Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,494)

Search Parameters:
Keywords = dispersion relationships

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3474 KiB  
Article
Energy Dispersion Relationship and Hofstadter Butterfly of Triangle and Rectangular Moiré Patterns in Tight Binding States
by Ziheng Li, Jiangwei Liu, Xiaoxiao Zheng, Yu Sun, Nan Han, Liang Wang, Muyang Li, Lei Han, Safia Khan, S. Hassan M. Jafri, Klaus Leifer, Yafei Ning and Hu Li
Physics 2025, 7(3), 34; https://doi.org/10.3390/physics7030034 - 5 Aug 2025
Abstract
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré [...] Read more.
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré superlattices, Hofstadter butterflies arising from different moiré pattern structures are obtained, exhibiting considerable fractal characteristics and self-similarities. Moreover, it is also observed that under an alternating magnetic field, the redistribution of electronic states leads to a significant change in the density of states curve, and the Van Hove peak changes with the increase in magnetic field intensity. This study enriches the understanding of the electronic behavior of moiré systems, but it also provides multiple potential application directions for future technological development. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
Show Figures

Figure 1

19 pages, 4972 KiB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 (registering DOI) - 4 Aug 2025
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

29 pages, 1132 KiB  
Article
Generating Realistic Synthetic Patient Cohorts: Enforcing Statistical Distributions, Correlations, and Logical Constraints
by Ahmad Nader Fasseeh, Rasha Ashmawy, Rok Hren, Kareem ElFass, Attila Imre, Bertalan Németh, Dávid Nagy, Balázs Nagy and Zoltán Vokó
Algorithms 2025, 18(8), 475; https://doi.org/10.3390/a18080475 - 1 Aug 2025
Viewed by 175
Abstract
Large, high-quality patient datasets are essential for applications like economic modeling and patient simulation. However, real-world data is often inaccessible or incomplete. Synthetic patient data offers an alternative, and current methods often fail to preserve clinical plausibility, real-world correlations, and logical consistency. This [...] Read more.
Large, high-quality patient datasets are essential for applications like economic modeling and patient simulation. However, real-world data is often inaccessible or incomplete. Synthetic patient data offers an alternative, and current methods often fail to preserve clinical plausibility, real-world correlations, and logical consistency. This study presents a patient cohort generator designed to produce realistic, statistically valid synthetic datasets. The generator uses predefined probability distributions and Cholesky decomposition to reflect real-world correlations. A dependency matrix handles variable relationships in the right order. Hard limits block unrealistic values, and binary variables are set using percentiles to match expected rates. Validation used two datasets, NHANES (2021–2023) and the Framingham Heart Study, evaluating cohort diversity (general, cardiac, low-dimensional), data sparsity (five correlation scenarios), and model performance (MSE, RMSE, R2, SSE, correlation plots). Results demonstrated strong alignment with real-world data in central tendency, dispersion, and correlation structures. Scenario A (empirical correlations) performed best (R2 = 86.8–99.6%, lowest SSE and MAE). Scenario B (physician-estimated correlations) also performed well, especially in a low-dimensions population (R2 = 80.7%). Scenario E (no correlation) performed worst. Overall, the proposed model provides a scalable, customizable solution for generating synthetic patient cohorts, supporting reliable simulations and research when real-world data is limited. While deep learning approaches have been proposed for this task, they require access to large-scale real datasets and offer limited control over statistical dependencies or clinical logic. Our approach addresses this gap. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

16 pages, 2578 KiB  
Article
Experimental Comparison Between Two-Course Masonry Specimens and Three-Course Extracted Masonry Specimens in Clay Masonry Structures
by Bernardo Tutikian and Felipe Schneider
Processes 2025, 13(8), 2446; https://doi.org/10.3390/pr13082446 - 1 Aug 2025
Viewed by 198
Abstract
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course [...] Read more.
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course masonry specimens, and three-course masonry specimens extracted from constructed walls, following the prescriptions of NBR 15270 and NBR 16868-3. The results demonstrate that three-course masonry specimens exhibit lower compressive strength (characteristic and average, 44.83% and 40.29%, respectively) compared to two-course masonry specimens. Additionally, it was found that the dispersion of results is greater in three-course masonry specimens. Given that three-course specimens are typically used when it becomes necessary to verify the structural compliance of executed masonry—usually following unsatisfactory results from execution control using two-course specimens—more data are needed to compare such results. Factors such as increased height-to-thickness ratio, the presence of head joints, and the influence of execution conditions at the construction site seem to influence the difference between two and three-course specimens, as well as the dispersion of the results. Therefore, it is essential that technical standards provide supporting criteria to enable a reliable comparison between two-course specimens used for execution control and three-course specimens used as retest elements. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

