Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = disruptive phenomena

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 705 KiB  
Article
Port Power and Trade Flows: Evaluating China’s Infrastructure Leverage in EU Markets Through a Gravity Model
by Alexandros Gkatsikos
Economies 2025, 13(8), 210; https://doi.org/10.3390/economies13080210 - 22 Jul 2025
Viewed by 384
Abstract
This study investigates how Chinese ownership in European ports affects trade flows between China and Eurozone countries, set against the backdrop of recent global economic disruptions that have emphasized the crucial role of maritime trade and port efficiency. An augmented gravity model was [...] Read more.
This study investigates how Chinese ownership in European ports affects trade flows between China and Eurozone countries, set against the backdrop of recent global economic disruptions that have emphasized the crucial role of maritime trade and port efficiency. An augmented gravity model was employed, using the Poisson pseudo-maximum likelihood (PPML), fixed effects (FE), and random effects (RE) estimators, to analyze trade data from 2001 to 2023. The analysis shows that, while conventional economic factors like GDP per capita and the Logistics Performance Index (LPI) consistently and significantly drive trade, Chinese port ownership surprisingly exhibits a negative or statistically insignificant impact on both Chinese exports to the EU and EU imports from China. This suggests that these acquisitions may not primarily boost overall bilateral trade but rather consolidate existing routes or serve broader strategic objectives, as evidenced by heterogeneous country-specific effects and phenomena like the “Rotterdam effect”. Ultimately, my findings underscore the paramount importance of logistical efficiency over ownership structure in facilitating trade. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

17 pages, 10557 KiB  
Article
Formation of an Amyloid-like Structure During In Vitro Interaction of Titin and Myosin-Binding Protein C
by Tatiana A. Uryupina, Liya G. Bobyleva, Nikita V. Penkov, Maria A. Timchenko, Azat G. Gabdulkhakov, Anna V. Glyakina, Vadim V. Rogachevsky, Alexey K. Surin, Oxana V. Galzitskaya, Ivan M. Vikhlyantsev and Alexander G. Bobylev
Int. J. Mol. Sci. 2025, 26(14), 6910; https://doi.org/10.3390/ijms26146910 - 18 Jul 2025
Viewed by 233
Abstract
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing [...] Read more.
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing treatment strategies for diseases associated with protein aggregation, including sarcopenia, as well as for the treatment of pathological processes associated with the disruption of functional protein complexes. This work, using a set of methods such as atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction, as well as bioinformatics analysis, investigated the structures of complexes formed by titin and myosin-binding protein C (MyBP-C). TEM revealed the formation of morphologically ordered aggregates in the form of beads during co-incubation of titin and MyBP-C under close-to-physiological conditions (175 mM KCl, pH 7.0). AFM showed the formation of a relatively homogeneous film with local areas of relief change. Fluorimetry with thioflavin T, as well as FTIR spectroscopy, revealed signs of an amyloid-like structure, including a signal in the cross-β region. X-ray diffraction showed the presence of a cross-β structure characteristic of amyloid aggregates. Such structural features were not observed in the control samples of the investigated proteins separately. In sarcomeres, these proteins are associated with each other, and this interaction plays a partial role in the formation of a strong sarcomeric cytoskeleton. We found that under physiological ionic-strength conditions titin and MyBP-C form complexes in which an amyloid-like structure is present. The possible functional significance of amyloid-like aggregation of these proteins in muscle cells in vivo is discussed. Full article
Show Figures

Figure 1

26 pages, 4845 KiB  
Article
Modeling and Testing of a Phasor Measurement Unit Under Normal and Abnormal Conditions Using Real-Time Simulator
by Obed Muhayimana, Petr Toman, Ali Aljazaeri, Jean Claude Uwamahoro, Abir Lahmer, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(14), 3624; https://doi.org/10.3390/en18143624 - 9 Jul 2025
Viewed by 338
Abstract
Abnormal operations, such as faults occurring in an electrical power system (EPS), disrupt its balanced operation, posing potential hazards to human lives and the system’s equipment. Effective monitoring, control, protection, and coordination are essential to mitigate these risks. The complexity of these processes [...] Read more.
Abnormal operations, such as faults occurring in an electrical power system (EPS), disrupt its balanced operation, posing potential hazards to human lives and the system’s equipment. Effective monitoring, control, protection, and coordination are essential to mitigate these risks. The complexity of these processes is further compounded by the presence of intermittent distributed energy resources (DERs) in active distribution networks (ADNs) with bidirectional power flow, which introduces a fast-changing dynamic aspect to the system. The deployment of phasor measurement units (PMUs) within the EPS as highly responsive equipment can play a pivotal role in addressing these challenges, enhancing the system’s resilience and reliability. However, synchrophasor measurement-based studies and analyses of power system phenomena may be hindered by the absence of PMU blocks in certain simulation tools, such as PSCAD, or by the existing PMU block in Matlab/Simulink R2021b, which exhibit technical limitations. These limitations include providing only the positive sequence component of the measurements and lacking information about individual phases, rendering them unsuitable for certain measurements, including unbalanced and non-symmetrical fault operations. This study proposes a new reliable PMU model in Matlab and tests it under normal and abnormal conditions, applying real-time simulation and controller-hardware-in-the-loop (CHIL) techniques. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

15 pages, 577 KiB  
Article
The Influence of Judgments of Learning on Collaborative Memory for Items and Sequences
by Xiaochun Luo, Qian Xiao and Weihai Tang
Behav. Sci. 2025, 15(7), 905; https://doi.org/10.3390/bs15070905 - 3 Jul 2025
Viewed by 280
Abstract
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential [...] Read more.
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential memory where memory for temporal relationships between items is required. If JOLs do enhance item memory performance, the study predicts they may effectively eliminate collaborative inhibition through a compensatory enhancement mechanism. Specifically, the magnitude of JOL-induced memory improvement appears to be greater in collaborative groups than in nominal groups. This differential enhancement likely offsets the typical memory impairment caused by collaborative retrieval interference, resulting in statistically equivalent final performance between groups. Consequently, the collaborative inhibition effect may disappear under JOL conditions. This study employed a 2 (group: collaborative vs. nominal; between-subjects) × 2 (metamemory monitoring: with vs. without judgments of learning; within-subjects) × 2 (test type: recognition vs. sequential reconstruction; within-subjects) mixed factorial design. The findings indicated that making judgments of learning significantly enhanced item memory performance while having no noticeable effect on sequential memory. It suggests that the reactivity effect is only present in item memory. Additionally, it was found that both item recognition and sequential memory performance were lower in the collaborative group compared with the nominal group, highlighting the presence of collaborative inhibition. These results suggest that the reactivity effect and collaborative inhibition are two distinct memory phenomena that do not affect each other. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

35 pages, 5144 KiB  
Systematic Review
A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions
by Muhammad Syaukani, Szymon Lech, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(13), 3504; https://doi.org/10.3390/en18133504 - 2 Jul 2025
Cited by 1 | Viewed by 349
Abstract
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite [...] Read more.
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite their potential, widespread adoption is hindered by inherent challenges, particularly energy losses that reduce operational efficiency. This review systematically evaluates the current state of two-phase expansion technologies, focusing on the root causes, impacts, and mitigation strategies for expansion losses. This work used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Using the PRISMA framework, 52 relevant publications were identified from Scopus and Web of Science to conduct the systematic review. A preliminary co-occurrence analysis of keywords was also conducted using VOSviewer version 1.6.20. Three clusters were observed in this co-occurrence analysis. However, the results may not be significant. Therefore, the extended work was done through a comprehensive analysis of experimental and simulation studies from the literature. This study identifies critical loss mechanisms in key components of two-phase expanders, such as the nozzle, diffuser, rotor, working chamber, and vaneless space. Also, losses arising from wetness, such as droplet formation, interfacial friction, and non-equilibrium phase transitions, are examined. These phenomena degrade performance by disrupting flow stability, increasing entropy generation, and causing mechanical erosion. Several losses in the turbine and volumetric expanders operating in two-phase conditions are reported. Ejectors, throttling valves, and flashing flow systems that exhibit similar challenges of losses are also discussed. This review discusses the mitigation and the strategy to minimize the two-phase expansion losses. The geometry of the inlet of the two-phase expanders plays an important role, which also needs improvement to minimize losses. The review highlights recent advancements in addressing these challenges and shows optimization opportunities for further research. Full article
(This article belongs to the Special Issue Design and Experimental Study of Organic Rankine Cycle System)
Show Figures

Figure 1

32 pages, 1553 KiB  
Article
A Fuzzy Logic Framework for Text-Based Incident Prioritization: Mathematical Modeling and Case Study Evaluation
by Arturo Peralta, José A. Olivas and Pedro Navarro-Illana
Mathematics 2025, 13(12), 2014; https://doi.org/10.3390/math13122014 - 18 Jun 2025
Viewed by 313
Abstract
Incident prioritization is a critical task in enterprise environments, where textual descriptions of service disruptions often contain vague or ambiguous language. Traditional machine learning models, while effective in rigid classification, struggle to interpret the linguistic uncertainty inherent in natural language reports. This paper [...] Read more.
Incident prioritization is a critical task in enterprise environments, where textual descriptions of service disruptions often contain vague or ambiguous language. Traditional machine learning models, while effective in rigid classification, struggle to interpret the linguistic uncertainty inherent in natural language reports. This paper proposes a fuzzy logic-based framework for incident categorization and prioritization, integrating natural language processing (NLP) with a formal system of fuzzy inference. The framework transforms semantic embeddings from incident reports into fuzzy sets, allowing incident severity and urgency to be represented as degrees of membership in multiple categories. A mathematical model based on Mamdani-type inference and triangular membership functions is developed to capture and process imprecise inputs. The proposed system is evaluated on a real-world dataset comprising 10,000 incident descriptions from a mid-sized technology enterprise. A comparative evaluation is conducted against two baseline models: a fine-tuned BERT classifier and a traditional support vector machine (SVM). Results show that the fuzzy logic approach achieves a 7.4% improvement in F1-score over BERT (92.1% vs. 85.7%) and a 12.5% improvement over SVM (92.1% vs. 79.6%) for medium-severity incidents, where linguistic ambiguity is most prevalent. Qualitative analysis from domain experts confirmed that the fuzzy model provided more interpretable and context-aware classifications, improving operator trust and alignment with human judgment. These findings suggest that fuzzy modeling offers a mathematically sound and operationally effective solution for managing uncertainty in text-based incident management, contributing to the broader understanding of mathematical modeling in enterprise-scale social phenomena. Full article
(This article belongs to the Special Issue Social Phenomena: Mathematical Modeling and Data Analysis)
Show Figures

Figure 1

32 pages, 5534 KiB  
Review
Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review
by Grzegorz Matyszczak, Albert Yedzikhanau, Christopher Jasiak, Natalia Bojko and Krzysztof Krawczyk
Catalysts 2025, 15(6), 591; https://doi.org/10.3390/catal15060591 - 14 Jun 2025
Viewed by 788
Abstract
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. [...] Read more.
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. 10 nm. Due to the quantum confinement effect, quantum dots exhibit extraordinary electronic and optical properties and may be utilized in photocatalysis. Semiconducting quantum dots may absorb photons, which results in the excitation of electrons from valence to conducting bands. Excited electrons in the conducting band and positive holes in the valence band may interact with chemical molecules (e.g., with water molecules), forming highly reactive radicals. Consequently, quantum dots may be utilized in advanced oxidation processes based on the action of light (i.e., photo-based advanced oxidation processes). Furthermore, quantum dots have advantages, such as having a tunable energy band gap and relative cost-effectiveness. Advanced oxidation processes are very important in the context of the constantly increasing pollution of the natural environment. Contaminants of emerging concern, such as pesticides, endocrine-disrupting compounds, and flame retardants, are still being detected in naturally present water. Such compounds may be degraded using advanced oxidation processes, utilizing quantum dots as photocatalysts. However, many operational parameters (such as quantum dots’ properties, including the means of their preparation) influence the efficiency of such processes; thus, detailed studies are being conducted. Full article
Show Figures

