Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. As4Se2 Alloy Fabrication, Mechanochemical Processing, and Preliminary Characterization
2.2. Methodological Specificity of Microstructure and Thermophysical Characterization of Nanostructured Arsenoselenides
3. Results and Discussion
3.1. Medium-Range Structure and Microstructure Response in Nanostructured As4Se2 Alloy
3.2. Calorimetric Heat-Transfer Response in Nanostructured As4Se2 Alloy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roduner, E. Nanoscopic Materials. Size-Dependent Phenomena; RSC Publishing: Cambridge, UK, 2006; pp. 1–285. [Google Scholar]
- Vollath, D. Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd ed.; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1–375. [Google Scholar]
- Naterer, G.F. Heat Transfer in Single and Multiphase Systems; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–640. [Google Scholar]
- Cangialosi, D.; Alegria, A.; Colmenero, J. Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Prog. Polym. Sci. 2016, 54–55, 128–147. [Google Scholar] [CrossRef]
- Tomaszewski, P.E. Phase transitions in extremely small crystals. Ferroelectrics 2008, 375, 74–91. [Google Scholar] [CrossRef]
- Qadri, S.B.; Skelton, E.F.; Hsu, D.; Dinsmore, A.D.; Yang, J.; Gray, H.F.; Ratna, B.R. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 1999, 60, 9191–9193. [Google Scholar] [CrossRef]
- Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M.P.; Waychunas, G.A.; Banfield, J.F. Special phase transformation and crystal growth pathways. Geochem. Trans. 2003, 4, 20–27. [Google Scholar] [CrossRef]
- Feltz, A. Amorphous Inorganic Materials and Glasses; VCH: Weinheim, Germany, 1993; pp. 1–446. [Google Scholar]
- Adam, J.-L.; Zhang, X. Chalcogenide Glasses: Preparation, Properties and Application; Woodhead Publishing: Philadelphia, PA, USA, 2013; pp. 1–704. [Google Scholar]
- Liu, G.; Song, Y.; Li, C.; Liu, R.; Chen, Y.; Yu, L.; Huang, Q.; Zhu, D.; Lu, C.; Yu, X.; et al. Arsenic compounds: The wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur. J. Med. Chem. 2021, 221, 113519. [Google Scholar] [CrossRef] [PubMed]
- Shpotyuk, Y.; Demchenko, P.; Bujňáková, Z.; Baláž, P.; Boussard-Pledel, C.; Bureau, B.; Shpotyuk, O. Effect of high-energy mechanical milling on the medium-range ordering in glassy As-Se. J. Am. Ceram. Soc. 2020, 103, 1631–1646. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Ingram, A.; Shpotyuk, Y.; Boyko, V.; Demchenko, P.; Wojnarowska-Nowak, R.; Lukáčová Bujňáková, Z.; Baláž, P. Nanostructured Molecular-Network Arsenoselenides from the Border of a Glass-Forming Region: A Disproportionality Analysis Using Complementary Characterization Probes. Molecules 2024, 29, 3948. [Google Scholar] [CrossRef]
- Bonazzi, P.; Bindi, L. A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by exposure to light. Z. Kristallogr. 2008, 223, 132–147. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Wallace, A.F.; Downs, R.T.; Ross, N.L.; Cox, D.F.; Rosso, K.M. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions. Phys. Chem. Miner. 2010, 38, 267–291. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Crawford, T.D.; Wallace, A.F.; Cox, D.F.; Parrish, R.M.; Hohenstein, E.G.; Sherrill, C.D. Role of Long-Range Intermolecular Forces in the Formation of Inorganic Nanoparticle Clusters. J. Phys. Chem. A 2011, 115, 12933–12940. [Google Scholar] [CrossRef]
- Greaves, G.N.; Elliott, S.R.; Davis, E.A. Amorphous arsenic. Adv. Phys. 1979, 28, 49–141. [Google Scholar] [CrossRef]
- Schiferl, D.; Barret, S. The Crystal Structure of Arsenic at 4.2, 78 and 299 °K. J. Appl. Crystallogr. 1969, 2, 30–36. [Google Scholar] [CrossRef]
- Ballirano, P.; Maras, A. Refinement of the crystal structure of arsenolite, As2O3. Z. Kristallogr. 2002, 217, 177–178. [Google Scholar] [CrossRef]
- Elliott, S.R. Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids 1995, 182, 40–48. [Google Scholar] [CrossRef]
- Elliott, S.R. Second sharp diffraction peak in the structure factor of binary covalent network glasses. Phys. Rev. B 1995, 51, 8599–8601. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, A.; Salmon, P.S. Pressure-driven transformation of the ordering in amorphous network-forming materials. Phys. Rev. B 2016, 93, 214204. [Google Scholar] [CrossRef]
- Renninger, A.L.; Averbach, B.L. Crystalline structures of As2Se3 and As4Se4. Acta Crystallogr. B 1973, 29, 1583–1589. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378–381, 118–121. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Feng, R.; Stachurski, Z.H.; Rodrigues, M.D.; Kluth, P.; Araujo, L.L.; Bulla, D.; Ridway, M.C. X-ray scattering from amorphous solids. J. Non-Cryst. Solids 2013, 383, 21–27. [Google Scholar] [CrossRef]
- Ehrenfest, P. On interference phenomena to be expected when Roentgen rays pass through a diatomic gas. Proc. KNAW 1915, 17, 1184–1190. [Google Scholar]
- Lucovsky, G. Optic modes in amorphous As2S3 and As2Se3. Phys. Rev. B 1972, 6, 1480–1489. [Google Scholar] [CrossRef]
- Pangavhane, S.D.; Nemec, P.; Wagner, T.; Janca, J.; Havel, J. Laser desorption ionization time-of-flight mass spectrometric study of binary As-Se glasses. Rapid Commun. Mass Spectrom. 2010, 24, 2000–2008. [Google Scholar] [CrossRef]
- Ystenes, M.; Menzel, F.; Brockner, W. Ab initio quantum mechanical calculations of energy, geometry, vibrational frequencies and IR intensities of tetraphosphorus tetrasulphide, α-P4S4 (D2d), and vibrational analysis of As4S4 and As4Se4. Spectrochim. Acta A 1994, 50, 225–231. [Google Scholar] [CrossRef]
- Ystenes, M.; Brockner, W.; Menzel, F. Scaled quantum mechanical (SQM) calculations and vibrational analyses of the cage-like molecules P4S3, As4Se3, P4Se3, As4S3, and PAs3S3. Vib. Spectrosc. 1993, 5, 195–204. [Google Scholar] [CrossRef]
- Lannin, J.S. Raman scattering properties of amorphous As and Sb. Phys. Rev. B 1977, 15, 3863–3871. [Google Scholar] [CrossRef]
- Brumbach, S.B.; Rosenblatt, G.M. In-cavity laser Raman spectroscopy of vapors at elevated temperatures. As4 and As4O6. J. Chem. Phys. 1972, 56, 3110–3117. [Google Scholar] [CrossRef]
- Kovanda, V.; Vlcek, M.; Jain, H. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 2003, 326–327, 88–92. [Google Scholar] [CrossRef]
- Golovchak, R.; Oelgoetz, J.; Vlcek, M.; Esposito, A.; Saiter, A.; Saiter, J.-M.; Jain, H. Complex structural rearrangements in As-Se glasses. J. Chem. Phys. 2014, 140, 054505. [Google Scholar] [CrossRef]
- Schawe, J.E.K.; Hutter, T.; Heitz, C.; Alig, I.; Lellinger, D. Stochastic temperature modulation: A new technique in temperature-modulated DSC. Thermochim. Acta 2006, 446, 147–155. [Google Scholar] [CrossRef]
- Fraga, I.; Montserrat, S.; Hutchinson, J. TOPEM, a new temperature modulated DSC technique. Application to the glass transition of polymers. J. Therm. Anal. Calorim. 2007, 87, 119–124. [Google Scholar] [CrossRef]
- Gabbott, P. Chapter 1: A Practical Introduction to Differential Scanning Calorimetry. In Principles and Applications of Thermal Analysis; Gabbott, P., Ed.; Blackwell Publishing: Oxford, UK, 2008; pp. 1–50. [Google Scholar] [CrossRef]
- Pielichowska, K.; Krol, P.; Krol, B.; Pagacz, J. TOPEM DSC study of glass transition region of polyurethane cationomers. Thermochim. Acta 2016, 545, 187–193. [Google Scholar] [CrossRef]
- Kozdras, A.; Shpotyuk, O.; Mahlovanyi, B.; Shpotyuk, Y.; Kovalskiy, A. Thermodynamic heat-transfer phenomena in nanostructured glassy substances: A comparative study on g-As5Se95 and g-As55Se45. J. Therm. Anal. Calorim. 2023, 148, 2265–2271. [Google Scholar] [CrossRef]
