Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest
Abstract
1. Introduction
- (1)
- (no reproduction in absence of partners).
- (2)
- for (monotonic decrease in Allee effect with density).
- (3)
- (asymptotic disappearance at high densities).
2. Boundedness of Solutions
3. Existence and Stability of Equilibria
3.1. Existence of Equilibria
3.2. Local Stability Analysis of Equilibria
- (1)
- When , the origin equilibrium is a saddle; when , is a stable node; when , is an attracting saddle node.
- (2)
- When , the boundary equilibrium is a saddle; when , the boundary equilibrium is a stable node; when , the boundary equilibrium is a repelling saddle node.
- (3)
- When , , , the boundary equilibrium is a repelling saddle node; when , , , is an attracting saddle node; when , , , is an attracting saddle node.
- (4)
- When , , , the boundary equilibrium is an unstable node, is a saddle; when , , , the boundary equilibrium is a saddle, and the equilibrium is a stable node; when , , , the boundary equilibrium is a repelling saddle node, and is an attracting saddle node.
- (1)
- When , the exclusively existing positive fixed point is locally asymptotically stable,
- (2)
- When , the exclusively existing positive fixed point is an attracting saddle node; when , the exclusively existing positive fixed point is a saddle, while is locally asymptotically stable.
3.3. Global Stability Analysis of Equilibria
- (1)
- The interior equilibrium of system (5) is globally asymptotically stable under the parameter constraint
- (2)
- The boundary equilibrium is globally asymptotically stable provided that
4. Saddle-Node Bifurcation
- (1)
- At the critical parameter value , system (5) exhibits a saddle-node bifurcation near the boundary equilibrium , where B functions as the bifurcation control parameter.
- (2)
- At the critical parameter value , system (5) exhibits a saddle-node bifurcation near the interior equilibrium point , where B functions as the bifurcation control parameter.
5. Numerical Simulations
5.1. Dynamics of Equilibria
Region | ||||
---|---|---|---|---|
(1) , (Figure 1a) | stable | - | saddle | stable |
(2) , (Figure 1b) | stable | saddle node | - | - |
(3) , (Figure 1c) | stable | - | - | - |
(4) , (Figure 2a) | saddle node | - | saddle node | saddle node |
(5) , (Figure 2b) | saddle node | saddle node | - | - |
(6) , (Figure 2c) | saddle node | - | - | - |
Region | ||||||||
---|---|---|---|---|---|---|---|---|
(1) , (Figure 4a) | saddle | stable | - | - | - | stable | - | saddle |
(2) , (Figure 4b) | saddle | stable | - | - | - | - | saddle node | - |
(3) , (Figure 4c) | saddle | stable | - | - | - | - | - | - |
(4) , (Figure 5a) | saddle | stable | - | unstable | saddle | stable | - | saddle |
(5) , (Figure 5b) | saddle | stable | saddle node | - | - | stable | - | saddle |
(6) , (Figure 5c) | saddle | stable | - | - | - | stable | - | saddle |
(7) , (Figure 5d) | saddle | stable | - | - | - | - | saddle node | - |
(8) , (Figure 5e) | saddle | stable | - | - | - | - | - | - |
Region | ||||||||
---|---|---|---|---|---|---|---|---|
(1) , (Figure 6a) | saddle | saddle node | - | unstable | stable | stable | - | - |
(2) , (Figure 6b) | saddle | saddle node | saddle node | - | - | stable | - | - |
(3) , (Figure 6c) | saddle | saddle node | - | - | - | stable | - | - |
(4) (Figure 6d) | saddle | saddle node | - | - | - | stable | - | - |
5.2. Sensitivity Analysis of Parameter , and
6. Conclusions
Remark
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ditta, A.; Naik, P.A.; Ahmed, R.; Huang, Z.X. Exploring periodic behavior and dynamical analysis in a harvested discrete-time commensalism system. Int. J. Dyn. Control. 2025, 13, 63. [Google Scholar] [CrossRef]
- Chen, F.D.; Chen, Y.M.; Li, Z.; Chen, L.J. Note on the persistence and stability property of a commensalism model with Michaelis-Menten harvesting and Holling type II commensalistic benefit. Appl. Math. Lett. 2022, 134, 108381. [Google Scholar] [CrossRef]
- Osuna, O.; Villavicencio-Pulido, G. A seasonal commensalism model with a weak Allee effect to describe climate-mediated shifts. Geiser. Sel. Mat. 2024, 11, 212–221. [Google Scholar] [CrossRef]
- Qu, M.Z. Dynamical analysis of a Beddington-DeAngelis commensalism system with two time delays. J. Appl. Math. Comput. 2023, 69, 4111–4134. [Google Scholar] [CrossRef]
- Cai, J.N.; Pinto, M.; Xia, Y.H. Stability and Bifurcation Analysis of a Commensal Model with Allee Effect and Herd Behavior. Open Math. 2022, 32, 1. [Google Scholar] [CrossRef]
- Patra, R.R.; Maitra, S. Dynamics of stability, bifurcation and control for a commensal symbiosis model. Int. J. Dyn. Control 2024, 12, 2369–2384. [Google Scholar] [CrossRef]
- Liu, X.W.; Yue, Q. Stability property of the boundary equilibria of a symbiotic model of commensalism and parasitism with harvesting in commensal populations. AIMS Math. 2022, 7, 18793–18808. [Google Scholar] [CrossRef]
- Xu, L.L.; Xue, Y.L.; Xie, X.D.; Lin, Q.F. Dynamic Behaviors of an Obligate Commensal Symbiosis Model with Crowley–Martin Functional Responses. Axioms 2022, 11, 298. [Google Scholar] [CrossRef]
- Xu, L.L.; Xue, Y.L.; Lin, Q.F.; Lei, C.Q. Positive periodic solution of a discrete Lotka-Volterra commensal symbiosis model with Michaelis–Menten type harvesting. WSEAS Trans. Math. 2022, 21, 515–523. [Google Scholar]
- Wei, Z.; Xia, Y.H.; Zhang, T.H. Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth rate. Internat. J. Bifur. Chaos. 2021, 13, 2150204. [Google Scholar] [CrossRef]
- Xue, Y.L.; Xie, X.D.; Lin, Q.F.; Chen, F.D. Almost periodic solutions of a commensalism system with Michaelis-Menten type harvesting on time scales. Open Math. 2019, 17, 1503–1514. [Google Scholar] [CrossRef]
- Chen, B.G. The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting. Adv. Differ. Equ. 2019, 2019, 43. [Google Scholar] [CrossRef]
- Deng, H.; Huang, X. The influence of partial closure for the populations to a harvesting Lotka-Volterra commensalism model. Commun. Math. Biol. Neurosci. 2018, 2018, 10. [Google Scholar]
- Han, R.Y.; Chen, F.D. Global stability of a commensal symbiosis model with feedback controls. Commun. Math. Biol. Neurosci. 2015, 2015, 15. [Google Scholar]
- Gao, W.J.; Jia, X.; Shi, R.Q. Dynamics and optimal harvesting for fishery models with reserved areas. Symmetry 2024, 16, 800. [Google Scholar] [CrossRef]
- Moustafa, E.; Mahmoud, M. Dynamics of a Fractional-Order Eco-Epidemiological Model with Two Disease Strains in a Predator Population Incorporating Harvesting. Axioms 2025, 14, 53. [Google Scholar]
- He, M.X.; Li, Z. Bifurcation of a Leslie–Gower Predator–Prey Model with Nonlinear Harvesting and a Generalist Predator. Axioms 2024, 13, 704. [Google Scholar] [CrossRef]
- García, C.C. Bifurcations on a discontinuous Leslie-Grower model with harvesting and alternative food for predators and Holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106800. [Google Scholar] [CrossRef]
- Kashyap, A.J.; Zhu, Q.X.; Sarmah, H.K.; Bhattacharjee, D. Dynamical study of a predator–prey system with Michaelis–Menten type predator-harvesting. Int. J. Biomath. 2023, 16, 2250135. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; He, M.X. Bifurcation analysis of a Holling-Tanner model with generalist predator and constant-yield harvesting. Int. J. Bifurc. Chaos. 2024, 34, 2450076. [Google Scholar] [CrossRef]
- Xu, Y.C.; Yang, Y.; Meng, F.W.; Ruan, S.G. Degenerate codimension-2 cusp of limit cycles in a Holling-Tanner model with harvesting and anti-predator behavior. Nonlinear Anal. Real World Appl. 2024, 76, 103995. [Google Scholar] [CrossRef]
- Allee, W.C. Animal Aggregations: A Study in General Sociology; University of Chicago Press: Chicago, IL, USA, 1932. [Google Scholar]
- Kuussaari, M.; Saccheri, I.; Camara, M.; Hanski, I. Allee effect and population dynamics in the glanville fritillary butterfly. Oikos 1998, 82, 384–392. [Google Scholar] [CrossRef]
- Stephens, P.A.; Sutherl, W.J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 1999, 14, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Courchamp, F.; Grenfell, B.; Clutton-Brock, T. Population dynamics of obligate cooperators. Proc. R. Soc. Lond. B 1999, 266, 557–563. [Google Scholar] [CrossRef]
- Manoj, K.S.; Arushi, S.; Luis, M.S. Dynamical complexity of modified Leslie–Gower predator—Prey model incorporating double Allee effect and fear effect. Symmetry 2024, 16, 1552. [Google Scholar]
- Chen, F.D.; Li, Z.; Pan, Q.; Zhu, Q. Bifurcations in a Leslie–Gower predator—Prey model with strong Allee effects and constant prey refuges. Chaos Solitons Fract. 2025, 192, 115994. [Google Scholar] [CrossRef]
- Chen, S.M.; Chen, F.D.; Srivastava, V.; Parshad, R.D. Dynamical analysis of a Lotka-Volterra competition model with both Allee and fear effects. Int. J. Bifurc. Chaos. 2024, 17, 2350077. [Google Scholar] [CrossRef]
- Wang, F.; Yang, R. Dynamics of a delayed reaction–diffusion predator–prey model with nonlocal competition and double Allee effect in prey. IInt. J. Biomath. 2023, 1, 2350097. [Google Scholar] [CrossRef]
- González-Olivares, E.; Rojas-Palma, A. Influence of the strong Allee effect on prey and the competition among predators in Leslie-Gower type predation models. Int. J. Bifurcat. Chaos. 2020, 7, 302–313. [Google Scholar] [CrossRef]
- Cruz, R.L. Stability of a Leslie-Gower type predator-prey model with a strong Allee effect with delay. Sel. Mat. 2022, 9, 24–33. [Google Scholar] [CrossRef]
- Wang, F.; Yang, R.; Zhang, X. Turing patterns in a predator–prey model with double Allee effect. Math. Comput. Simul. 2024, 220, 170–191. [Google Scholar] [CrossRef]
- Luo, D.; Wang, Q. Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect on the first species. Int. J. Bifurc. Chaos 2021, 31, 2150050. [Google Scholar] [CrossRef]
- Guan, X.Y.; Liu, Y.; Xie, X.D. Stability analysis of a Lotka-Volterra type predator-prey system with Allee effect on the predator species. Commun. Math. Biol. Neurosci. 2018, 2018, 9. [Google Scholar]
- Zhu, Q.; Chen, F.D. Impact of fear on searching efficiency of first species: A two species Lotka-Volterra competition model with weak Allee effect. Qual. Theory Dyn. Syst. 2024, 23, 143. [Google Scholar] [CrossRef]
- Fang, K.; Zhu, Z.L.; Chen, F.D.; Li, Z. Qualitative and Bifurcation Analysis in a Leslie-Gower Model with Allee Effect. Qual. Theory Dyn. Syst. 2022, 21, 86. [Google Scholar] [CrossRef]
