurity titanium ions were synthesized by mixing zirconium and titanium oxide powders in different mass ratios. The X-ray diffraction analysis was used to determine the phase composition, lattice parameters, and crystallite size of the [...] Read more.
Samples of ZrO2 ceramics with different concentrations of impurity titanium ions were synthesized by mixing zirconium and titanium oxide powders in different mass ratios. The X-ray diffraction analysis was used to determine the phase composition, lattice parameters, and crystallite size of the ceramics with varying dopant concentrations. Upon irradiation of the samples with 220 MeV Xe ions to a fluence of 1010 ions/cm2, a decrease in the intensity of the pulsed cathodoluminescence band at 2.5 eV was observed. Additionally, ion irradiation resulted in the emergence of a new thermoluminescence peak at 450–650 K attributed to radiation-induced traps of charge carriers. Further analysis revealed that the thermoluminescence curves of samples irradiated with electrons and ions comprise a superposition of several elementary peaks. Notably, a complex non-monotonic dependence of cathodo- and thermoluminescence intensity on titanium concentration was observed, suggesting the influence of concentration quenching and the presence of tunneling transitions. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop