Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = dispersed-monolayer graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4124 KiB  
Article
Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility
by Xiaofei Shao, Xiaobiao Liu and Xikui Ma
Materials 2024, 17(22), 5543; https://doi.org/10.3390/ma17225543 - 13 Nov 2024
Viewed by 1121
Abstract
Materials with high carrier mobility, represented by graphene, have garnered significant interest. However, the zero band gap arising from linear dispersion cannot achieve an ideal on–off ratio in field-effect transistors (FETs), limiting practical applications in certain fields. In contrast, parabolic dispersion usually exhibits [...] Read more.
Materials with high carrier mobility, represented by graphene, have garnered significant interest. However, the zero band gap arising from linear dispersion cannot achieve an ideal on–off ratio in field-effect transistors (FETs), limiting practical applications in certain fields. In contrast, parabolic dispersion usually exhibits extremely high carrier mobility and an appropriate band gap. In this work, we predicted a planar pentagonal lattice composed entirely of pentagons (namely penta-MX2 monolayer), where M = Ni, Pd and Pt, X = group V elements. Using first-principles calculations, we demonstrated a parabolic dispersion within this framework, which results in intriguing phenomena, such as a direct band gap (0.551–1.105 eV) and extraordinary high carrier mobility. For penta-MX2 monolayer, the carrier mobility can attain ~1 × 108 cm2 V−1 s−1 (PBE), surpassing those of black phosphorene, graphene and 2D hexagonal materials. This monolayer also displays anisotropic mechanical properties and significant absorption peaks in the ultraviolet spectrum. Remarkably, 2D penta-MX2 monolayers are promising for successful experimental exfoliation, particularly when X is a nitrogen element, opening up new possibilities for designing two-dimensional semiconductor materials characterized by high carrier mobility. Full article
Show Figures

Graphical abstract

22 pages, 14278 KiB  
Article
Exploring the Potential of Recycled Polyethylene Terephthalate—Lignocellulose/Carbon Nanotube–Graphene Nanosheets an Efficient Extractor for Oil Spill
by Wafaa Alhassani, Basma G. Alhogbi, Mahmoud A. Hussein and M. S. El-Shahawi
Processes 2024, 12(11), 2437; https://doi.org/10.3390/pr12112437 - 5 Nov 2024
Cited by 1 | Viewed by 1693
Abstract
The global challenge of oil spill treatment has been addressed using nanocomposite-based natural fibers. These materials offer great potential in oil spill cleanup and are considered due to their environmental friendliness, high efficiency, and low cost. Thus, the current study reports a novel [...] Read more.
The global challenge of oil spill treatment has been addressed using nanocomposite-based natural fibers. These materials offer great potential in oil spill cleanup and are considered due to their environmental friendliness, high efficiency, and low cost. Thus, the current study reports a novel composite fabricated from date palm fiber (DPF) and recycled polyethylene terephthalate (rPET) with a proper combination of a mixture of carbon nanotubes (CNTs) and graphene nanosheets (GNSs) for oil removal. The established nanocomposite (DPF-rPET/CNT/GNS) was fabricated via physical mixing of various quantities (0.9, 0.8, and 0.7 g) of PET, along with varying loads of DPF at different proportions of CNT:GNS. The prepared nanocomposite (DPF-rPET/CNT/GNS) was fully characterized using scanning electron microscopy–energy dispersive X-ray (SEM-EDX) analysis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. In static experiments and under the optimal parameters of pH, sorbent doze, shaking time, and quantity of diesel oil), the established sorbent (DPF-rPET/CNT-GNS nanocomposite) displayed excellent adsorption capacity (98 mg/g). This study also expands the utility of the sorbent for the reusability of the oil adsorption, maintaining performance after five cycles. The adsorption data fitted well with the Langmuir isotherm model with a correlation coefficient (R2) of 0.99 and maximum adsorption capacity of 99.7 mg/g, indicating monolayer adsorption. Additionally, the adsorption kinetics followed a pseudo-second-order model, with an R2 near unity and an adsorption capacity of 99.09 mg/g. This study highlights the promising potential of the DPF-rPET/CNT-GNS composite as an effective adsorbent for treating oily water. Full article
(This article belongs to the Special Issue New Research on Adsorbent Materials in Environmental Protection)
Show Figures