Figure 1

19 pages, 3931 KiB  
Article
Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons
by Irina A. Bashkirtseva, Lev B. Ryashko, Ivan N. Tsvetkov and Alexander N. Pisarchik
Algorithms 2025, 18(6), 330; https://doi.org/10.3390/a18060330 - 30 May 2025
Viewed by 1144
Abstract
We investigate the stochastic disruption of synchronization patterns in a system of two non-identical Rulkov neurons coupled via an electrical synapse. By analyzing the system deterministic dynamics, we identify regions of mono-, bi-, and tristability, corresponding to distinct synchronization regimes as a function [...] Read more.
We investigate the stochastic disruption of synchronization patterns in a system of two non-identical Rulkov neurons coupled via an electrical synapse. By analyzing the system deterministic dynamics, we identify regions of mono-, bi-, and tristability, corresponding to distinct synchronization regimes as a function of coupling strength. Introducing stochastic perturbations to the coupling parameter, we explore how noise influences synchronization patterns, leading to transitions between different regimes. Notably, we find that increasing noise intensity disrupts lag synchronization, resulting in intermittent switching between a synchronous three-cycle regime and asynchronous chaotic states. This intermittency is closely linked to the structure of chaotic transient basins, and we determine a noise intensity range in which such behavior persists, depending on the coupling strength. Using both numerical simulations and an analytical confidence ellipse method, we provide a comprehensive characterization of these noise-induced effects. Our findings contribute to the understanding of stochastic synchronization phenomena in coupled neuronal systems and offer potential implications for neural dynamics in biological and artificial networks. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

25 pages, 2709 KiB  
Article
Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest
by Kan Fang, Yiqin Wang, Fengde Chen and Xiaoying Chen
Symmetry 2025, 17(6), 852; https://doi.org/10.3390/sym17060852 - 30 May 2025
Viewed by 460
Abstract
This study investigates a modified Lotka–Volterra commensalism system that incorporates the weak Allee effect in prey and symmetric (equal harvesting effort for both species) non-selective harvesting, addressing a critical gap in ecological modeling. Unlike previous work, we rigorously examine how the interaction between [...] Read more.
This study investigates a modified Lotka–Volterra commensalism system that incorporates the weak Allee effect in prey and symmetric (equal harvesting effort for both species) non-selective harvesting, addressing a critical gap in ecological modeling. Unlike previous work, we rigorously examine how the interaction between the Allee effect and harvesting disrupts system stability, giving rise to novel bifurcation phenomena and population collapse thresholds. Using eigenvalue analysis and the Dulac–Bendixson criterion, we derive sufficient conditions for the existence and stability of equilibria. We find that harvesting destabilizes the system by inducing two saddle-node bifurcations. Notably, prey abundance can increase with greater Allee intensity under controlled harvesting—a rare and counterintuitive ecological outcome. Moreover, exceeding a critical harvesting threshold drives both species to extinction, while controlled harvesting allows sustainable coexistence. Numerical simulations support these analytical findings and identify critical parameter ranges for species coexistence. These results contribute to theoretical ecology and offer insights for designing sustainable harvesting strategies that balance exploitation with conservation. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

20 pages, 950 KiB  
Article
The Key Role of Keywords in Architectural Design: A Systemic Framework
by Carlo Deregibus
Architecture 2025, 5(2), 32; https://doi.org/10.3390/architecture5020032 - 26 May 2025
Viewed by 645
Abstract
The practice of architectural design is experiencing disruptive changes—e.g., the incredible growth of architects worldwide, the relevance of social media and the impact of artificial intelligence—typically analysed and studied as separate phenomena. Through a narrative research approach, this paper connects these emerging trends [...] Read more.
The practice of architectural design is experiencing disruptive changes—e.g., the incredible growth of architects worldwide, the relevance of social media and the impact of artificial intelligence—typically analysed and studied as separate phenomena. Through a narrative research approach, this paper connects these emerging trends into a systemic view by referring to two conceptual frameworks—systems theory and transcendental phenomenology. Thus, it shows their mutual irritations, investigating the consequences of the practice of design and the collective architectural imaginary and mapping out the main findings through two diagrams. This paper recognises a series of key points of the resulting architectural system, the paramount being the extensive and mainly unconscious use of keywords. Then, clarifying the ontological dual nature of keywords, it conjectures that design will evolve differently for ordinary cases—characterised by passive keywords and competence—and for the most extraordinary ones—where mastery will have a critical role through active keywords. Full article
Show Figures

Graphical abstract

15 pages, 831 KiB  
Article
Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling
by Oleh Shpotyuk, Andrzej Kozdras, Yaroslav Shpotyuk, Guang Yang and Zdenka Lukáčová Bujňáková
Materials 2025, 18(11), 2422; https://doi.org/10.3390/ma18112422 - 22 May 2025
Viewed by 403
Abstract
Nanomilling-driven effects on polyamorphic transitions are examined in tetra-arsenic biselenide As4Se2 alloy, which is at the boundary of the glass-forming region in the As-Se system, using multifrequency temperature-modulated DSC-TOPEM® technique, supported by X-ray powder diffraction (XRPD) and micro-Raman spectroscopy [...] Read more.
Nanomilling-driven effects on polyamorphic transitions are examined in tetra-arsenic biselenide As4Se2 alloy, which is at the boundary of the glass-forming region in the As-Se system, using multifrequency temperature-modulated DSC-TOPEM® technique, supported by X-ray powder diffraction (XRPD) and micro-Raman spectroscopy analysis. As shown by XRPD analysis, this alloy reveals a glassy–crystalline nature due to rhombohedral As and cubic As2O3 (arsenolite) inclusions, which especially grew after milling in a PVP (polyvinylpyrrolidone) water solution. At the medium-range structure level, nanomilling-driven changes are revealed as the disruption of intermediate-range ordering and enhancement of extended-range ordering. The generalized molecular-to-network amorphization trend in this alloy is confirmed by the microstructure response revealed in the broadened and obscured features in micro-Raman scattering spectra collected for nanomilled specimens. Thermophysical heat-transfer phenomena are defined by molecular-to-network polyamorphic transformations activated under nanomilling. The domination of thioarsenide-type As4Sen entities in this alloy results in an abnormous nanomilling-driven network-enhanced glass transition temperature increase. The nanomilled alloys become notably stressed owing to the destruction of molecular thioarsenide and incorporation of their remnants into the newly polymerized arsenoselenide network. This effect is more pronounced in As4Se2 alloy subjected to dry nanomilling, while it is partly counterbalanced when this alloy is additionally subjected to wet milling in a PVP water solution, accompanied by the stabilization of the As4Se2/PVP nanocomposite. Full article
Show Figures

