Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quesnel, E.; Poncet, S.; Altazin, S.; Lin, Y.P.; D’Amico, M. Lifetime prediction of encapsulated CdSexS1-x quantum platelets for color conversion in high luminance LED microdisplays. Opt. Express 2023, 31, 10955–10964. [Google Scholar]
- Shimamura, K.; Takehara, T.; Ikeda, N. Measurement Results of Real Circuit Delay Degradation under Realistic Workload. IPSJ Trans. Syst. Lsi Des. Methodol. 2023, 16, 27–34. [Google Scholar]
- Yang, B.; Mei, S.; Zhu, Y.; Yang, D.; He, H.; Hu, R.; Li, Y.; Zou, J.; Guo, R. Precipitation promotion of highly emissive and stable CsPbX3 (Cl, Br, I) perovskite quantum dots in borosilicate glass with alkaline earth modification. Ceram. Int. 2023, 49, 6720–6728. [Google Scholar]
- Kim, H.-M.; KIM, D.-G.; Kim, Y.-S.; Kim, M.; Park, J.-S. Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: Review and outlook. Int. J. Extrem. Manuf. 2023, 5, 012006. [Google Scholar]
- Tang, C.; Zhan, S.; Li, O.; Wu, Y.; Jia, X.; Li, C.; Liu, K.; Qu, S.; Wang, Z.; Wang, Z. Systematic investigation on stability influence factors for organic solar cells. Nano Energy 2022, 98, 107299. [Google Scholar]
- Wang, H.; Wang, Z.; Tang, X.; Liu, L.; Zhang, H.; Yao, X.; Wang, F.; Wu, S.; Liu, X. Understanding the doping effect in CsPbI2Br solar cells: Crystallization kinetics, defect passivation and energy level alignment. Chem. Eng. J. 2023, 453, 139952. [Google Scholar]
- Ghizzo, L.; Tremouilles, D.; Richardeau, F.; Vinnac, S.; Moreau, L.; Mauran, N. Preconditioning of p-GaN power HEMT for reproducible Vth measurements. Microelectron. Reliab. 2023, 144, 114955. [Google Scholar]
- Wei, Y.; Cheng, Z.; Jun, L. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews 2019, 48, 310. [Google Scholar]
- Krotkus, A. Semiconductors for terahertz photonics applications. J. Phys. D Appl. Phys. 2010, 43, 273001. [Google Scholar]
- Aithal, S.; Nazem, E.; Hassen, W.M.; Frost, E.; Duwowski, H. GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coliinphosphate buffered saline solution. Sens. Actuators B Chem. 2015, 207 A, 556. [Google Scholar]
- Neuhold, I.; Noga, P.; Sojak, S.; Petriska, M.; Degmova, M.; Slugen, J.; Krsiak, V. Application of Proton Irradiation in the Study of Accelerated Radiation Ageing in a GAAs semiconductor. Materials 2023, 16, 1089. [Google Scholar]
- Rajput, N.S.; Kotbi, A.; Kaja, K.; Jouiad, M. Long-term aging of CVD grown 2D-MoS2 nanosheets in ambient environment. Mater. Degrad. 2022, 6, 75. [Google Scholar]
- Yoon, S.; Seo, M.; Kim, I.S.; Kwangyeol, L.; Woo, K. Ultra-Stable and Highly Efficient White Light Emitting Diodes through CsPbBr3 Perovskite nanocrystals Silica Composite Phosphor Functionalized with Surface Phenyl Molecules. Small 2023, 19, 2206311. [Google Scholar]
- Yang, X.; Sang, Q.; Zhang, J.; Wang, C.; Yu, M.; Zhao, Y. A high-efficiency aging test with new data processing method for semiconductor device. Microelectron. Reliab. 2023, 143, 114940. [Google Scholar] [CrossRef]
- Torres, G. Crecimiento y Caracterización de Películas Epitaxiales de GaAs y AlGaAS Crecidas por Epitaxia en Fase Líquida; Centro de Investigación y Estudios Avanzados del IPN: México DF, Mexico, 1995. [Google Scholar]
- Bourgoin, J.C.; Von Bardeleben, H.J.; Stiévenard, D. Native defects in gallium arsenide. J. Appl. Phys. 1988, 64, R65–R92. [Google Scholar]
