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Abstract: In the latest ground-breaking experimental advancement (Nature (2022), 606, 507), zero-
dimensional fullerenes (C60) have been covalently bonded to form single-layer two-dimensional
(2D) fullerene network, namely quasi-hexagonal-phase fullerene (qHPC60). Motivated by the afore-
mentioned accomplishment, in this communication, for the first time, we explore the phononic
and mechanical properties of the qHPC60 monolayer, employing state-of-the-art machine-learning
interatomic potentials. By employing an efficient passive-training methodology, the thermal and
mechanical properties were examined with an ab-initio level of accuracy using the classical molecular
dynamics simulations. Predicted phonon dispersion confirmed the desirable dynamical stability of
the qHPC60 monolayer. Room temperature lattice thermal conductivity is predicted to be ultralow
and around 2.9 (5.7) W/m·K along the x(y) directions, which are by three orders of magnitude lower
than that of the graphene. Close to the ground state and at room temperature, the ultimate tensile
strength of the qHPC60 monolayer along the x(y) directions is predicted to be 7.0 (8.8) and 3.3 (4.2) GPa,
respectively, occurring at corresponding strains of around 0.07 and 0.029, respectively. The presented
computationally accelerated first-principles results confirm highly anisotropic and remarkably low
tensile strength and phononic thermal conductivity of the qHPC60 fullerene network nanosheets.

Keywords: fullerene network; machine learning; mechanical; thermal conductivity

1. Introduction

Carbon-based two-dimensional (2D) nanomaterials, such as graphene [1–3], are known
to exhibit exceptional physical properties, including outstandingly high mechanical [4]
and phononic transport [5,6], owing to strong covalent bonding and light-weight atomic
lattices. Carbon atoms because of their flexible nature in 2D form can show diverse lattice,
such as completely flat graphene, phagraphene [7] and biphenylene [8], or more complex
buckled structures, such as fluorinated diamane [9] and pentagraphene [10]. Interestingly,
while graphene and phagraphene [7] monolayers are zero-gap semimetals, fluorinated
diamane is an insulator [11]. Moreover, despite close energetic stability, the tensile strength
and electronic nature of the graphene and phagraphene monolayers, the latter because
of non-hexagonal carbon rings, interestingly shows an order of magnitude-suppressed
thermal conductivity than graphene [12,13]. It is therefore clear than creating connections
between the atomic lattice and resulting physical properties of 2D carbon-based structures
is very advantageous for practical employment in nanodevices.

In the latest exciting advancement in the field of 2D materials, most recently by form-
ing carbon–carbon bonds between 0D cages of C60 fullerenes, a new sp2–sp3-hybridized
full-carbon 2D lattice, single-layer quasi-hexagonal-phase fullerene (qHPC60) has been
successfully fabricated by Hou and coworkers [14]. According to the experimental and
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theoretical calculations [14], the single-layer qHPC60 is found to be a semiconductor. In
order to enhance the understanding of the qHPC60 monolayer physical properties, in
this communication for the first time, we utilize accurate machine-learning interatomic
potentials (MLIPs) to explore the dynamical stability, lattice thermal conductivity, mechan-
ical and failure behavior of this newly synthesized carbon lattice [15–18]. The presented
first-principles results provide a unique vision concerning the critical thermo-mechanical
properties of the sp2–sp3-hybridized qHPC60 nanosheets, which can serve as a valuable
guide for future studies on this novel 2D network and any prospective theoretical studies
on other 2D lattices.

2. Computational Methods

DFT calculations in this communication were performed using the Vienna Ab-initio
Simulation Package [19,20] on the basis of the generalized gradient approximation (GGA)
and Perdew–Burke–Ernzerhof (PBE) functional, along with Grimme’s DFT-D3 [21] and van
der Waal’s (vdW) dispersion correction. The plane-wave and self-consistent loop energy
cutoff values were set to 500 eV and 10−5 eV, respectively. The geometry-optimized lattice
was obtained using the conjugate gradient algorithm until Hellman–Feynman forces drop
below 0.01 eV/Å [22]. The simulation box size along the out-of-plane direction was set
to 22 Å, to elude interaction between them in the three-dimensional periodic systems. In
this work, we passively fitted moment tensor potentials (MTPs) [23] to investigate the
thermal and mechanical properties at finite temperatures, utilizing the MLIP package [24]
and using the same approach employed in our recent works [25,26]. The required datasets
for the fitting of MTPs were prepared by conducting ab-initio molecular dynamics (AIMD)
simulations within the PBE/GGA and DFT-D3 methods using the VASP package over the
unitcell with 120 atoms, time step of 1 fs and 2 × 2 × 1 K-point grid. AIMD calculations
were conducted for strain-free and −5%, +5%, +10% and +15% biaxially strained samples,
in which the systems were heated from 300 to 200 K during 300 time steps. The complete
AIMD trajectories were next subsampled, and around 500 configurations were used to
train a preliminary MTP. The accuracy of the fitted MTP was then examined over the
complete dataset, and configurations with worst extrapolation grades [27] were defined
and incorporated to the original dataset. The final MTP with enhanced accuracy and
stability was then passively fitted using the improved training dataset. Phonon dispersion
relations were obtained using the fitted MTPs over 3 × 3 × 1 supercells and employing
the PHONOPY code, as explained in our previous study [28]. Thermal and mechanical
properties, on the basis of fitted MTPs, were finally evaluated using the classical molecular
dynamics (CMD) simulations, employing the LAMMPS [29] package with a time step
of 0.5 fs. Non-equilibrium molecular dynamics (NEMD) simulations were conducted
to evaluate the length-dependent lattice thermal transport, using the same approach as
that employed in our previous studies [25,30]. Mechanical properties were investigated
by employing the quasi-static uniaxial tensile simulations, as explained in our recent
studies [25,26,31], with high accuracy, as confirmed by comparing with DFT calculations.