Graphical abstract

17 pages, 3234 KiB  
Article
Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions
by Xi Zhu, Yong Guo and Baozhan Zheng
Molecules 2024, 29(16), 3768; https://doi.org/10.3390/molecules29163768 - 9 Aug 2024
Viewed by 1106
Abstract
A novel graphene-based composite, 5-methyl-1,3,4-thiadiazol-2-amine (MTA) covalently functionalized graphene oxide (GO-MTA), was rationally developed and used for the selective sorption of Ga3+ from aqueous solutions, showing a higher adsorption capacity (48.20 mg g−1) toward Ga3+ than In3+ (15.41 [...] Read more.
A novel graphene-based composite, 5-methyl-1,3,4-thiadiazol-2-amine (MTA) covalently functionalized graphene oxide (GO-MTA), was rationally developed and used for the selective sorption of Ga3+ from aqueous solutions, showing a higher adsorption capacity (48.20 mg g−1) toward Ga3+ than In3+ (15.41 mg g−1) and Sc3+ (~0 mg g−1). The adsorption experiment’s parameters, such as the contact time, temperature, initial Ga3+ concentration, solution pH, and desorption solvent, were investigated. Under optimized conditions, the GO-MTA composite displayed the highest adsorption capacity of 55.6 mg g−1 toward Ga3+. Moreover, a possible adsorption mechanism was proposed using various characterization methods, including scanning electron microscopy (SEM) equipped with X-ray energy-dispersive spectroscopy (EDS), elemental mapping analysis, Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Ga3+ adsorption with the GO-MTA composite could be better described by the linear pseudo-second-order kinetic model (R2 = 0.962), suggesting that the rate-limiting step may be chemical sorption or chemisorption through the sharing or exchange of electrons between the adsorbent and the adsorbate. Importantly, the calculated qe value (55.066 mg g−1) is closer to the experimental result (55.60 mg g−1). The well-fitted linear Langmuir isothermal model (R2 = 0.972~0.997) confirmed that an interfacial monolayer and cooperative adsorption occur on a heterogeneous surface. The results showed that the GO-MTA composite might be a potential adsorbent for the enrichment and/or separation of Ga3+ at low or ultra-low concentrations in aqueous solutions. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

17 pages, 4614 KiB  
Article
Preparation of Graphene Oxide Hydrogels and Their Adsorption Applications toward Various Heavy Metal Ions in Aqueous Media
by Miao Liu, Yi Wang, Yingjun Wu, Chunyang Liu and Xin Liu
Appl. Sci. 2023, 13(21), 11948; https://doi.org/10.3390/app132111948 - 1 Nov 2023
Cited by 7 | Viewed by 3282
Abstract
Graphene oxide is a two-dimensional material that has been extensively studied in various fields due to its good mechanical properties, water dispersibility, and a large number of oxygen-containing functionalities on its surface. In this study, graphene oxide powder was prepared using graphite powder [...] Read more.
Graphene oxide is a two-dimensional material that has been extensively studied in various fields due to its good mechanical properties, water dispersibility, and a large number of oxygen-containing functionalities on its surface. In this study, graphene oxide powder was prepared using graphite powder to take advantage of its large specific surface area and abundance of oxygen-containing functional groups. The graphene oxide powder was cross-linked with acrylic acid and acrylamide and polymerized to produce graphene oxide hydrogels, which were used to adsorb four metal ions including Cu(II), Pb(II), Zn(II), and Cd(II) from aqueous solutions. The adsorption performance of the graphene oxide hydrogels was investigated at different pHs, temperatures, initial metal ion concentrations, and competition principles, as well as their adsorption and desorption after three repeated adsorption–desorption experiments. It was found that the graphene oxide hydrogels exhibited good adsorption performance for all four metal ions under different conditions. The graphene oxide hydrogels for the adsorption of Cu(II), Pb(II), Zn(II), and Cd(II) ions were best fitted using the Langmuir monolayer adsorption model and the quasi-secondary reaction kinetic model. Good adsorption was achieved for all four metal ions under different competing adsorption principles. After three adsorption–desorption cycles, the adsorption capacity of the graphene oxide hydrogels for all four metal ions remained at 88% and above. These results indicate that graphene oxide hydrogels are a stable, efficient, low-cost, and reusable adsorbent material for the treatment of metal ions in solution. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Pollution in the Environment)
Show Figures

Figure 1

11 pages, 3042 KiB  
Article
Transform-Limited Sub-100-fs Cr:ZnS Laser with a Graphene-ZnSe Saturable Absorber
by Won Bae Cho and Dong Ho Shin
Photonics 2023, 10(10), 1108; https://doi.org/10.3390/photonics10101108 - 30 Sep 2023
Cited by 1 | Viewed by 1642
Abstract
In this work, we present ultrashort pulse generation from passively mode-locked Cr:ZnS laser with a monolayer graphene-coated ZnSe substrate exhibiting high nonlinearity. The femtosecond Cr:ZnS laser produces output power up to 330 mW at a 233 MHz repetition rate. Even in the presence [...] Read more.
In this work, we present ultrashort pulse generation from passively mode-locked Cr:ZnS laser with a monolayer graphene-coated ZnSe substrate exhibiting high nonlinearity. The femtosecond Cr:ZnS laser produces output power up to 330 mW at a 233 MHz repetition rate. Even in the presence of an uneven negative dispersion profile, the enhanced self-phase modulation by the ZnSe substrate of the graphene saturable absorber enables the polycrystalline Cr:ZnS laser to produce slightly chirped 99 fs pulses at 2373 nm. With extracavity dispersion compensation using a mixture of 3 mm and 2 mm thick ZnSe plates, the pulse width was compressed from 99 fs to 73 fs, resulting in an improved time–bandwidth product from 0.431 to 0.318. Assuming a sech2 pulse shape (0.315), the pulses were almost transform-limited. These results indicate that utilizing a graphene saturable absorber on a substrate with high nonlinearity presents an effective method for developing sub-100 fs solid-state lasers within the mid-IR spectral range. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 4503 KiB  
Article
Synthesis, Characterization and Application of SnO2@rGO Nanocomposite for Selective Catalytic Reduction of Exhaust Emission in Internal Combustion Engines
by Subramanian Premkumar, Kothalam Radhakrishnan, Ramji Kalidoss, Jothi Vinoth Kumar, Natarajan Abirami and Baskaran Stephen Inbaraj
Catalysts 2023, 13(2), 381; https://doi.org/10.3390/catal13020381 - 9 Feb 2023
Cited by 5 | Viewed by 2295
Abstract
In this experimental investigation, a procreation approach was used to produce a catalyst based on SnO2@rGO nanocomposite for use in a selective catalytic reduction (SCR) system. Plastic waste oil is one such alternative that helps to ensure the survival of fossil [...] Read more.
In this experimental investigation, a procreation approach was used to produce a catalyst based on SnO2@rGO nanocomposite for use in a selective catalytic reduction (SCR) system. Plastic waste oil is one such alternative that helps to ensure the survival of fossil fuels and also lessens the negative impacts of improper waste disposal. The SnO2@rGO nanocomposite was prepared by fine dispersion of SnO2 nanoparticles on monolayer-dispersed reduced graphene oxide (rGO) and carefully investigated for its potential in adsorbing CO, CO2, NOX, and hydrocarbon (HC). The as-synthesized SnO2@rGO nanocomposite was characterized by Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, X-ray diffraction spectroscopy, thermogravimetry, and surface area analyses. Then, the impact of catalysts inside the exhaust engine system was evaluated in a realistic setting with a single-cylinder, direct-injection diesel engine. As a result, the catalysts reduced harmful pollution emissions while marginally increasing brake-specific fuel consumption. The nanocomposite was shown to exhibit higher NOX adsorption efficiencies when working with different toxic gases. Maximum reductions in the emission of NOX, hydrocarbons, and CO were achieved at a rate of 78%, 62%, and 15%, respectively. These harmful pollutants were adsorbed on the active sites of catalyst and are converted to useful fuel gases through catalytic reduction thereby hindering the trajectory of global warming. Full article
(This article belongs to the Special Issue Emission Control Catalysis)
Show Figures

Figure 1

13 pages, 10358 KiB  
Article
Graphene Formation through Spontaneous Exfoliation of Graphite by Chlorosulfonic Acid: A DFT Study
by Alfredo Bol-Arreba, Isabel G. Ayala and Nicolás A. Cordero
Micro 2023, 3(1), 143-155; https://doi.org/10.3390/micro3010011 - 31 Jan 2023
Cited by 4 | Viewed by 2189
Abstract
Using exfoliating agents is one of the most promising ways for large-scale production of liquid dispersed graphenic materials from graphite. Therefore, it is crucial to know the reason why some molecules have a larger exfoliating power than others. The highest reported experimental yield [...] Read more.
Using exfoliating agents is one of the most promising ways for large-scale production of liquid dispersed graphenic materials from graphite. Therefore, it is crucial to know the reason why some molecules have a larger exfoliating power than others. The highest reported experimental yield for the liquid phase single-surfactant spontaneous exfoliation of graphite, i.e., without sonication, has been obtained using chlorosulfonic acid. The ability of this acid to disperse graphite is studied within the framework of Density Functional Theory (DFT). Equilibrium configurations, electron transfers, binding energies, and densities of states are presented for two acid concentrations and for two situations: adsorption (on monolayer and bilayer graphene) and intercalation (in between simple hexagonal and Bernal-stacked bilayer graphene). Experimental exfoliation power and dispersion stability are explained in terms of charge transfer—the largest found among several studied exfoliating and surfactant agents—facilitated by the good geometrical matching of chlorosulfonic acid molecules to constituent carbon rings of graphene. This matching is in the origin of the tendency toward adsorption of chlorosulfonic acid molecules on graphene monolayers when they separate, originating the charging of the monolayers that precludes their reaggregation. Full article
Show Figures

Figure 1

18 pages, 4026 KiB  
Article
Synthesis of Functionalized Carboxylated Graphene Oxide for the Remediation of Pb and Cr Contaminated Water
by Sana Farooq, Humera Aziz, Shafaqat Ali, Ghulam Murtaza, Muhammad Rizwan, Muhammad Hamzah Saleem, Shahid Mahboob, Khalid A. Al-Ghanim, Mian N. Riaz and Behzad Murtaza
Int. J. Environ. Res. Public Health 2022, 19(17), 10610; https://doi.org/10.3390/ijerph191710610 - 25 Aug 2022
Cited by 28 | Viewed by 4442
Abstract
With the growing scarcity of water, the remediation of water polluted with heavy metals is the need of hour. The present research work is aimed to address this problem by adsorbing heavy metals ions (Pb (II) and Cr (VI)) on modified graphene oxide [...] Read more.
With the growing scarcity of water, the remediation of water polluted with heavy metals is the need of hour. The present research work is aimed to address this problem by adsorbing heavy metals ions (Pb (II) and Cr (VI)) on modified graphene oxide having an excess of carboxylic acid groups. For this, graphene oxide (GO) was modified with chloroacetic acid to produce carboxylated graphene oxide (GO-COOH). The successful synthesis of graphene oxide and its modification has been confirmed using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and Transmission electron microscopy (TEM). The increase in surface area of graphene oxide after treatment with chloroacetic acid characterized by BET indicated its successful modification. A batch experiment was conducted to optimize the different factors affecting adsorption of both heavy metals on GO-COOH. After functionalization, we achieved maximum adsorption capacities of 588.23 mg g−1 and 370.37 mg g−1 for Pb and Cr, respectively, by GO-COOH which were high compared to the previously reported adsorbents of this kind. The Langmuir model (R2 = 0.998) and Pseudo-second-order kinetic model (R2 = 0.999) confirmed the monolayer adsorption of Pb and Cr on GO-COOH and the chemisorption as the dominant process governing adsorption mechanism. The present work shows that the carboxylation of GO can enhance its adsorption capacity efficiently and may be applicable for the treatment of wastewater. Full article
Show Figures

Figure 1

7 pages, 1467 KiB  
Communication
Low and Anisotropic Tensile Strength and Thermal Conductivity in the Single-Layer Fullerene Network Predicted by Machine-Learning Interatomic Potentials
by Bohayra Mortazavi and Xiaoying Zhuang
Coatings 2022, 12(8), 1171; https://doi.org/10.3390/coatings12081171 - 12 Aug 2022
Cited by 23 | Viewed by 2861
Abstract
In the latest ground-breaking experimental advancement (Nature (2022), 606, 507), zero-dimensional fullerenes (C60) have been covalently bonded to form single-layer two-dimensional (2D) fullerene network, namely quasi-hexagonal-phase fullerene (qHPC60). Motivated by the aforementioned accomplishment, in this communication, for the [...] Read more.
In the latest ground-breaking experimental advancement (Nature (2022), 606, 507), zero-dimensional fullerenes (C60) have been covalently bonded to form single-layer two-dimensional (2D) fullerene network, namely quasi-hexagonal-phase fullerene (qHPC60). Motivated by the aforementioned accomplishment, in this communication, for the first time, we explore the phononic and mechanical properties of the qHPC60 monolayer, employing state-of-the-art machine-learning interatomic potentials. By employing an efficient passive-training methodology, the thermal and mechanical properties were examined with an ab-initio level of accuracy using the classical molecular dynamics simulations. Predicted phonon dispersion confirmed the desirable dynamical stability of the qHPC60 monolayer. Room temperature lattice thermal conductivity is predicted to be ultralow and around 2.9 (5.7) W/m·K along the x(y) directions, which are by three orders of magnitude lower than that of the graphene. Close to the ground state and at room temperature, the ultimate tensile strength of the qHPC60 monolayer along the x(y) directions is predicted to be 7.0 (8.8) and 3.3 (4.2) GPa, respectively, occurring at corresponding strains of around 0.07 and 0.029, respectively. The presented computationally accelerated first-principles results confirm highly anisotropic and remarkably low tensile strength and phononic thermal conductivity of the qHPC60 fullerene network nanosheets. Full article
Show Figures

Graphical abstract

10 pages, 3352 KiB  
Article
A Theoretical Investigation on the Physical Properties of Zirconium Trichalcogenides, ZrS3, ZrSe3 and ZrTe3 Monolayers
by Bohayra Mortazavi, Fazel Shojaei, Mehmet Yagmurcukardes, Meysam Makaremi and Xiaoying Zhuang
Energies 2022, 15(15), 5479; https://doi.org/10.3390/en15155479 - 28 Jul 2022
Cited by 12 | Viewed by 3677
Abstract
In a recent advance, zirconium triselenide (ZrSe3) nanosheets with anisotropic and strain-tunable excitonic response were experimentally fabricated. Motivated by the aforementioned progress, we conduct first-principle calculations to explore the structural, dynamic, Raman response, electronic, single-layer exfoliation energies, and mechanical features of [...] Read more.
In a recent advance, zirconium triselenide (ZrSe3) nanosheets with anisotropic and strain-tunable excitonic response were experimentally fabricated. Motivated by the aforementioned progress, we conduct first-principle calculations to explore the structural, dynamic, Raman response, electronic, single-layer exfoliation energies, and mechanical features of the ZrX3 (X = S, Se, Te) monolayers. Acquired phonon dispersion relations reveal the dynamical stability of the ZrX3 (X = S, Se, Te) monolayers. In order to isolate single-layer crystals from bulk counterparts, exfoliation energies of 0.32, 0.37, and 0.4 J/m2 are predicted for the isolation of ZrS3, ZrSe3, and ZrTe3 monolayers, which are comparable to those of graphene. ZrS3 and ZrSe3 monolayers are found to be indirect gap semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV, whereas the ZrTe3 monolayer yields a metallic character. It is shown that the ZrX3 nanosheets are relatively strong, but with highly anisotropic mechanical responses. This work provides a useful vision concerning the critical physical properties of ZrX3 (X = S, Se, Te) nanosheets. Full article
(This article belongs to the Special Issue Advances in Energy Materials and Clean Energy Technologies)
Show Figures