- Fang, K.; Chen, J.B.; Zhu, Z.L. Qualitative and Bifurcation Analysis of a Single Species Logistic Model with Allee Effect and Feedback Control. IAENG Int. J. Appl. Math. 2022, 52, 220201. [Google Scholar]
- Liu, Y.Y.; Wei, J.J. Spatiotemporal dynamics of a modified Leslie-Gower model with weak Allee effect. Int. J. Bifurcat. Chaos. 2020, 30, 2050169. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yu, H.G.; Dai, C.J.; Ma, Z.L.; Wang, Q.; Zhao, M. Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee effect. Min. Math. Biosci. Eng. 2021, 18, 8857–8882. [Google Scholar] [CrossRef]
- Wei, Z.; Xia, Y.H.; Zhang, T.H. Stability and bifurcation analysis of an Amensalism model with weak Allee effect. Qual. Theor. Dyn. Syst. 2020, 23, 1–19. [Google Scholar] [CrossRef]
- Lin, Q.F. Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ. 2018, 2018, 190. [Google Scholar] [CrossRef]
- Mustafa, N.; Rahman, J.U.; Ishtiaq, U.; Popa, I.L. Artificial Neural Network-Based Approach for Dynamic Analysis and Modeling of Marburg Virus Epidemics for Health Care. Symmetry 2025, 17, 578. [Google Scholar] [CrossRef]
- Chen, F.D. On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay. Commun. Math. Biol. Neurosci. 2005, 180, 33–49. [Google Scholar]
- Zhang, Z.F.; Ding, T.R.; Huang, W.Z.; Dong, Z.X. Qualitative Theory of Differential Equation; Translation of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1992. [Google Scholar]
- Chen, L.S. Mathematical Models and Methods in Ecology; Scienec Press: Beijing, China, 1988. [Google Scholar]
- Perko, L. Differential Equations and Dynamical Systems; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mustafa, N.; Rahman, J.U.; Omame, A. Modelling of Marburg virus transmission dynamics: A deep learning-driven approah with the efect of quarantine and health awareness interventions. Model. Earth Syst. Environ. 2024, 10, 7337–7357. [Google Scholar] [CrossRef]
Variable | Biological Description | Units |
---|---|---|
State Variables | ||
Prey population density | indiv. km−2 | |
Predator population density | indiv. km−2 | |
Growth Parameters | ||
Prey intrinsic growth rate | month−1 | |
Predator intrinsic growth rate | month−1 | |
Prey self-regulation coefficient | km2 (indiv. month)−1 | |
Predator self-regulation coefficient | km2 (indiv. month)−1 | |
Interaction Parameters | ||
Commensalism benefit coefficient | km2 (indiv. month)−1 | |
Allee effect threshold density | indiv. km−2 | |
Harvesting Parameters | ||
Prey catchability coefficient | dimensionless | |
Predator catchability coefficient | dimensionless | |
E | Fishing effort intensity | vessels month−1 |
Harvestable area proportion | dimensionless |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, K.; Wang, Y.; Chen, F.; Chen, X. Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest. Symmetry 2025, 17, 852. https://doi.org/10.3390/sym17060852
Fang K, Wang Y, Chen F, Chen X. Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest. Symmetry. 2025; 17(6):852. https://doi.org/10.3390/sym17060852
Chicago/Turabian StyleFang, Kan, Yiqin Wang, Fengde Chen, and Xiaoying Chen. 2025. "Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest" Symmetry 17, no. 6: 852. https://doi.org/10.3390/sym17060852
APA StyleFang, K., Wang, Y., Chen, F., & Chen, X. (2025). Dynamics of a Modified Lotka–Volterra Commensalism System Incorporating Allee Effect and Symmetric Non-Selective Harvest. Symmetry, 17(6), 852. https://doi.org/10.3390/sym17060852