22 pages, 3491 KiB  
Article
Phylogenetic Insights from a Novel Rehubryum Species Challenge Generic Boundaries in Orthotrichaceae
by Nikolay Matanov, Francisco Lara, Juan Antonio Calleja, Isabel Draper, Pablo Aguado-Ramsay and Ricardo Garilleti
Plants 2025, 14(15), 2373; https://doi.org/10.3390/plants14152373 - 1 Aug 2025
Viewed by 208
Abstract
In recent years, phylogenomic approaches have significantly deepened our understanding of moss diversity. These techniques have uncovered numerous previously overlooked species and provided greater clarity in resolving complex taxonomic relationships. In this context, the genus Rehubryum is particularly outstanding, because of its close [...] Read more.
In recent years, phylogenomic approaches have significantly deepened our understanding of moss diversity. These techniques have uncovered numerous previously overlooked species and provided greater clarity in resolving complex taxonomic relationships. In this context, the genus Rehubryum is particularly outstanding, because of its close morphological similarity to both Ulota and Atlantichella. The challenges posed by its segregation are addressed in this study, which integrates morphological and molecular data to reassess the circumscription of Rehubryum and its phylogenetic placement within the subtribe Lewinskyinae. Our results support the recognition of a new species, R. kiwi, and show that its inclusion within the genus further complicates the morphological delimitation of Rehubryum from Ulota, as both genera are distinguishable by only two consistent gametophytic characteristics: a submarginal leaf band of elongated cells, and the presence of geminate denticulations in the margins of the basal half of the leaf. Moreover, R. kiwi challenges the current morphological circumscription of Rehubryum itself, as it overlaps in key characteristics with its sister genus Atlantichella, rendering their morphological separation untenable. The striking interhemispheric disjunction between Rehubryum and Atlantichella raises new questions about long-distance dispersal and historical biogeography in mosses, despite these complexities at the generic level. Nevertheless, species-level distinctions remain well defined, especially in sporophytic traits and geographic distribution. These findings highlight the pervasive cryptic diversity within Orthotrichaceae, underscoring the need for integrative taxonomic frameworks that synthesize morphology, molecular phylogenetics, and biogeography to resolve evolutionary histories. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 213
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

16 pages, 4320 KiB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 - 31 Jul 2025
Viewed by 150
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

25 pages, 4318 KiB  
Article
Real Reactive Micropolar Spherically Symmetric Fluid Flow and Thermal Explosion: Modelling and Existence
by Angela Bašić-Šiško
Mathematics 2025, 13(15), 2448; https://doi.org/10.3390/math13152448 - 29 Jul 2025
Viewed by 162
Abstract
A model for the flow and thermal explosion of a micropolar gas is investigated, assuming the equation of state for a real gas. This model describes the dynamics of a gas mixture (fuel and oxidant) undergoing a one-step irreversible chemical reaction. The real [...] Read more.
A model for the flow and thermal explosion of a micropolar gas is investigated, assuming the equation of state for a real gas. This model describes the dynamics of a gas mixture (fuel and oxidant) undergoing a one-step irreversible chemical reaction. The real gas model is particularly suitable in this context because it more accurately reflects reality under extreme conditions, such as high temperatures and high pressures. Micropolarity introduces local rotational dynamic effects of particles dispersed within the gas mixture. In this paper, we first derive the initial-boundary value system of partial differential equations (PDEs) under the assumption of spherical symmetry and homogeneous boundary conditions. We explain the underlying physical relationships and then construct a corresponding approximate system of ordinary differential equations (ODEs) using the Faedo–Galerkin projection. The existence of solutions for the full PDE model is established by analyzing the limit of the solutions of the ODE system using a priori estimates and compactness theory. Additionally, we propose a numerical scheme for the problem based on the same approximate system. Finally, numerical simulations are performed and discussed in both physical and mathematical contexts. Full article
(This article belongs to the Special Issue Fluid Mechanics, Numerical Analysis, and Dynamical Systems)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 232
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

23 pages, 3831 KiB  
Article
Functional Connectivity in Future Land-Use Change Scenarios as a Tool for Assessing Priority Conservation Areas for Key Bird Species: A Case Study from the Chaco Serrano
by Julieta Rocío Arcamone, Luna Emilce Silvetti, Laura Marisa Bellis, Carolina Baldini, María Paula Alvarez, María Cecilia Naval-Fernández, Jimena Victoria Albornoz and Gregorio Gavier Pizarro
Sustainability 2025, 17(15), 6874; https://doi.org/10.3390/su17156874 - 29 Jul 2025
Viewed by 218
Abstract
Planning conservation for multiple species while accounting for habitat availability and connectivity under uncertain land-use changes presents a major challenge. This study proposes a protocol to identify strategic conservation areas by assessing the functional connectivity of key bird species under future land-use scenarios [...] Read more.
Planning conservation for multiple species while accounting for habitat availability and connectivity under uncertain land-use changes presents a major challenge. This study proposes a protocol to identify strategic conservation areas by assessing the functional connectivity of key bird species under future land-use scenarios in the Chaco Serrano of Córdoba, Argentina. We modeled three land-use scenarios for 2050: business as usual, sustainability, and intensification. Using the Equivalent Connected Area index, we evaluated functional connectivity for Chlorostilbon lucidus, Polioptila dumicola, Dryocopus schulzii, Milvago chimango, and Saltator aurantiirostris for 1989, 2019, and 2050, incorporating information about habitat specialization and dispersal capacity to reflect differences in ecological responses. All species showed declining connectivity from 1989 to 2019, with further losses expected under future scenarios. Connectivity declines varied by species and were not always proportional to habitat loss, highlighting the complex relationship between land-use change and functional connectivity. Surprisingly, the sustainability scenario led to the greatest losses in connectivity, emphasizing that habitat preservation alone does not ensure connectivity. Using the Integral Connectivity Index, we identified habitat patches critical for maintaining connectivity, particularly those vulnerable under the business as usual scenario. With a spatial prioritization analysis we identified priority conservation areas to support future landscape connectivity. These findings underscore the importance of multispecies, connectivity-based planning and offer a transferable framework applicable to other regions. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 230
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 273
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 261
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 230
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 475
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop