Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,815)

Search Parameters:
Keywords = distributed production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1766 KB  
Article
Genome-Wide Identification of the Dendrocalamus latiflorus IDD Gene Family and Its Functional Role in Bamboo Shoot Development
by Yu-Han Lin, Peng-Kai Zhu, Mei-Yin Zeng, Xin-Ru Gao, Tian-You He, Jun-Dong Rong, Yu-Shan Zheng and Ling-Yan Chen
Genes 2025, 16(9), 1036; https://doi.org/10.3390/genes16091036 (registering DOI) - 30 Aug 2025
Abstract
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo [...] Read more.
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo in southern China, suffers significant yield losses due to prevalent bamboo shoot abortion, impacting both edible shoot production and timber output. Despite the documented roles of IDD TFs in shoot apical meristem expression and lateral organ regulation, their genome-wide characterization in D. latiflorus remains unstudied. Methods: Using IDD members from Arabidopsis thaliana, Oryza sativa, and Phyllostachys edulis as references, we identified 45 DlIDD genes in D. latiflorus. Comprehensive bioinformatics analyses included gene characterization, protein physicochemical assessment, phylogenetic reconstruction, and examination of gene structures/conserved domains. Differential expression of DlIDD genes was profiled between dormant and sprouting bamboo shoots to infer putative functions. Results: The 45 DlIDD genes were phylogenetically classified into three subfamilies and unevenly distributed across 34 chromosomes. Whole-genome duplication (WGD) events drove the expansion of this gene family. Promoter analyses revealed enriched cis-regulatory elements associated with hormone response and developmental regulation. Functional analyses suggested potential roles for DlIDD genes in bamboo shoot development. Conclusions: This study provides a foundation for future research to elucidate the functions of IDD TFs and their regulatory mechanisms in bamboo shoot morphogenesis and lateral bud development within woody monocots. Full article
46 pages, 7272 KB  
Article
Prediction Models for Nitrogen Content in Metal at Various Stages of the Basic Oxygen Furnace Steelmaking Process
by Jaroslav Demeter, Branislav Buľko, Peter Demeter and Martina Hrubovčáková
Appl. Sci. 2025, 15(17), 9561; https://doi.org/10.3390/app15179561 (registering DOI) - 30 Aug 2025
Abstract
Controlling dissolved nitrogen is critical to meeting increasingly stringent steel quality targets, yet the variable kinetics of gas absorption and removal across production stages complicate real-time decision-making. Leveraging a total of 291 metal samples, the research applied ordinary least squares (OLS) regression, enhanced [...] Read more.
Controlling dissolved nitrogen is critical to meeting increasingly stringent steel quality targets, yet the variable kinetics of gas absorption and removal across production stages complicate real-time decision-making. Leveraging a total of 291 metal samples, the research applied ordinary least squares (OLS) regression, enhanced by cointegration diagnostics, to develop four stage-specific models covering pig iron after desulfurization, crude steel in the basic oxygen furnace (BOF) before tapping, steel at the beginning and end of secondary metallurgy processing. Predictor selection combined thermodynamic reasoning and correlation analysis to produce prediction equations that passed heteroscedasticity, normality, autocorrelation, collinearity, and graphical residual distribution tests. The k-fold cross-validation method was also used to evaluate models’ performance. The models achieved an adequate accuracy of 77.23–83.46% for their respective stages. These findings demonstrate that statistically robust and physically interpretable regressions can capture the complex interplay between kinetics and the various processes that govern nitrogen pick-up and removal. All data are from U. S. Steel Košice, Slovakia; thus, the models capture specific setup, raw materials, and production practices. After adaptation within the knowledge transfer, implementing these models in process control systems could enable proactive parameter optimization and reduce laboratory delays, ultimately minimizing excessive nitrogenation in finished steel. Full article
(This article belongs to the Special Issue Digital Technologies Enabling Modern Industries)
Show Figures

Figure 1

23 pages, 10645 KB  
Article
Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel
by Liqiang Xue, Xiangyu Li, Tao Wang, Qi Zhao, Haozheng Wang, Jia Wang, Wanming Lin, Xiaofeng Niu, Wangzhong Mu and Chao Chen
Crystals 2025, 15(9), 779; https://doi.org/10.3390/cryst15090779 (registering DOI) - 30 Aug 2025
Abstract
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon [...] Read more.