Graphical abstract

20 pages, 4345 KiB  
Article
Application of Poly-L-Lysine for Tailoring Graphene Oxide Mediated Contact Formation between Lithium Titanium Oxide LTO Surfaces for Batteries
by Ignacio Borge-Durán, Ilya Grinberg, José Roberto Vega-Baudrit, Minh Tri Nguyen, Marta Pereira-Pinheiro, Karsten Thiel, Paul-Ludwig Michael Noeske, Klaus Rischka and Yendry Regina Corrales-Ureña
Polymers 2022, 14(11), 2150; https://doi.org/10.3390/polym14112150 - 25 May 2022
Cited by 1 | Viewed by 4061
Abstract
When producing stable electrodes, polymeric binders are highly functional materials that are effective in dispersing lithium-based oxides such as Li4Ti5O12 (LTO) and carbon-based materials and establishing the conductivity of the multiphase composites. Nowadays, binders such as polyvinylidene fluoride [...] Read more.
When producing stable electrodes, polymeric binders are highly functional materials that are effective in dispersing lithium-based oxides such as Li4Ti5O12 (LTO) and carbon-based materials and establishing the conductivity of the multiphase composites. Nowadays, binders such as polyvinylidene fluoride (PVDF) are used, requiring dedicated recycling strategies due to their low biodegradability and use of toxic solvents to dissolve it. Better structuring of the carbon layers and a low amount of binder could reduce the number of inactive materials in the electrode. In this study, we use computational and experimental methods to explore the use of the poly amino acid poly-L-lysine (PLL) as a novel biodegradable binder that is placed directly between nanostructured LTO and reduced graphene oxide. Density functional theory (DFT) calculations allowed us to determine that the (111) surface is the most stable LTO surface exposed to lysine. We performed Kubo–Greenwood electrical conductivity (KGEC) calculations to determine the electrical conductivity values for the hybrid LTO–lysine–rGO system. We found that the presence of the lysine-based binder at the interface increased the conductivity of the interface by four-fold relative to LTO–rGO in a lysine monolayer configuration, while two-stack lysine molecules resulted in 0.3-fold (in the plane orientation) and 0.26-fold (out of plane orientation) increases. These outcomes suggest that monolayers of lysine would specifically favor the conductivity. Experimentally, the assembly of graphene oxide on poly-L-lysine-TiO2 with sputter-deposited titania as a smooth and hydrophilic model substrate was investigated using a layer-by-layer (LBL) approach to realize the required composite morphology. Characterization techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), scanning electron microscopy (SEM) were used to characterize the formed layers. Our experimental results show that thin layers of rGO were assembled on the TiO2 using PLL. Furthermore, the PLL adsorbates decrease the work function difference between the rGO- and the non-rGO-coated surface and increased the specific discharge capacity of the LTO–rGO composite material. Further experimental studies are necessary to determine the influence of the PLL for aspects such as the solid electrolyte interface, dendrite formation, and crack formation. Full article
Show Figures

Graphical abstract

10 pages, 3754 KiB  
Article
Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons
by Hong Guo and Jing Wang
Nanomaterials 2022, 12(5), 764; https://doi.org/10.3390/nano12050764 - 24 Feb 2022
Cited by 13 | Viewed by 2465
Abstract
Graphene is a type of two-dimensional material with special properties and complex mechanical behavior. In the process of growth or processing, graphene inevitably has various defects, which greatly influence the mechanical properties of graphene. In this paper, the mechanical properties of ideal monolayer [...] Read more.
Graphene is a type of two-dimensional material with special properties and complex mechanical behavior. In the process of growth or processing, graphene inevitably has various defects, which greatly influence the mechanical properties of graphene. In this paper, the mechanical properties of ideal monolayer graphene nanoribbons and monolayer graphene nanoribbons with vacancy defects were simulated using the molecular dynamics method. The effect of different defect concentrations and defect positions on the vibration frequency of nanoribbons was investigated, respectively. The results show that the vacancy defect decreases the vibration frequency of the graphene nanoribbon. The vacancy concentration and vacancy position have a certain effect on the vibration frequency of graphene nanoribbons. The vibration frequency not only decreases significantly with the increase of nanoribbon length but also with the increase of vacancy concentration. As the vacancy concentration is constant, the vacancy position has a certain effect on the vibration frequency of graphene nanoribbons. For nanoribbons with similar dispersed vacancy, the trend of vibration frequency variation is similar. Full article
Show Figures