Graphical abstract

34 pages, 5069 KiB  
Review
The Bullwhip Effect and Ripple Effect with Respect to Supply Chain Resilience: Challenges and Opportunities
by Fabricio Moreno-Baca, Patricia Cano-Olivos, Diana Sánchez-Partida and José-Luis Martínez-Flores
Logistics 2025, 9(2), 62; https://doi.org/10.3390/logistics9020062 - 20 May 2025
Viewed by 1190
Abstract
Background: The Bullwhip and Ripple effects are systemic phenomena that disrupt supply chain performance. However, research often neglects their connection to resilience. This article presents a hybrid literature review examining how both effects are addressed about supply chain resilience, focusing on methodological [...] Read more.
Background: The Bullwhip and Ripple effects are systemic phenomena that disrupt supply chain performance. However, research often neglects their connection to resilience. This article presents a hybrid literature review examining how both effects are addressed about supply chain resilience, focusing on methodological and conceptual trends. Methods: The review combines thematic analysis of studies from Web of Science and ScienceDirect (2000–2023) with bibliometric trend modeling using Long Short-Term Memory neural networks to detect nonlinear patterns and disciplinary dynamics. Results: While 64.7% of the reviewed works explicitly link the Bullwhip Effect or Ripple Effect to resilience, only 11.7% of those focused on the Bullwhip Effect offer models with clear practical use. A structural break in 2019 marks a notable rise in research connecting these effects to resilience. Nonlinear modeling dominates (88.23%) through network theory and system dynamics. Social, Engineering and Business Sciences drive Bullwhip-related studies, while Economics, Computer Science, and Social Sciences lead Ripple-related research. Business, Energy, and Social Sciences strongly influence the integration of the Ripple Effect into supply chains. A modeling typology is proposed, and neural network techniques uncover key bibliometric patterns. Conclusions: The review highlights limited practical application and calls for more adaptive, integrative research approaches. Full article
Show Figures

Figure 1

31 pages, 2268 KiB  
Article
Early Optical Follow-Up Observations of Einstein Probe X-Ray Transients During the First Year
by Siyu Wu, Ignacio Pérez-García, Alberto J. Castro-Tirado, Youdong Hu, Maria Gritsevich, María D. Caballero-García, Rubén Sánchez-Ramírez, Sergiy Guziy, Emilio J. Fernández-García, Guillermo García Segura, Carlos Pérez-del-Pulgar, Dingrong Xiong and Bin-Bin Zhang
Galaxies 2025, 13(3), 62; https://doi.org/10.3390/galaxies13030062 - 19 May 2025
Viewed by 1134
Abstract
We present early follow-up observations of Einstein Probe (EP) X-ray transients, following its first year of operation. EP is a dedicated wide-field X-ray observatory that is transforming our understanding of the dynamic X-ray universe. During its first year, EP successfully detected [...] Read more.
We present early follow-up observations of Einstein Probe (EP) X-ray transients, following its first year of operation. EP is a dedicated wide-field X-ray observatory that is transforming our understanding of the dynamic X-ray universe. During its first year, EP successfully detected a diverse range of high-energy transients—including gamma-ray bursts (GRBs), tidal disruption events (TDEs), and fast X-ray transients (FXTs), besides many stellar flares, disseminating 128 alerts in the aggregate. Ground-based optical follow-up observations, particularly those performed by our BOOTES telescope network, have played a crucial role in multi-wavelength campaigns carried out so far. Out of the 128 events, the BOOTES Network has been able to follow up 58 events, detecting 6 optical counterparts at early times. These complementary optical measurements have enabled rapid identification of counterparts, precise redshift determinations (such as EP250215a at z=4.61), and detailed characterization of the transient phenomena. The synergy between EP’s cutting-edge X-ray monitoring and the essential optical follow-up provided by facilities, such as the above-mentioned BOOTES Global Network or other Spanish ground-based facilities we have access to, underscores the importance and necessity of coordinated observations in the era of time-domain and multi-messenger astrophysics. Full article
Show Figures