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon alloy in Ruhrstahl-Heraeus (RH) unit, different pouring time in tundish, and continuous casting slab. This study systematically examined the morphology, composition, and size distribution of inclusions throughout the smelting process of non-oriented silicon steel by scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS), and thermodynamic analysis at liquid steel temperature and thermodynamic analysis of equilibrium solidification. The research results demonstrated that the rare earth treatment ultimately modifies the original Al2O3 inclusions in the non-oriented silicon steel into REAlO3 and RE2O2S inclusions, while also aggregating AlN inclusions to form composite inclusions. After rare earth modification, the average size of the inclusions decreases. In the RH treatment process, the inclusions before the addition of rare earth ferrosilicon alloy are mainly AlN and Al2O3. After the addition of rare earth ferrosilicon alloy, the inclusions are mainly RES and REAlO3. In the tundish and continuous casting, the rare earth content decreased, and the rare earth inclusions transform into RE2O2S and REAlO3. For the size of inclusions, after adding rare earth ferrosilicon alloy, the average size of inclusions rapidly decreased from 16.15 μm to 2.65 μm and reach its minimum size 2.16 μm at the end of RH treatment. When the molten steel entered the tundish, the average size of inclusions increased slightly and gradually decreased with the progress of pouring. The average size of inclusions in the slab is 5.79 μm. Phase stability diagram calculation indicates the most stable rare earth inclusion is Ce2O2S in molten steel. Thermodynamic calculations indicated that Al2O3, Ce2O2S, Ce2S3, AlN, and MnS precipitate sequentially during the equilibrium solidification process of molten steel. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

23 pages, 2965 KB  
Review
Research Progress on the Pyrolysis Characteristics of Oil Shale in Laboratory Experiments
by Xiaolei Liu, Ruiyang Yi, Dandi Zhao, Wanyu Luo, Ling Huang, Jianzheng Su and Jingyi Zhu
Processes 2025, 13(9), 2787; https://doi.org/10.3390/pr13092787 (registering DOI) - 30 Aug 2025
Abstract
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale [...] Read more.
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale into recoverable hydrocarbons, and a detailed understanding of its behavior is crucial for improving development efficiency. This review systematically summarizes the research progress on the pyrolysis characteristics of oil shale under laboratory conditions. It focuses on the applications of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in identifying pyrolysis stages, extracting kinetic parameters, and analyzing thermal effects; the role of coupled spectroscopic techniques (e.g., TG-FTIR, TG-MS) in elucidating the evolution of gaseous products; and the effects of key parameters such as pyrolysis temperature, heating rate, particle size, and reaction atmosphere on product distribution and yield. Furthermore, the mechanisms and effects of three distinct heating strategies—conventional heating, microwave heating, and autothermic pyrolysis—are compared, and the influence of inherent minerals and external catalysts on reaction pathways is discussed. Despite significant advances, challenges remain in quantitatively describing reaction mechanisms, accurately predicting product yields, and generalizing kinetic models. Future research should integrate multiscale experiments, in situ characterization, and molecular simulations to construct pyrolysis mechanism models tailored to various oil shale types, thereby providing theoretical support for the development of efficient and environmentally friendly oil shale conversion technologies. Full article
(This article belongs to the Section Energy Systems)
28 pages, 13450 KB  
Article
Molecular and Morphological Analyses for Delimiting Species Boundaries: The Case of Sclerodermus cereicollis Kieffer, 1904 (Hymenoptera: Bethylidae)
by Paolo Masini, Gianandrea Salerno, Manuela Rebora, Daniela Lupi, Wesley D. Colombo and Celso O. Azevedo
Diversity 2025, 17(9), 611; https://doi.org/10.3390/d17090611 (registering DOI) - 30 Aug 2025
Abstract
The genus Sclerodermus Latreille (Hymenoptera: Bethylidae) comprises over 80 species of ectoparasitoids of insect pests in forests, agricultural environments, and stored products with a cosmopolitan distribution. Despite its growing significance in biological control, behavioral ecology, and public health, the taxonomy of the genus [...] Read more.
The genus Sclerodermus Latreille (Hymenoptera: Bethylidae) comprises over 80 species of ectoparasitoids of insect pests in forests, agricultural environments, and stored products with a cosmopolitan distribution. Despite its growing significance in biological control, behavioral ecology, and public health, the taxonomy of the genus remains poorly resolved. This is largely due to morphological reduction and simplification among species, outdated or incomplete original descriptions, and limited access to type material. A particularly problematic case is Sclerodermus cereicollis Kieffer, originally described from two geographically disjunct populations: Giglio Island (Italy, Palaearctic) and Annobón Island (Equatorial Guinea, Afrotropical). The syntype series includes morphologically divergent specimens, casting doubt on their conspecificity. In this study, we redescribe S. cereicollis based on both the original syntypes and newly collected material from Italy. A lectotype is designated to stabilize the nomenclature, and we provide the first molecular data for the species to assess genetic cohesion among populations. Comparative morphological and molecular analyses reveal that the Afrotropical syntypes represent a distinct, previously undescribed species. Accordingly, we describe Sclerodermus annobonensis Masini, Colombo & Azevedo sp. nov., designating a holotype. This study refines species boundaries within Sclerodermus and highlights the value of integrative taxonomy, combining historical and contemporary data, in resolving persistent systematic ambiguities in morphologically conservative taxa. Full article
(This article belongs to the Special Issue Insect Diversity: Morphology, Paleontology, and Biogeography)
Show Figures

Figure 1

19 pages, 1002 KB  
Article
Differential Modulation of Cancer Cell Proliferation by Fermented Plant-Based Beverages: A Comparative Study of Tiger Nut, Carob and Rice Beverages in Colorectal Adenocarcinoma Cells
by Matteo Vitali, Mussa Makran, Mónica Gandía, Antonio Cilla and Amparo Gamero
Foods 2025, 14(17), 3072; https://doi.org/10.3390/foods14173072 (registering DOI) - 30 Aug 2025
Abstract
Fermentation represents a sustainable biotechnological approach for enhancing bioactive properties of plant-based foods, yet its anticancer effects remain underexplored. We evaluated the antiproliferative activity of fermented (with commercial probiotic lactic acid bacteria consortium) and unfermented plant-based beverages derived from tiger nut, carob, and [...] Read more.
Fermentation represents a sustainable biotechnological approach for enhancing bioactive properties of plant-based foods, yet its anticancer effects remain underexplored. We evaluated the antiproliferative activity of fermented (with commercial probiotic lactic acid bacteria consortium) and unfermented plant-based beverages derived from tiger nut, carob, and rice using an in vitro model. Following INFOGEST 2.0 gastrointestinal digestion, bioaccessible fractions were applied to Caco-2 colorectal adenocarcinoma cells at 1:15 v/v dilution for 24 h. Analyses included cell viability, apoptosis detection, cell cycle distribution, reactive oxygen species production, glutathione content, mitochondrial membrane potential, and intracellular calcium levels. Fermented tiger nut achieved superior (p < 0.05) cytotoxicity compared to unfermented counterpart (39.6% vs. 77.4% cell viability) through dual mechanisms: depleting cellular antioxidant defenses (glutathione reduced to 55.9%) while inducing oxidative stress (180.3% ROS overproduction). This evoked irreversible apoptosis (76.9% early apoptosis) and extensive DNA fragmentation (84.8% SubG1 population) via calcium-independent pathways. Fermented carob operated through cytostatic mechanisms, inducing G0/G1 cell cycle arrest (74.7% vs. 44.2% in blank digestion cells) without oxidative stress. Fermentation reduced (p < 0.05) rice beverage antiproliferative activity (90.2% vs. 71.9% unfermented beverage cell viability). These findings establish lactic acid fermentation as effective for developing plant-based beverages with anticancer mechanisms, offering dietary strategies for colorectal cancer prevention. Full article
(This article belongs to the Special Issue Advances in Biological Activities of Functional Food (3rd Edition))
Show Figures

Figure 1

20 pages, 2086 KB  
Article
Integrated Assessment of Near-Surface Ozone Impacts on Rice Yield and Sustainable Cropping Strategies in Pearl River Delta (2015–2023)
by Xiaodong Hu, Danyang Cao, Junjie Li, Wei Sun, Ziyong Guo, Ming Xu and Jia’en Zhang
Agriculture 2025, 15(17), 1851; https://doi.org/10.3390/agriculture15171851 (registering DOI) - 30 Aug 2025
Abstract
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches [...] Read more.
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches to assess O3-induced impacts on rice yields and associated economic losses across the PRD from 2015 to 2023. The results showed that annual average O3 concentrations during rice-growing periods increased from 41.3 to 66.0 μg/m3, with accumulated AOT40 values reaching 20.1 ppm·h. O3 exposure led to annual average rice yield losses of 10.8% ± 0.8%, including 9.3% for double-early rice and 12.3% for double-late rice. Absolute yield losses totaled approximately 333,000 tons per year, equivalent to the caloric needs of 2.69 million people, with economic losses exceeding CNY 844 million. Vulnerability hotspots were identified in Zhaoqing and Jiangmen, each suffering over 100,000 tons of annual losses. Scenario simulations indicated that a 20% reduction in ambient O3 could recover up to 54,700 tons annually. Future projections under RCP 2.6–8.5 suggested continued yield losses of 14,900 to 23,200 tons per year by 2050. Temporal adjustments to planting calendars may further mitigate these effects. This study highlights the urgent need for integrated mitigation strategies to enhance agricultural resilience in the face of ozone stress in industrialized delta regions. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

15 pages, 4977 KB  
Article
A Study on the Formation Water Retention State and Production Mechanism of Tight High-Water Saturation Reservoirs Based on Micro-Nanofluidic Experiments
by Zhanyang Zhang, Tiantian Dong, Jianbiao Wu, Hui Guo, Jianxin Lu, Junjie Zhong, Liang Zhou and Hai Sun
Energies 2025, 18(17), 4605; https://doi.org/10.3390/en18174605 (registering DOI) - 30 Aug 2025
Abstract
Tight sandstone gas is currently one of the largest unconventional oil and gas resources being developed. In actual reservoir development, the complex pore structure affects the distribution of residual gas and water during the displacement process. However, there is still a lack of [...] Read more.
Tight sandstone gas is currently one of the largest unconventional oil and gas resources being developed. In actual reservoir development, the complex pore structure affects the distribution of residual gas and water during the displacement process. However, there is still a lack of experimental research on the multi-scale visualization of pore structures in high-water-content tight gas reservoirs. Therefore, based on the porosity and permeability properties of reservoir cores and the micropore throat structural characteristics, this study designs and prepares three micro-physical models with different permeability ranges. Through micro-experiments and visualization techniques, the microscopic flow phenomena and gas–water distribution in the pore medium are observed. When the water–gas ratio exceeds 5, the produced water type is free water; when the water–gas ratio is between 2 and 5, the produced water type is weak capillary water; and when the water–gas ratio is less than 2, the produced water type is strong capillary water. The latter two types are collectively referred to as capillary water. In the Jin 30 well area, the main types of produced water are first free water, followed by capillary water, accounting for 58.5%. The experimental results of the micro-physical models with different permeability levels show that the production pattern of formation water varies due to differences in pore connectivity. In the low-permeability model, the high proportion of nano-pores and small pore throats requires a large pressure difference to mobilize capillary water, resulting in a higher proportion of residual water. Although the pores in the medium-permeability model are larger, the poor connectivity of nano-pores leads to local water phase retention. In the high-permeability model, micro-fractures and micropores are highly developed with good connectivity, allowing for rapid mobilization of multi-scale water phases under low pressure. The connectivity of nano-pores directly impacts the mobilization of formation water in micron-scale fractures, and poor pore connectivity significantly increases the difficulty of capillary water mobilization, thus changing the production mechanism of formation water at different scales. Full article
(This article belongs to the Topic Oil, Gas and Water Separation Research)
Show Figures

Figure 1

29 pages, 1840 KB  
Article
Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China
by Chengli Yan, Shunchang Zhong and Jiao Ren
Land 2025, 14(9), 1762; https://doi.org/10.3390/land14091762 - 29 Aug 2025
Abstract
Exploring the effects and mechanisms of spatial agglomeration of construction land resources on economic resilience across Chinese provinces will provide theoretical support for governments to optimize the allocation of productive forces and enhance economic resilience through rational distribution of construction land quotas. Based [...] Read more.
Exploring the effects and mechanisms of spatial agglomeration of construction land resources on economic resilience across Chinese provinces will provide theoretical support for governments to optimize the allocation of productive forces and enhance economic resilience through rational distribution of construction land quotas. Based on the “Structure-Conduct-Performance (SCP)” analytical framework, this paper identifies spatial agglomeration through the share of the largest city and draws on the microeconomic concept of “elasticity” that reflects the relationships between variables to construct economic resilience with spatial relationship attributes. On this basis, it utilizes China’s provincial panel data gathered since 2000 and employs fixed-effects models, mediation models, moderation models, quantile regression, and subsample regression to examine the impact mechanisms of the spatial agglomeration of construction land on economic resilience. The research finds the following: the spatial agglomeration of construction land has a positive empowering effect on economic resilience; innovation and technical efficiency are important transmission paths for the spatial agglomeration of construction land to empower economic resilience; and further research shows that the empowering effect has an inverted U-shaped process, with the promoting effect being predominant. The empowering effect increases with rising quantiles and exhibits regional heterogeneity, showing an ascending gradient from eastern to western regions. The basic law in the western region is consistent with that of the whole country, and the scale of provincial construction land will strengthen the empowering effect. The research findings can provide decision-making references for the implementation and deepening of the main functional area strategy, as well as for strengthening the concentrated allocation of construction land quotas to advantageous regions. Full article
73 pages, 3428 KB  
Review
Biomass Pyrolysis Pathways for Renewable Energy and Sustainable Resource Recovery: A Critical Review of Processes, Parameters, and Product Valorization
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Neluș-Evelin Gheorghiță and Mariana Ionescu
Sustainability 2025, 17(17), 7806; https://doi.org/10.3390/su17177806 - 29 Aug 2025
Abstract
The increasing demand for renewable energy has intensified research on lignocellulosic biomass pyrolysis as a versatile route for sustainable energy and resource recovery. This study provides a comparative overview of main pyrolysis regimes (slow, intermediate, fast, and flash), emphasizing operational [...] Read more.