Figure 1

9 pages, 2216 KiB  
Article
Hexatetra-Carbon: A Novel Two-Dimensional Semiconductor Allotrope of Carbon
by Mosayeb Naseri, Jaafar Jalilian, Dennis R. Salahub, Maicon Pierre Lourenço and Ghasem Rezaei
Computation 2022, 10(2), 19; https://doi.org/10.3390/computation10020019 - 25 Jan 2022
Cited by 15 | Viewed by 4332
Abstract
Employing first-principles calculations based on density functional theory (DFT), we designed a novel two-dimensional (2D) elemental monolayer allotrope of carbon called hexatetra-carbon. In the hexatetra-carbon structure, each carbon atom bonds with its four neighboring atoms in a 2D double layer crystal structure, which [...] Read more.
Employing first-principles calculations based on density functional theory (DFT), we designed a novel two-dimensional (2D) elemental monolayer allotrope of carbon called hexatetra-carbon. In the hexatetra-carbon structure, each carbon atom bonds with its four neighboring atoms in a 2D double layer crystal structure, which is formed by a network of carbon hexagonal prisms. Based on our calculations, it is found that hexatetra-carbon exhibits a good structural stability as confirmed by its rather high calculated cohesive energy −6.86 eV/atom, and the absence of imaginary phonon modes in its phonon dispersion spectra. Moreover, compared with its hexagonal counterpart, i.e., graphene, which is a gapless material, our designed hexatetra-carbon is a semiconductor with an indirect band gap of 2.20 eV. Furthermore, with a deeper look at the hexatetra-carbon, one finds that this novel monolayer may be obtained from bilayer graphene under external mechanical strain conditions. As a semiconductor with a moderate band gap in the visible light range, once synthesized, hexatetra-carbon would show promising applications in new opto-electronics technologies. Full article
Show Figures

Figure 1

12 pages, 1894 KiB  
Article
Strain and Spin-Orbit Coupling Engineering in Twisted WS2/Graphene Heterobilayer
by Cyrine Ernandes, Lama Khalil, Hugo Henck, Meng-Qiang Zhao, Julien Chaste, Fabrice Oehler, Alan T. Charlie Johnson, Maria C. Asensio, Debora Pierucci, Marco Pala, José Avila and Abdelkarim Ouerghi
Nanomaterials 2021, 11(11), 2921; https://doi.org/10.3390/nano11112921 - 31 Oct 2021
Cited by 19 | Viewed by 4255
Abstract
The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, [...] Read more.
The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the “twist angle”. By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS2/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS2 and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS2 monolayers, including the spin-orbit coupling strength. In particular, we show that the WS2 spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials. Full article
(This article belongs to the Special Issue State-of-the-Art 2D and Carbon Nanomaterials in France)
Show Figures

Figure 1

11 pages, 1954 KiB  
Article
Temperature-Dependent Optical Properties of Graphene on Si and SiO2/Si Substrates
by Sisi Wu, Lingyu Wan, Liangmin Wei, Devki N. Talwar, Kaiyan He and Zhechuan Feng
Crystals 2021, 11(4), 358; https://doi.org/10.3390/cryst11040358 - 29 Mar 2021
Cited by 7 | Viewed by 8561
Abstract
Systematic investigations are performed to understand the temperature-dependent optical properties of graphene on Si and SiO2/Si substrates by using a variable angle spectroscopic ellipsometry. The optical constants of graphene have revealed changes with the substrate and temperature. While the optical refractive [...] Read more.
Systematic investigations are performed to understand the temperature-dependent optical properties of graphene on Si and SiO2/Si substrates by using a variable angle spectroscopic ellipsometry. The optical constants of graphene have revealed changes with the substrate and temperature. While the optical refractive index (n) of monolayer graphene on Si exhibited clear anomalous dispersions in the visible and near-infrared region (400–1200 nm), the modification is moderate for graphene on SiO2/Si substrate. Two graphene sheets have shown a pronounced absorption in the ultraviolet region with peak position related to the Van Hove singularity in the density of states. By increasing the temperature from 300 K to 500 K, for monolayer graphene on Si, the n value is gradually increased while k decreased. However, the optical constants [n, k] of monolayer graphene on SiO2/Si exhibited unpredictable wave variations. In the wavelength range of 400–1200 nm, an experiential formula of a like-Sellmeier equation is found well suited for describing the dispersions of graphene on Si and SiO2/Si substrates. Full article
Show Figures

Figure 1

Back to TopTop