Figure 1

14 pages, 1803 KiB  
Review
A Room for Long-Lived Plasma Cell Contribution in Immune Cytopenias?
by Tricia Don, Manisha Gadgeel and Süreyya Savaşan
Cancers 2025, 17(9), 1537; https://doi.org/10.3390/cancers17091537 - 1 May 2025
Viewed by 702
Abstract
Immune cytopenias, such as autoimmune hemolytic anemia, immune thrombocytopenia, and Evans syndrome, are characterized by autoantibodies targeting various blood cells, initiating their destruction. Interactions between T cells, B cells, their ultimate maturational plasma cell descendants, dendritic cells, and macrophages result in antibody production, [...] Read more.
Immune cytopenias, such as autoimmune hemolytic anemia, immune thrombocytopenia, and Evans syndrome, are characterized by autoantibodies targeting various blood cells, initiating their destruction. Interactions between T cells, B cells, their ultimate maturational plasma cell descendants, dendritic cells, and macrophages result in antibody production, including the autoreactive ones. Autoimmune phenomena can be idiopathic or associated with various immune dysregulation conditions or malignancies. Interventions disrupting this complex network at different levels have been used to treat immune cytopenias with certain levels of success. Some cases are known to be refractory to many different therapeutic approaches, including the ones eliminating B cells. In some such cases, targeting plasma cells resulted in disease control. Among plasma cell compartments, unique long-lived plasma cells (LLPCs) residing primarily in the bone marrow, are specialized antibody-producing cells with an extended lifespan, capable of persistently secreting antibodies. LLPCs can evade conventional therapeutic strategies designed to target often-proliferating cells. Research focusing on the role of LLPCs in autoimmune phenomena including immune cytopenias has provided evidence for their role, characterized by the sustained production of autoantibodies. Frequent genetic mutations and progression to other immune dysregulation entities have been reported in a group of children with immune cytopenias. This might provide new insights focusing on the potential underlying genetic and epigenetic mechanisms leading to generation and maintenance of LLPCs in autoimmune disorders. We provide a brief review of LLPC biology and evidence for their role in immune cytopenias with potential future implications in this article. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Hematologic Malignancies)
Show Figures

Figure 1

18 pages, 9721 KiB  
Article
A Multi-Year Investigation of Thunderstorm Activity at Istanbul International Airport Using Atmospheric Stability Indices
by Oğuzhan Kolay, Bahtiyar Efe, Emrah Tuncay Özdemir and Zafer Aslan
Atmosphere 2025, 16(4), 470; https://doi.org/10.3390/atmos16040470 - 17 Apr 2025
Viewed by 972
Abstract
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of [...] Read more.
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of Istanbul International Airport (International Civil Aviation Organization (ICAO) code: LTFM) have been investigated because it is currently one of the busiest airports in Europe and the seventh-busiest airport in the world. Geopotential height (m), temperature (°C), dewpoint temperature (°C), relative humidity (%), mixing ratio (g kg−1), wind direction (°), and wind speed (knots) data for the ground level and upper levels of the İstanbul radiosonde station were obtained from the Turkish State Meteorological Service (TSMS) for 29 October 2018 and 1 January 2023. Surface data were regularly collected by the automatic weather stations near the runway and the upper-level data were collected by the radiosonde system located in the Kartal district of İstanbul. Thunderstorm statistics, stability indices, and meteorological variables at the upper levels were evaluated for this period. Thunderstorms were observed to be more frequent during the summer, with a total of 51 events. June had the highest number of thunderstorm events with a total of 32. This averages eight events per year. A total of 72.22% occurred during trough and cold front transitions. The K index and total totals index represented the thunderstorm events better than other stability indices. In total, 75% of the thunderstorm days were represented by these two stability indices. The results are similar to the covering of this area: the convective available potential energy (CAPE) values which are commonly used for atmospheric instability are low during thunderstorm events, and the K and total totals indices are better represented for thunderstorm events. This study investigates thunderstorm events at the LTFM, providing critical insights into aviation safety and operational efficiency. The research aims to improve flight planning, reduce weather-related disruptions, and increase safety and also serves as a reference for airports with similar climatic conditions. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

Back to TopTop