The increasing demand for renewable energy has intensified research on lignocellulosic biomass pyrolysis as a versatile route for sustainable energy and resource recovery. This study provides a comparative overview of main pyrolysis regimes (slow, intermediate, fast, and flash), emphasizing operational parameters, typical product yields, and technological readiness levels (TRLs). Reactor configurations, including fixed-bed, fluidized-bed, rotary kiln, auger, and microwave-assisted systems, are analyzed in terms of design, advantages, limitations, and TRL status. Key process parameters, such as temperature, heating rate, vapor residence time, reaction atmosphere, and catalyst type, critically influence the yields and properties of biochar, bio-oil, and syngas. Increased temperatures and fast heating rates favor liquid and gas production, whereas lower temperatures and longer residence times enhance biochar yield and carbon content. CO2 and H2O atmospheres modify product distribution, with CO2 increasing gas formation and biochar surface area and steam enhancing bio-oil yield at the expense of solid carbon. Catalytic pyrolysis improves selectivity toward target products, though trade-offs exist between char and oil yields depending on feedstock and catalyst choice. These insights underscore the interdependent effects of process parameters and reactor design, highlighting opportunities for optimizing pyrolysis pathways for energy recovery, material valorization, and sustainable bioeconomy applications. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
20 pages, 9925 KB  
Article
Genome-Wide Identification and Characterization of Q-Type C2H2 Zinc Finger Proteins in Rapeseed (Brassica napus L.) and Their Expression Patterns Across Tissues and Under Abiotic Stress
by Yuanyuan Pu, Lijun Liu, Li Ma, Gang Yang, Wangtian Wang, Tingting Fan, Junyan Wu and Wancang Sun
Agronomy 2025, 15(9), 2085; https://doi.org/10.3390/agronomy15092085 - 29 Aug 2025
Abstract
Q-type C2H2 zinc finger protein (ZFP) transcription factors, a plant-specific subfamily of C2H2 ZFP, have been implicated in regulating abiotic stress responses, growth, and developmental processes in plants. Rapeseed (Brassica napus L.) is a crucial oil crop widely used for the production [...] Read more.
Q-type C2H2 zinc finger protein (ZFP) transcription factors, a plant-specific subfamily of C2H2 ZFP, have been implicated in regulating abiotic stress responses, growth, and developmental processes in plants. Rapeseed (Brassica napus L.) is a crucial oil crop widely used for the production of high-quality vegetable oil, animal feed, and biodiesel. Compared with studies on Q-type C2H2-ZFP genes in other plant species, systematic research has not been performed in B. napus. In this study, a comprehensive genome-wide analysis of Q-type C2H2-ZFPs in B. napus was conducted. A total of 216 Q-type C2H2-ZFP genes were identified, exhibiting extensive and uneven distribution across the 19 chromosomes. Phylogenetic analysis, based on homologs from Arabidopsis, classified these genes into eight distinct subfamilies, with each containing one to three conserved “QALGGH” motifs. Each subfamily exhibited similar motif compositions and gene structures. Evolutionary studies revealed that segmental duplication events played a crucial role in the expansion of the BnaQ-type C2H2-ZFP gene family. Expression pattern analysis in different tissues and under abiotic stress identified BnaA03g09250D, BnaC09g35160D, BnaC03g11570D, and BnaA10g25850D as candidate genes involved in the response to freezing stress. Overexpression of BnaC09g35160D provided preliminary evidence that it enhances freezing tolerance in plants. This comprehensive study of Q-type C2H2-ZFPs in B. napus will enhance our understanding of the BnaQ-type C2H2-ZFP gene family and provide valuable insights for further functional investigations of BnaC09g35160D. Full article
(This article belongs to the Special Issue Resistance-Related Gene Mining and Genetic Improvement in Crops)
14 pages, 1658 KB  
Article
Breed-Specific Genetic Recombination Analysis in South African Bonsmara and Nguni Cattle Using Genomic Data
by Nozipho A. Magagula, Bohani Mtileni, Keabetswe T. Ncube, Khulekani S. Khanyile and Avhashoni A. Zwane
Agriculture 2025, 15(17), 1846; https://doi.org/10.3390/agriculture15171846 - 29 Aug 2025
Abstract
South African cattle comprise diverse breeds with distinct evolutionary histories, potentially reflecting differences in recombination landscapes. This study assessed genome-wide recombination rates and hotspots in Bonsmara (n = 190) and Nguni (n = 119) cattle using three-generation half-sib pedigrees genotyped with the Illumina [...] Read more.
South African cattle comprise diverse breeds with distinct evolutionary histories, potentially reflecting differences in recombination landscapes. This study assessed genome-wide recombination rates and hotspots in Bonsmara (n = 190) and Nguni (n = 119) cattle using three-generation half-sib pedigrees genotyped with the Illumina Bovine SNP50 BeadChip. Phasing across 29 autosomes was conducted using SHAPEIT v2, and crossover events were inferred using the DuoHMM algorithm. The total number of crossover events detected was higher in Nguni (n = 8982) than in Bonsmara (n = 7462); however, the average recombination rate per 1 Mb window was significantly higher in Bonsmara (0.31) compared to Nguni (0.18) (p < 0.01). This apparent discrepancy reflects differences in genomic distribution and crossover clustering across breeds, rather than overall recombination frequency. A critical limitation of the study is the reliance on half-sib families with small family sizes, which may underestimate recombination rates due to limited meiotic sampling and increased variance in crossover detection. We identified 407 recombination hotspots in Bonsmara and 179 in Nguni, defined as intervals exceeding 2.5 standard deviations above the mean recombination rate. Genes such as PDE1B and FP which are associated with productions traits were located within hotspot-enriched regions. However, functional causality between these genes and local recombination activity remains unverified. Our results provide statistically supported evidence for breed-specific recombination patterns and hotspot distributions, underscoring the importance of incorporating recombination architecture into genetic improvement strategies for South African cattle. Full article
(This article belongs to the Special Issue Quantitative Genetics of Livestock Populations)
Show Figures

Figure 1

18 pages, 3584 KB  
Article
An Evaluation of Smallholder Irrigation Typology Performance in Limpopo Province: South Africa
by Ernest Malatsi, Gugulethu Zuma-Netshiukhwi, Sue Walker and Jan Willem Swanepoel
Sustainability 2025, 17(17), 7794; https://doi.org/10.3390/su17177794 - 29 Aug 2025
Abstract
Smallholder irrigation farmers play a vital role in sustaining rural communities in South Africa. However, the performance of smallholder irrigators, both as income generators and job creators, has come under scrutiny in recent years. In Limpopo province, a study was conducted in the [...] Read more.
Smallholder irrigation farmers play a vital role in sustaining rural communities in South Africa. However, the performance of smallholder irrigators, both as income generators and job creators, has come under scrutiny in recent years. In Limpopo province, a study was conducted in the Vhembe District using cross-sectional data from 95 independent and 165 public smallholder irrigators, which are privately established farmers and users of government-supported and managed irrigation systems, respectively. Qualitative data were collected through questionnaires, key informant interviews, and group discussions. Quantitative data were analyzed by SPSS version 30 using themes and codes, employing inferential statistical methods such as chi-square and t-tests to assess variables related to agrifood systems, crop selection, and market access. The study found that smallholders predominantly favor the production of grains, vegetables, and horticultural crops, with a statistically significant (p < 0.05) similarity between independent and public irrigators. Public irrigators dominate within irrigation schemes at 64% of the total, with X2 of 22.7 with 0.001 p-value. Amongst the groups, the income distribution shows a statistically significant difference in earnings between independent and public irrigators (χ2 = 25.83, p < 0.001). Informal and formal markets are accessible and available to 59% of independent irrigators, but 30% of public irrigators only access the informal market (p < 0.001). The major identified challenge across all smallholders is the lack of food value addition and commercial packaging. The study recommends the development of food value addition initiatives, adoption of climate-smart practices, maintenance of infrastructure, and improvement of market access to enhance productivity and sustainability. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

15 pages, 1474 KB  
Article
Multiscale Structural Engineering of Cellulose Foams: Performance Characterization and Fiber Imaging
by Patricija Pevec, Urška Kavčič, Aleš Hladnik and Diana Gregor-Svetec
Polymers 2025, 17(17), 2355; https://doi.org/10.3390/polym17172355 - 29 Aug 2025
Abstract
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection [...] Read more.
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection from environmental and mechanical damage, besides having good processability to ensure proper buffering. The widely used protective and cushioning materials, such as plastic foams and expanded or extruded polystyrene, create significant disposal challenges. Therefore, there is increasing demand for biodegradable and sustainable materials for cushioning applications. The focus of our research was to develop fiber-based foams and investigate the influence of different compositions (hardwood and softwood) of cellulose fibers on the basic (mass, thickness, density) and mechanical properties (three-point bend test, tensile properties). Foams made entirely from short eucalyptus fibers (100S) exhibited the highest density (28.0 ± 0.34 kg/m3) and lowest thickness (38.82 ± 4.21 mm), resulting in superior tensile strength and elastic modulus but lower strain at break. In contrast, foams composed of long spruce fibers (100L) had the lowest density (19.0 ± 0.27 kg/m3) and highest thickness (58.52 ± 1.50 mm), with lower strength and stiffness but much higher ductility and porosity (confirmed by ~30% higher air permeability compared to 100S). Blended formulations demonstrated intermediate behavior, with the 50S50L foam showing a favorable balance of strength, stiffness, and flexibility. Visual analysis confirmed heterogeneous fiber distribution with localized agglomerates and compaction at the bottom layer due to casting. To further interpret the complex relationships within the dataset and uncover patterns, Principal Component Analysis (PCA) was applied to all experimental results. The findings of the research contribute to the broader understanding of how different fiber types and blends impact the performance of sustainable cellulose-based foams, with potential implications for the development of biodegradable packaging and lightweight construction materials. Full article
40 pages, 2044 KB  
Article
Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries
by César R. Balcázar-Zumaeta, Jorge L. Maicelo-Quintana, Gilson C. A. Chagas Junior, Nelson Rosa Ferreira, Wandson Braamcamp de Souza Pinheiro, Luis Nelson Cardoso e-C. Filho, Alberdan Silva Santos, Angel F. Iliquin-Chávez, Pedro García-Alamilla, Ilse S. Cayo-Colca and Efraín M. Castro-Alayo
Fermentation 2025, 11(9), 507; https://doi.org/10.3390/fermentation11090507 - 29 Aug 2025
Abstract
This study characterized the physicochemical properties of cocoa butter (CB) extracted from cocoa beans of the Criollo Nativo (Peru), Criollo (Mexico), and Forastero (Brazil) varieties subjected to spontaneous fermentation under traditional local conditions in each country. Cocoa samples were collected at 24-h intervals, [...] Read more.
This study characterized the physicochemical properties of cocoa butter (CB) extracted from cocoa beans of the Criollo Nativo (Peru), Criollo (Mexico), and Forastero (Brazil) varieties subjected to spontaneous fermentation under traditional local conditions in each country. Cocoa samples were collected at 24-h intervals, and CB was extracted to evaluate its lipid composition through fatty acid profiling and spectroscopic techniques (FT-IR and NMR). Also, the thermal and structural properties via differential scanning calorimetry (DSC), including melting and crystallization profiles, crystallization kinetics, and polymorphism, were determined. The results revealed that stearic, oleic, and palmitic acids were predominant in all varieties, while trace levels of myristic and pentadecanoic acids contributed to molecular packing. FT-IR identified bands associated with glycerol chain formation in TAGs, which were confirmed by NMR through chemical shifts linked to the distribution of POS, SOS, and POP species. CB exhibited melting temperatures between 19.6 and 20.5 °C, favoring polymorphic transitions toward more stable forms. Form I (γ) predominated during early fermentation, while Forms II (α) and III (β′2) were subsequently identified, particularly in Criollo varieties. These findings demonstrate that fermentation time significantly influences the chemical composition, oxidative stability, and crystalline structure of CB, providing valuable insights for optimizing cocoa processing and the development of high-quality chocolate products. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Back to TopTop