Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility
Abstract
1. Introduction
2. Methods and Computational Details
3. Results and Discussion
3.1. Structure
3.2. Stability
3.3. Electronic Properties
3.4. Carrier Mobilities
3.5. Mechanical Properties
Penta-MX2 | Elastic Constant (Gpa·nm) | Young’s Modulus (Gpa·nm) | Poisson’s Ratio | Reference | |||
---|---|---|---|---|---|---|---|
Penta-NiN2 | 174.280 | 174.280 | 24.110 | 44.814 | 170.945 | 0.138 | This work |
Penta-PdP2 | 114.662 | 114.662 | 34.933 | 27.460 | 104.019 | 0.305 | This work |
Penta-PtN2 | 226.960 | 226.960 | 38.549 | 43.161 | 220.412 | 0.170 | This work |
Penta-PtP2 | 147.082 | 147.082 | 44.100 | 38.119 | 133.859 | 0.300 | This work |
Graphene | / | / | / | / | 335 | 0.16 | Theo. [65,66] |
340 ± 50 | / | Exp. [67] | |||||
MoS2 | / | / | / | / | 123 | 0.25 | Theo. [68] |
145.82 | / | Theo. [69] | |||||
BN | 289.9 | 289.8 | 63.7 | 113.1 | 275.8 | 0.220 | Theo. [63] |
Penta-graphene | 265 | 265 | −18 | / | 263.8 | −0.068 | Theo. [6] |
Penta-NiP2 | 123.89 | 123.89 | 28.33 | 37.78 | 117.42 | 0.229 | Theo. [42] |
SiC6 | 123 | 180 | −5.2 | 69.3 | 122.9 179.8 | −0.029 −0.042 | Theo. [56] |
BC6N | / | / | / | / | 308 | 0.179 | Theo. [62] |
3.6. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.I.; Sikes, K.J.; Hone, J.; Stormer, H.L.; Kim, P. Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101, 096802. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef]
- Neugebauer, P.; Orlita, M.; Faugeras, C.; Barra, A.L.; Potemski, M. How Perfect Can Graphene Be? Phys. Rev. Lett. 2009, 103, 136403. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372. [Google Scholar]
- Zhang, S.; Zhou, J.; Wang, Q.; Jena, P. Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet. J. Phys. Chem. C 2016, 120, 3993–3998. [Google Scholar] [CrossRef]
- Li, J.; Fan, X.; Wei, Y.; Liu, H.; Li, S.; Zhao, P.; Chen, G. Half-metallicity and ferromagnetism in penta-AlN2 nanostructure. Sci. Rep. 2016, 6, 33060. [Google Scholar] [CrossRef]
- Li, F.; Tu, K.; Zhang, H.; Chen, Z. Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: A computational investigation. Phys. Chem. Chem. Phys. 2015, 17, 24151–24156. [Google Scholar] [CrossRef]
- Liu, S.; Liu, B.; Shi, X.; Lv, J.; Niu, S.; Yao, M.; Li, Q.; Liu, R.; Cui, T.; Liu, B. Two-dimensional Penta-BP5 Sheets: High-stability, Strain-tunable Electronic Structure and Excellent Mechanical Properties. Sci. Rep. 2017, 7, 2404. [Google Scholar] [CrossRef]
- Naseri, M. First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering. Chem. Phys. Lett. 2017, 685, 310–315. [Google Scholar] [CrossRef]
- Lopez-Bezanilla, A.; Littlewood, P.B. σ–π-Band Inversion in a Novel Two-Dimensional Material. J. Phys. Chem. C 2015, 119, 19469–19474. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.; Li, M.; Wei, W.; Huang, B. Stable Si-based pentagonal monolayers: High carrier mobilities and applications in photocatalytic water splitting. J. Mater. Chem. A 2015, 3, 24055–24063. [Google Scholar] [CrossRef]
- Aierken, Y.; Leenaerts, O.; Peeters, F.M. A first-principles study of stable few-layer penta-silicene. Phys. Chem. Chem. Phys. 2016, 18, 18486–18492. [Google Scholar] [CrossRef] [PubMed]
- Oyedele, A.D.; Yang, S.; Liang, L.; Puretzky, A.A.; Wang, K.; Zhang, J.; Yu, P.; Pudasaini, P.R.; Ghosh, A.W.; Liu, Z.; et al. PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ji, Y.; Bianchi, M.; Hus, S.M.; Li, Z.; Balog, R.; Miwa, J.A.; Hofmann, P.; Li, A.-P.; Zemlyanov, D.Y.; et al. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. Nat. Mater. 2024, 23, 1339–1346. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef]