- Lonergan, J.; Smith, C.; McClane, D.; Richardson, K. Thermophysical properties and conduction mechanisms in AsxSe1-x chalcogenide glasses ranging from x = 0.2 to 0.5. J. Appl. Phys. 2016, 120, 145101. [Google Scholar] [CrossRef]
- Teng, J.; Bates, S.; Engers, D.A.; Leach, K.; Schields, P.; Yang, Y. Effect of Water Vapor Sorption on Local Structure of Poly(vinylpyrrolidone). J. Pharm. Sci. 2010, 99, 3815–3825. [Google Scholar] [CrossRef]
- Furushima, Y.; Ishikiriyama, K.; Ueno, Y.; Sugaya, H. Analysis of the state of water in polyvinylpyrrolidone aqueous solutions using DSC method. Thermochim. Acta 2012, 538, 43–47. [Google Scholar] [CrossRef]
- Timaeva, O.; Pashkin, I.; Mulakov, S.; Kuzmicheva, G.; Konarev, P.; Terekhova, R.; Sadovskaya, N.; Czakkel, O.; Prevost, S. Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles. J. Mater. Sci. 2020, 55, 3005–3021. [Google Scholar] [CrossRef]
- Centa, U.G.; Mihelčič, M.; Bobnar, V.; Remškar, M.; Perše, L.S. The effect of PVP on thermal, mechanical, and dielectric properties in PVDF-HFP/PVP thin film. Coatings 2022, 12, 1209. [Google Scholar] [CrossRef]
- Gaffet, E.; Le Caër, G. Mechanical processing for nanomaterials. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2004; Volume 10, pp. 1–39. [Google Scholar]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical Milling: A Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef]
- Baláž, P.; Baláž, M.; Achimovičová, M.; Bujňáková, Z.; Dutková, E. Chalcogenide mechanochemistry in materials science: Insight into synthesis and applications (a review). J. Mater. Sci. 2017, 52, 11851–11890. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovicova, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed]
Specimen State | Peak Halo | Peak Halo’s Parameterization | ||||||
---|---|---|---|---|---|---|---|---|
2θ, ° | FWHM, ° | Q, Å−1 | ∆Q, Å−1 | R, Å | L, Å | ds, Å | ||
unmilled | FSDP | 15.48(1) | 2.34(1) | 1.098 | 0.166 | 5.71 | 37.8 | 7.0 |
SSDP | 29.99(1) | 5.91(1) | 2.110 | 0.420 | 2.98 | 14.9 | 3.7 | |
dry-nanomilled | FSDP | 15.73(3) | 3.77(6) | 1.116 | 0.268 | 5.63 | 23.4 | 6.9 |
SSDP | 31.56(1) | 6.49(3) | 2.216 | 0.455 | 2.83 | 13.8 | 3.5 | |
dry–wet-nanomilled | FSDP | 15.89(2) | 5.08(4) | 1.127 | 0.362 | 5.57 | 17.4 | 6.9 |
SSDP | 31.36(1) | 7.13(2) | 2.204 | 0.507 | 2.85 | 12.4 | 3.5 |
Stage of DSC-TOPEM Profile | State of As4Se2 Alloy | Calculated from HFrev | Calculated from HFnrev | ||
---|---|---|---|---|---|
Glass Transition Temperature | Heat Capacity Variation | Specific Enthalpy Difference | |||
Tgonset, °C | Tgmid, °C | ΔCp, J·g−1K−1 | ΔH, J·g−1 | ||
First heating run | unmilled | 116.6 | 131.2 | 0.10 | - |
dry-nanomilled | 191.7 | 201.2 | 0.16 | −73.4 (exotherm multipeak) | |
dry–wet-nanomilled | 179.4 | 192.7 | 0.13 | 25.6 (endo); −53.4 (exo) | |
Second heating run | unmilled | 115.5 | 129.3 | 0.10 | - |
dry-nanomilled | 136.7 | 148.8 | 0.10 | - | |
dry–wet-nanomilled | 112.4 | 129.1 | 0.11 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shpotyuk, O.; Kozdras, A.; Shpotyuk, Y.; Yang, G.; Lukáčová Bujňáková, Z. Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling. Materials 2025, 18, 2422. https://doi.org/10.3390/ma18112422
Shpotyuk O, Kozdras A, Shpotyuk Y, Yang G, Lukáčová Bujňáková Z. Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling. Materials. 2025; 18(11):2422. https://doi.org/10.3390/ma18112422
Chicago/Turabian StyleShpotyuk, Oleh, Andrzej Kozdras, Yaroslav Shpotyuk, Guang Yang, and Zdenka Lukáčová Bujňáková. 2025. "Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling" Materials 18, no. 11: 2422. https://doi.org/10.3390/ma18112422
APA StyleShpotyuk, O., Kozdras, A., Shpotyuk, Y., Yang, G., & Lukáčová Bujňáková, Z. (2025). Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling. Materials, 18(11), 2422. https://doi.org/10.3390/ma18112422