- Fonthal, G. Estudio de la Impurificación de Capas Epitaxiales de GaAs y AlGaAs en el Rango de Leve Hasta Fuerte Dopaje por Medio de Fotoluminiscencia y Fotorreflectancia; Universidad del Valle: Cali, CA, USA, 2001. [Google Scholar]
- Pavezzi, L.; Guzzi, M. Photoluminescence of AlxGa1-xAs alloys. J. Appl. Phys. 1994, 75, 4779. [Google Scholar]
- Sermage, B.; Long, S.; Deveaud, B.; Katzer, D. Lifetime of excitons in GaAs quantum well. J. Phys. Proc. 1993, C5, 19–25. [Google Scholar]
- Vashitsha, N.; Kumar, M.; Singh, R.K.; Panda, D.; Tyagi, L.; Chakrabarti, S. A Comprehensive study of ultrafast carrier dynamics of LT-GaAs: Above and below bandgap regions. Phys. B Condens. Matter 2021, 602, 412441. [Google Scholar]
- Oh, E.; Lee, T.K.; Park, J.H.; Choi, J.H.; Park, Y.J.; Shin, K.H.; Kim, K.Y. Carrier lifetime and spin relaxation time study for electrical spin injection into GaAs. J. Appl. Phys. 2009, 106, 043515. [Google Scholar] [CrossRef]
- Elsayed, M.; Krause-Rehberg, R. As-vacancy complex in Zn-diffused GaAs: Positron lifetime spectroscopy study. Scr. Mater. 2017, 131, 72–75. [Google Scholar]
- Niemeyer, M.; Kleinschmidt, P.; Walker, A.W.; Mundt, L.E.; Timm, C.; Lang, R.; Hannappel, T.; Lackner, D. Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs. AIP Adv. 2019, 9, 45034. [Google Scholar] [CrossRef]
- De Lyon, T.J.; Woodall, J.M.; Goorsky, M.S.; Kirchner, P.D. Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy. Appl. Phys. Lett. 1990, 56, 1040–1042. [Google Scholar] [CrossRef]
- Pietsch, U.; Holy, V.; Baumbach, T. Lattice Parameters and Strains in Epitaxial Layers and Multilayers. In High-Resolution X-ray Scattering, Advanced Texts in Physics; Springer: New York, NY, USA, 2004; Volume 79, pp. 1971–1977. [Google Scholar]
- Qadri, S.B.; Yousuf, M.; Kendziora, C.A.; Nachumi, B.; Fischer, R.; Grun, J.; Rao, M.V.; Tucker, J.; Siddiqui, S.; Ridway, M.C. Structural modifications of silicon-implanted GaAs induced by the athermal annealing technique. Appl. Phys. A 2004, 79, 1971–1977. [Google Scholar] [CrossRef]
- Bhunia, S.; Uchida, K.; Nozaki, S.; Sugiyama, N.; Furiya, M.; Morisaki, H. Metal organic vapor phase epitaxial growth of heavily carbon-doped GaAs using a dopant source of CCl3Br and quantitative analysis of the compensation mechanism in the epilayers. J. Appl. Phys. 2003, 93, 1613–1619. [Google Scholar] [CrossRef]
- Lanyi, S.; Pincik, E.; Nadazdy, V.; Wolcyrz, M. Lattice strain and defect structure of GaAs/native oxide interfaces. Prog. Surf. Sci. 1990, 35, 201–204. [Google Scholar] [CrossRef]
- Williams, E.W.; Bebb, B. Photoluminescence II: Gallium Arsenide. Semicond. Semimetals 1972, 8, 321–392. [Google Scholar]
- Ky, N.H.; Reinhart, F. Amphoteric native defect reactions in Si-doped GaAs. J. Appl. Phys. 1998, 83, 718. [Google Scholar] [CrossRef]
- Birey, H.; Sites, J. Radiative transitions induced in gallium arsenide by modest heat treatment. J. Appl. Phys. 1980, 51, 619. [Google Scholar] [CrossRef]
- Lum, W.Y.; Wieder, H.H. Photoluminescence of thermally treated n-type Si-doped GaAs. J. Appl. Phys. 1978, 49, 6187. [Google Scholar] [CrossRef]
- Bunea, M.M.; Dunham, S.T. Monte Carlo study of vacancy mediated impurity diffusion in silicon. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 2000, 61, 2397. [Google Scholar] [CrossRef]
- Xu, H.; Lindefeltt, U. Electronic structure of neutral and charged vacancies in GaAs. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 1990, 41, 5976–5990. [Google Scholar] [CrossRef] [PubMed]
- Ablekim, J.T.; Swain, S.K.; Yin, W.-J.; Zaunbrecher, K.; Burst, J.; Barnes, T.M.; Kuciauskas, D.; Wei, S.-H.; Lynn, K.G. Self-compensation in arsenic doping of CdTe. Nat. Sci. Rep. 2017, 7, 4563. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, D.; Kordatos, A.; Filippatos, P.P.; Chroneos, A. Diffusion in energy materials: Governing dynamics from atomistic modelling. Appl. Phys. Rev. 2017, 4, 031305. [Google Scholar] [CrossRef]
- Naddaf, M. Formation of superhydrophobic porous GaAs layer: Effect of substrate doping type. Bull. Mater. Sci. 2022, 45, 89. [Google Scholar] [CrossRef]
- Pulzara-Mora, C.A.; Doria-Andrade, J.; Pulzara-Mora, A.; Bernal-Correa, R.; Rosales-Rivera, A.; López-López, M. Caracterización de capas de GaAs y GaAsMn depositadas por magnetrón sputtering. Superf. Vacío 2016, 29, 98–104. [Google Scholar]
- Sekine, T.; Uchinokura, K.; Matsuura, E. Two-phonon Raman scattering in GaAs. J. Phys. Chem. Solids 1977, 38, 1091–1096. [Google Scholar] [CrossRef]
- Jiang, D.-S.; Li, X.-P.; Sun, B.-Q.; Han, H.-x. A Raman scattering study of GaAs: As films lifted off GaAs substrate. J. Phys. D Appl. Phys. 1999, 32, 629–631. [Google Scholar] [CrossRef]
- Spirkoska, D.; Abstreiter, G.; Fontcuberta i Morral, A. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy. Nanotechnology 2008, 19, 435704. [Google Scholar] [CrossRef]
- Kumaria, R.; Sahaib, A.; Goswani, N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci. Mater. Int. 2015, 25, 300–309. [Google Scholar] [CrossRef]
- Espinoza, V.E. Estudo por Espectroscopia Raman de Efeitos de Localização das Excitações Elementares em Superredes e em Ligas Dopadas; Universidade Federal de São Carlos: São Carlos, Brazil, 2005. [Google Scholar]
SAMPLE | t1 | A1% | t2 | A2% |
---|---|---|---|---|
GaAs undoped | 0.80 (±0.10) | 14 | 7.18 (±0.33) | 86 |
GaAs:Ge | 1.74 (±0.16) | 39 | 8.26 (±1.50) | 61 |
GaAs:Sn | 1.71 (±0.13) | 41 | 8.60 (±1.50) | 59 |
GaAs:Ge | 1.67 (±0.10) | 44 | 9.56 (±1.89) | 56 |
GaAs:Sn | 1.47 (±0.04) | 45 | 9.76 (±2.11) | 55 |
GaAs:Ge | 1.86 (±0.14) | 61 | 9.10 (±2.16) | 39 |
SAMPLE | a (Å) | D (m) | |
---|---|---|---|
GaAs undoped | 5.6528 | 0.27 | 0.130 |
GaAs:Ge | 5.6498 | 0.67 | 0.141 |
GaAs:Sn | 5.6478 | 1.26 | 0.134 |
GaAs:Ge | 5.6472 | 1.48 | 0.188 |
GaAs:Sn | 5.6431 | 2.01 | 0.182 |
Vacancies with Its State of Charge | Trap Energy in eV |
---|---|
0.100 | |
0.068 | |
0.051 | |
0.145 | |
0.088 | |
0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambrano-Rojas, S.; Fonthal, G.; Escorcia-Salas, G.E.; Sierra-Ortega, J. Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs. Materials 2024, 17, 1399. https://doi.org/10.3390/ma17061399
Zambrano-Rojas S, Fonthal G, Escorcia-Salas GE, Sierra-Ortega J. Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs. Materials. 2024; 17(6):1399. https://doi.org/10.3390/ma17061399
Chicago/Turabian StyleZambrano-Rojas, Samuel, Gerardo Fonthal, Gene Elizabeth Escorcia-Salas, and José Sierra-Ortega. 2024. "Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs" Materials 17, no. 6: 1399. https://doi.org/10.3390/ma17061399
APA StyleZambrano-Rojas, S., Fonthal, G., Escorcia-Salas, G. E., & Sierra-Ortega, J. (2024). Formation of Point Defects Due to Aging under Natural Conditions of Doped GaAs. Materials, 17(6), 1399. https://doi.org/10.3390/ma17061399