3. Results and Discussion

First, we discuss the atomic and structural features of the energy-minimized qHPC60
monolayer acquired by the DFT simulations, as shown in Figure 1a. The lattice constants
of the qHPC60 monolayer along the x(y) directions are predicted to be 15.89 (9.16) Å, re-
spectively, which show excellent agreements with corresponding experimentally measured
values of 16.0 (9.17) Å [14]. The in-plane bonding network of the qHPC60 monolayer is
clearly anisotropic, in which two individual C60 fullerenes are connected by single titled
carbon–carbon bonds along the elongated direction of x. On the other side, two carbon–
carbon bonds are oriented exactly along the y direction, directly connecting two separate
fullerene cages. The parallel orientation of connecting bonds along the load transfer and the
involvement of twice more bonds between two neighboring fullerenes, intuitively suggest
stronger mechanical and phonon transport along the y direction. In Figure 1b, the electron
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localization function (ELF) [32], with an isosurface value of 0.8, is also illustrated. Large
ELF values over 0.8 in the center of bonds, as expected, indicating the formation of strong
covalent interactions throughout this novel sp2–sp3-hybridized 2D carbon allotrope. In
Figure 1c the phonon dispersion relation of the qHPC60 monolayer on the basis of a trained
MTP is depicted. As one of the signatures of 2D materials, this monolayer shows three
acoustic phonon modes, initiating from the Γ point. As it can be seen, none of the acoustic
and optical modes exhibit imaginary frequencies, confirming the dynamical stability of
this novel full-carbon 2D lattice. In the data availability section, we included the energy
minimized lattice, along with ELF data and the trained MTP as well.
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Figure 1. (a) Top and side views of the qHPC60 monolayer. (b) Electron localization function
(ELF) with an isosurface value of 0.8, plotted using the VESTA package [33]. MTP-based predicted
(c) phonon dispersion relation and (d) phonon group velocity (GV) of the qHPC60 monolayer.

As shown in Figure 1c inset, the two in-plane acoustic modes of the qHPC60 monolayer
appear with linear dispersions, whereas the out-of-plane (ZA) counterpart shows quadratic
dispersions from the Γ point, in consistency with other famous 2D lattices, such as graphene
and h-BN [28]. For optical modes with frequencies larger than 10 THz, it is noticeable that
they show relatively flat dispersions, which confirm their low group velocities, consistent
with results shown in Figure 1d. In addition, remarkable band crossing is conspicuous
throughout the entire frequency range for both in-plane acoustic and optical modes, reveal-
ing high scattering and short phonon lifetime along these heat carriers. The combination
of low phonon group velocity and high scattering rates suggest remarkably low lattice
thermal conductivity along this novel sp2–sp3-hybridized 2D carbon allotrope. As it is
also observable from the Figure 1c inset, the out-of-plane ZA is the only phonon mode
convincingly free of intersection with other vibrations, which suggests lower scattering
rates. In consistency with the lattice thermal transport of graphene [34], BC6N [30] and
BC2N [35] monolayers, one can also conclude the considerable contribution of ZA phonon
mode in the heat transport of the qHPC60 monolayer. In accordance with our earlier anal-
ysis of structural features, the ZA acoustic mode dispersion is almost two times wider
along the Γ-Y path that the Γ-X counterpart, which reveals considerably higher phonon
group velocity along the y direction. To evaluate the lattice thermal conductivity, we have
conducted NEMD simulations. Since in the NEMD simulations of heat conduction, the
atoms at the two ends are fixed, the contribution of long wavelength phonons become
restricted and thus the effects of length on the lattice thermal conductivity are ought to be
examined. In Figure 2, the NEMD results for the length and direction effect on the lattice
thermal conductivity of the qHPC60 monolayer at room temperature are plotted, assum-
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ing a fixed thickness of 12.2 Å, according to that measured experimentally with atomic
force microscopy [14]. As it is clear for the NEMD results along the x direction, the room
temperature lattice thermal conductivity converges to 2.9 ± 0.3 W/m·K for the systems
longer than 40 nm. Along the y direction, an increasing trend is, however, observable. As
a well-established approach, based on the NEMD predictions for the samples with finite
lengths of L, κL, the diffusive phononic thermal conductivity, κ∞, can be estimated via [36]:

1
κL

=
1

κ∞

(
1 +

Λ
L

)
(1)
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phononic thermal conductivity of the qHPC60 monolayer. Continuous line is the fitted function
according to Equation (1) to extrapolate the diffusive lattice thermal conductivity (κ∞).