- Xi, J.; Long, M.; Tang, L.; Wang, D.; Shuai, Z. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 2012, 4, 4348–4369. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Hobbs, D.; Kresse, G.; Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 2000, 62, 11556–11570. [Google Scholar] [CrossRef]
- Alfè, D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 2009, 180, 2622–2633. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Shao, X.; Liu, P.; Franchini, C.; Xia, Y.; He, J. Assessing the performance of exchange-correlation functionals on lattice constants of binary solids at room temperature within the quasiharmonic approximation. Phys. Rev. B 2023, 108, 024306. [Google Scholar] [CrossRef]
- Zachariasen, W. The crystal structure of palladium diphosphide. Acta Crystallogr. 1963, 16, 1253–1255. [Google Scholar] [CrossRef]
- Chen, Z.W.; Guo, X.J.; Liu, Z.Y.; Ma, M.Z.; Jing, Q.; Li, G.; Zhang, X.Y.; Li, L.X.; Wang, Q.; Tian, Y.J.; et al. Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase. Phys. Rev. B 2007, 75, 054103. [Google Scholar]
- Baghdadi, A.; Finley, A.; Russo, P.; Arnott, R.J.; Wold, A. Crystal growth and characterization of PtP2. J. Less Common Met. 1974, 34, 31–38. [Google Scholar] [CrossRef]
- Dahl, E. Refined Crystal Structures of PtP2 and FeP2. Acta Chem. Scand. 1969, 23, 2677–2684. [Google Scholar] [CrossRef]
- Furuseth, S.; Selte, K.; Kjekshus, A. On the Solid Solubility and Structural Properties of PdAs(2−x)Sb(x), PtP(2−x)As(x), PtP(2−x)Sb(x), PtP(2−x)Bi(x), PtAs(2−x)Sb(x), PtAs(2−x)Bi(x), PtSb(2−x)Bi(x), Pd(1−m)Pt(m)As2, Pd(1−m)Pt(m)Sb2, Pd(1−m)Au(m)Sb2, and Pt(1−m)Au(m)Sb2. Acta Chem. Scand. 1967, 21, 527–536. [Google Scholar] [CrossRef]
- Schmidt, T.; Lutz, H.D.; Hönle, W. Verfeinerung der Kristallstruktur von p-PtP2. Z. Krist.-Cryst. Mater. 1990, 190, 143–146. [Google Scholar]
- Tanaka, K.; Kumazawa, S.; Tsubokawa, M.; Maruno, S.; Shirotani, I. The multiple-diffraction effect in accurate structure-factor measurements of PtP2 crystals. Acta Crystallogr. Sect. A 1994, 50, 246–252. [Google Scholar] [CrossRef]
- Zeitschrift für Physikalische Chemie. Abteilung B: Chemie der Elementarprozesse, Aufbau der Materie; Akademische Verlagsgesellschaft: Leipzig, Germany, 1929; Volume 4, pp. 277–287.
- Wang, Y.; Li, L.; Yao, W.; Song, S.; Sun, J.T.; Pan, J.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y.-Q.; et al. Monolayer PtSe2, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Lett. 2015, 15, 4013–4018. [Google Scholar] [CrossRef]
- Tusche, C.; Meyerheim, H.L.; Kirschner, J. Observation of Depolarized ZnO(0001) Monolayers: Formation of Unreconstructed Planar Sheets. Phys. Rev. Lett. 2007, 99, 026102. [Google Scholar] [CrossRef]
- Shao, X.; Liu, X.; Zhao, X.; Wang, J.; Zhang, X.; Zhao, M. Electronic properties of a π-conjugated Cairo pentagonal lattice: Direct band gap, ultrahigh carrier mobility, and slanted Dirac cones. Phys. Rev. B 2018, 98, 085437. [Google Scholar] [CrossRef]
- Shao, X.; Sun, L.; Ma, X.; Feng, X.; Gao, H.; Ding, C.; Zhao, M. Multiple Dirac cones and Lifshitz transition in a two-dimensional Cairo lattice as a Hawking evaporation analogue. J. Phys. Condens. Matter 2021, 33, 365001. [Google Scholar] [CrossRef]