Using the aforementioned relation, the room temperature diffusive lattice thermal con-
ductivity of the qHPC60 monolayer along the y direction is predicted to be 5.7 ±0.5 W/m·K
(find the fitted line in Figure 2, which is almost twice of that along the x direction). As
it is clear, this novel sp2–sp3-hybridized 2D carbon allotrope shows ultralow, by three
orders of magnitude lower thermal conductivity than graphene [34], stemmed from high
phonon scattering rates and low phonon group velocities. The combination of the semicon-
ducting character with ultralow lattice thermal conductivity might be promising for the
thermoelectric energy conversion, which requires a separate study.

Last but not the least, we investigate the anisotropic mechanical response of the
qHPC60 monolayer by the MTP-based model, using systems with around 1000 atoms. As
confirmed in our previous work [25,26,30,31,35], the MTP-based molecular dynamics simu-
lations conducted at 1 K can closely reproduce the ground state DFT results. In Figure 3, the
predicted direction-dependent uniaxial stress–strain responses of the qHPC60 monolayer
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by the MTP-based model at 1 and 300 K are compared. In these results, real volumes of
the deformed lattices are considered, assuming a fixed thickness of 12.2 Å [14] during the
deformation. Close to the ground state (1 K), the ultimate tensile strength of the qHPC60
monolayer along the x(y) directions are predicted to be 7.0 (8.8) GPa. Interestingly, for the
both loading directions, the failure occurs at a strain level of 0.07. At room temperature,
the ultimate tensile strength of this novel sp2–sp3-hybridized 2D carbon allotrope drop by
around 51%, as compared with 1 K, to values of 3.3 (4.2) GPa along the x (y) directions, occur-
ring at a failure strain of around 0.029. In comparison with graphene at 300 K, the ultimate
tensile strength of the qHPC60 monolayer is more than 20-fold lower [31]. The estimated
reduction of around 51% in tensile strengths of the qHPC60 monolayer from 1 to 300 K, is
noticeably higher than that observed in other carbon-based 2D materials [25,26,30,31,35].
Our findings not only reveal considerably low and anisotropic tensile strength along this
novel sp2–sp3-hybridized 2D carbon allotrope but also reveal anomalous suppression of
the tensile strength at high temperatures. As expected, results shown in Figure 3c,d confirm
the failure initiation by the breakages of the connecting carbon–carbon bonds. Interestingly,
during the failure progress for both the loading directions, several of four-membered con-
necting carbon rings throughout the monolayer are found to disintegrate and form larger
chains. As it is clear, the failure in this novel full-carbon 2D system occurs at low strain
levels, which can be an indication of a highly brittle mechanical behavior.
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4. Concluding Remarks

Motivated by the latest experimental advance [14] in the synthesis of covalently
bonded single-layer fullerene network, or so called qHPC60 monolayers, as the first study
in this communication, we employed moment tensor potentials to examine the dynamical
stability and evaluate the complex orientation-dependent mechanical response and lattice
thermal transport of this novel sp2–sp3-hybridized 2D carbon allotrope. We found that
none of the acoustic and optical modes in this system exhibit imaginary frequencies,
confirming its desirable dynamical stability. Room temperature lattice thermal conductivity
of the qHPC60 monolayer on the basis of non-equilibrium molecular dynamics (NEMD)
simulations were predicted to be ultralow and around 2.9 (5.7) W/m·K along the x(y)
directions, which are by three orders of magnitude lower than that of the graphene. Close
to the ground state and at 300 K, the ultimate tensile strength of the qHPC60 monolayer
along the x(y) directions were predicted to be 7.0 (8.8) and 3.3 (4.2) GPa, respectively,
occurring at corresponding low strains of around 0.07 and 0.029, respectively. The failure
was found to be highly brittle and was initiated by the breakages of the connecting carbon–
carbon bonds between fullerene cages. The estimated reduction in the tensile strengths of
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the qHPC60 monolayer from 1 and 300 K was found to be anomalous and considerably
higher than that previously predicted for other carbon-based 2D materials. The presented
first-principles results confirm highly anisotropic and remarkably low tensile strength and
thermal conductivity of the qHPC60 fullerene network nanosheets.
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