- Salama, I.; El-Raghy, T.; Barsoum, M.W. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J. Alloys Compd. 2002, 347, 271–278. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Jihad, I.; Anfa, M.H.S.; Alqahtani, S.M.; Alharbi, F.H. DFT-PBE band gap correction using machine learning with a reduced set of features. Comput. Mater. Sci. 2024, 244, 113153. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Baerends, E.J.; Gritsenko, O.V.; van Meer, R. The Kohn–Sham gap, the fundamental gap and the optical gap: The physical meaning of occupied and virtual Kohn–Sham orbital energies. Phys. Chem. Chem. Phys. 2013, 15, 16408–16425. [Google Scholar] [CrossRef]
- Morales-García, Á.; Valero, R.; Illas, F. An Empirical, yet Practical Way to Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. J. Phys. Chem. C 2017, 121, 18862–18866. [Google Scholar] [CrossRef]
- Ma, Y.; Kuc, A.; Heine, T. Single-Layer Tl2O: A Metal-Shrouded 2D Semiconductor with High Electronic Mobility. J. Am. Chem. Soc. 2017, 139, 11694–11697. [Google Scholar] [CrossRef]
- Shao, Z.-G.; Ye, X.-S.; Yang, L.; Wang, C.-L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 2013, 114, 093712. [Google Scholar] [CrossRef]
- Xi, J.; Wang, D.; Shuai, Z. Electronic properties and charge carrier mobilities of graphynes and graphdiynes from first principles. WIREs Comput. Mol. Sci. 2015, 5, 215–227. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Z.Y.; Yang, D.Z.; Xue, D.S.; Si, M.S. Theoretical Prediction of Carrier Mobility in Few-Layer BC2N. J. Phys. Chem. Lett. 2014, 5, 4073–4077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, H.; Yang, B.; Qu, Y.; Zhao, M. Strain-Modulated Electronic Structure and Infrared Light Adsorption in Palladium Diselenide Monolayer. Sci. Rep. 2017, 7, 39995. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shao, X.; Yang, B.; Zhao, M. Negative Poisson’s ratio and high-mobility transport anisotropy in SiC6 siligraphene. Nanoscale 2018, 10, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Lett. 2017, 17, 1833–1838. [Google Scholar] [CrossRef]
- Ding, Y.-m.; Shi, J.-j.; Xia, C.; Zhang, M.; Du, J.; Huang, P.; Wu, M.; Wang, H.; Cen, Y.-l.; Pan, S.-h. Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure. Nanoscale 2017, 9, 14682–14689. [Google Scholar] [CrossRef]
- Wang, G.; Pandey, R.; Karna, S.P. Carbon phosphide monolayers with superior carrier mobility. Nanoscale 2016, 8, 8819–8825. [Google Scholar] [CrossRef]
- Ma, Y.; Kuc, A.; Jing, Y.; Philipsen, P.; Heine, T. Two-Dimensional Haeckelite NbS2: A Diamagnetic High-Mobility Semiconductor with Nb4+ Ions. Angew. Chem. Int. Ed. 2017, 56, 10214–10218. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269–6275. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X.; Gao, H.; Zhang, X.; Ai, H.; Li, W.; Zhao, M. Valley-selective circular dichroism and high carrier mobility of graphene-like BC6N. Nanoscale 2018, 10, 13179–13186. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.C.; Mapasha, R.E.; Ukpong, A.M.; Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428. [Google Scholar] [CrossRef]
- Wang, L.; Kutana, A.; Zou, X.; Yakobson, B.I. Electro-mechanical anisotropy of phosphorene. Nanoscale 2015, 7, 9746–9751. [Google Scholar] [CrossRef] [PubMed]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef]
- Topsakal, M.; Cahangirov, S.; Ciraci, S. The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 2010, 96, 091912. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385. [Google Scholar] [CrossRef]
- Yue, Q.; Kang, J.; Shao, Z.; Zhang, X.; Chang, S.; Wang, G.; Qin, S.; Li, J. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 2012, 376, 1166–1170. [Google Scholar] [CrossRef]
- Ataca, C.; Topsakal, M.; Aktürk, E.; Ciraci, S. A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2. J. Phys. Chem. C 2011, 115, 16354–16361. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Shirayama, M.; Kadowaki, H.; Miyadera, T.; Sugita, T.; Tamakoshi, M.; Kato, M.; Fujiseki, T.; Murata, D.; Hara, S.; Murakami, T.N.; et al. Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3. Phys. Rev. Appl. 2016, 5, 014012. [Google Scholar] [CrossRef]
MX2 | Structure | Space Group | Lattice Vectors (Å) | dM-X (Å) | dX-X (Å) | Energy (eV/Atom) |
---|---|---|---|---|---|---|
NiN2 | Monoclinic | C12/c1 | Theory: a = 5.603, b = 4.612, c = 4.597, α = γ = 90°, β = 126.90° | 1.947 | 1.501 | 0.419 |
Orthorhombic | Pnnm | Theory: a = 2.846, b = 4.628, c = 3.766, α = γ = β = 90° | 2.006 | 1.261 | 0.00 | |
Cubic | Pa-3 | Theory: a = b = c = 4.621, α = γ = β = 90° | 2.011 | 1.278 | 0.055 | |
Pentagon 2D | P4g | Theory: a = b = 4.538, θ = 13.51° | 1.881 | 1.243 | 0.094 | |
PdP2 | Monoclinic | C12/c1 | Theory: a = 6.245, b = 5.865, c = 5.885, α = γ = 90°, β = 110.90° Experiment: a = 6.207, b = 5.857, c = 5.874, α = γ = 90°, β = 111.80° [32] | 2.347 | 2.218 | 0.00 |
Pentagon 2D | P4g | Theory: a = b = 5.871, θ = 18.27° | 2.324 | 2.061 | 0.582 | |
PtN2 | Orthorhombic | Pnnm | Theory: a = 3.188, b = 4.858, c = 3.748, α = γ = β = 90° Experiment: a = 3.197, b = 4.880, c = 3.779, α = γ = β = 90° [33] | 2.098 | 1.401 | 0.00 |
Pentagon 2D | P4g | Theory: a = b = 4.824, θ = 12.77° | 2.016 | 1.261 | 0.021 | |
PtP2 | Cubic | Pa-3 | Theory: a = b = c = 5.713, α = γ = β = 90° Experiment: a = b = c = 5.695, α = γ = β = 90° [34,35,36,37,38,39] | 2.398 | 2.184 | 0.00 |
Pentagon 2D | P4g | Theory: a = b = 5.836, θ = 18.54° | 2.305 | 2.073 | 0.699 |
Penta-MX2 | Band Gap (eV) | |||||
---|---|---|---|---|---|---|
HSE06 | PBE | |||||
w/o SOC | w/o SOC | SOC | ||||
1 L | 2 L | 3 L | Bulk | 1 L | 1 L | |
Penta-NiN2 | 1.100 | 0.124 | 0 | 0 | 0.043 | 0.050 |
Penta-PdP2 | 0.742 | 0 | 0 | 0 | 0.161 | 0.177 |
Penta-PtN2 | 1.105 | 0.450 | 0 | 0 | 0.074 | 0.317 |
Penta-PtP2 | 0.551 | 0 | 0 | 0 | 0.066 | 0.085 |
Carrier Type | [100] | [110] | ||||||
---|---|---|---|---|---|---|---|---|
(eV) | (J·m−2) | (103 cm2 V−1 s−1) | (eV) | (J·m−2) | (103 cm2 V−1 s−1) | |||
Penta-NiN2 | ||||||||
e | 0.364 | 2.455 | 177.544 | 4.736 | 0.361 | 3.783 | 144.579 | 1.651 |
h | 0.066 | 0.223 | 177.544 | 17361.935 | 0.361 | 5.093 | 144.579 | 0.911 |
Penta-PdP2 | ||||||||
e | 0.189 | 1.433 | 115.355 | 33.495 | 0.419 | 2.237 | 101.284 | 2.458 |
h | 0.102 | 1.520 | 115.355 | 102.595 | 0.235 | 7.982 | 101.284 | 0.615 |
Penta-PtN2 | ||||||||
e | 0.236 | 1.791 | 227.797 | 27.279 | 0.169 | 2.868 | 175.528 | 15.876 |
h | 0.133 | 1.260 | 227.797 | 173.790 | 0.313 | 4.421 | 175.528 | 1.953 |
Penta-PtP2 | ||||||||
e | 0.021 | 1.296 | 147.023 | 4305.197 | 0.371 | 2.137 | 134.426 | 4.564 |
h | 0.021 | 2.113 | 147.023 | 1551.082 | 0.798 | 1.292 | 134.426 | 2.691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, X.; Liu, X.; Ma, X. Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility. Materials 2024, 17, 5543. https://doi.org/10.3390/ma17225543
Shao X, Liu X, Ma X. Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility. Materials. 2024; 17(22):5543. https://doi.org/10.3390/ma17225543
Chicago/Turabian StyleShao, Xiaofei, Xiaobiao Liu, and Xikui Ma. 2024. "Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility" Materials 17, no. 22: 5543. https://doi.org/10.3390/ma17225543
APA StyleShao, X., Liu, X., & Ma, X. (2024). Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility. Materials, 17(22), 5543. https://doi.org/10.3390/ma17225543